More stories

  • in

    MIT in the media: 2023 in review

    It was an eventful trip around the sun for MIT this year, from President Sally Kornbluth’s inauguration and Mark Rober’s Commencement address to Professor Moungi Bawendi winning the Nobel Prize in Chemistry. In 2023 MIT researchers made key advances, detecting a dying star swallowing a planet, exploring the frontiers of artificial intelligence, creating clean energy solutions, inventing tools aimed at earlier detection and diagnosis of cancer, and even exploring the science of spreading kindness. Below are highlights of some of the uplifting people, breakthroughs, and ideas from MIT that made headlines in 2023.

    The gift: Kindness goes viral with Steve HartmanSteve Hartman visited Professor Anette “Peko” Hosoi to explore the science behind whether a single act of kindness can change the world.Full story via CBS News

    Trio wins Nobel Prize in chemistry for work on quantum dots, used in electronics and medical imaging“The motivation really is the basic science. A basic understanding, the curiosity of ‘how does the world work?’” said Professor Moungi Bawendi of the inspiration for his research on quantum dots, for which he was co-awarded the 2023 Nobel Prize in Chemistry.Full story via the Associated Press

    How MIT’s all-women leadership team plans to change science for the betterPresident Sally Kornbluth, Provost Cynthia Barnhart, and Chancellor Melissa Nobles emphasized the importance of representation for women and underrepresented groups in STEM.Full story via Radio Boston

    MIT via community college? Transfer students find a new path to a degreeUndergraduate Subin Kim shared his experience transferring from community college to MIT through the Transfer Scholars Network, which is aimed at helping community college students find a path to four-year universities.Full story via the Christian Science Monitor

    MIT president Sally Kornbluth doesn’t think we can hit the pause button on AIPresident Kornbluth discussed the future of AI, ethics in science, and climate change with columnist Shirley Leung on her new “Say More” podcast. “I view [the climate crisis] as an existential issue to the extent that if we don’t take action there, all of the many, many other things that we’re working on, not that they’ll be irrelevant, but they’ll pale in comparison,” Kornbluth said.Full story via The Boston Globe 

    It’s the end of a world as we know itAstronomers from MIT, Harvard University, Caltech and elsewhere spotted a dying star swallowing a large planet. Postdoc Kishalay De explained that: “Finding an event like this really puts all of the theories that have been out there to the most stringent tests possible. It really opens up this entire new field of research.”Full story via The New York Times

    Frontiers of AI

    Hey, Alexa, what should students learn about AI?The Day of AI is a program developed by the MIT RAISE initiative aimed at introducing and teaching K-12 students about AI. “We want students to be informed, responsible users and informed, responsible designers of these technologies,” said Professor Cynthia Breazeal, dean of digital learning at MIT.Full story via The New York Times

    AI tipping pointFour faculty members from across MIT — Professors Song Han, Simon Johnson, Yoon Kim and Rosalind Picard — described the opportunities and risks posed by the rapid advancements in the field of AI.Full story via Curiosity Stream 

    A look into the future of AI at MIT’s robotics laboratoryProfessor Daniela Rus, director of MIT’s Computer Science and Artificial Intelligence Laboratory, discussed the future of artificial intelligence, robotics, and machine learning, emphasizing the importance of balancing the development of new technologies with the need to ensure they are deployed in a way that benefits humanity.Full story via Mashable

    Health care providers say artificial intelligence could transform medicineProfessor Regina Barzilay spoke about her work developing new AI systems that could be used to help diagnose breast and lung cancer before the cancers are detectable to the human eye.Full story via Chronicle

    Is AI coming for your job? Tech experts weigh in: “They don’t replace human labor”Professor David Autor discussed how the rise of artificial intelligence could change the quality of jobs available.Full story via CBS News

    Big tech is bad. Big AI will be worse.Institute Professor Daron Acemoglu and Professor Simon Johnson made the case that “rather than machine intelligence, what we need is ‘machine usefulness,’ which emphasizes the ability of computers to augment human capabilities.”Full story via The New York Times

    Engineering excitement

    MIT’s 3D-printed hearts could pump new life into customized treatments MIT engineers developed a technique for 3D printing a soft, flexible, custom-designed replica of a patient’s heart.Full story via WBUR

    Mystery of why Roman buildings have survived so long has been unraveled, scientists sayScientists from MIT and other institutions discovered that ancient Romans used lime clasts when manufacturing concrete, giving the material self-healing properties.Full story via CNN

    The most interesting startup in America is in Massachusetts. You’ve probably never heard of it.VulcanForms, an MIT startup, is at the “leading edge of a push to transform 3D printing from a niche technology — best known for new-product prototyping and art-class experimentation — into an industrial force.”Full story via The Boston Globe

    Catalyzing climate innovations

    Can Boston’s energy innovators save the world?Boston Magazine reporter Rowan Jacobsen spotlighted how MIT faculty, students, and alumni are leading the charge in clean energy startups. “When it comes to game-changing breakthroughs in energy, three letters keep surfacing again and again: MIT,” writes Jacobsen.Full story via Boston Magazine

    MIT research could be game changer in combating water shortagesMIT researchers discovered that a common hydrogel used in cosmetic creams, industrial coatings, and pharmaceutical capsules can absorb moisture from the atmosphere even as the temperature rises. “For a planet that’s getting hotter, this could be a game-changing discovery.”Full story via NBC Boston

    Energy-storing concrete could form foundations for solar-powered homesMIT engineers uncovered a new way of creating an energy supercapacitor by combining cement, carbon black, and water that could one day be used to power homes or electric vehicles.Full story via New Scientist

    MIT researchers tackle key question of EV adoption: When to charge?MIT scientists found that delayed charging and strategic placement of EV charging stations could help reduce additional energy demands caused by more widespread EV adoption.Full story via Fast Company

    Building better buildingsProfessor John Fernández examined how to reduce the climate footprints of homes and office buildings, recommending creating airtight structures, switching to cleaner heating sources, using more environmentally friendly building materials, and retrofitting existing homes and offices.Full story via The New York Times

    They’re building an “ice penetrator” on a hillside in WestfordResearchers from MIT’s Haystack Observatory built an “ice penetrator,” a device designed to monitor the changing conditions of sea ice.Full story via The Boston Globe

    Healing health solutions

    How Boston is beating cancerMIT researchers are developing drug-delivery nanoparticles aimed at targeting cancer cells without disturbing healthy cells. Essentially, the nanoparticles are “engineered for selectivity,” explained Professor Paula Hammond, head of MIT’s Department of Chemical Engineering.Full story via Boston Magazine

    A new antibiotic, discovered with artificial intelligence, may defeat a dangerous superbugUsing a machine-learning algorithm, researchers from MIT discovered a type of antibiotic that’s effective against a particular strain of drug-resistant bacteria.Full story via CNN

    To detect breast cancer sooner, an MIT professor designs an ultrasound braMIT researchers designed a wearable ultrasound device that attaches to a bra and could be used to detect early-stage breast tumors.Full story via STAT

    The quest for a switch to turn on hungerAn ingestible pill developed by MIT scientists can raise levels of hormones to help increase appetite and decrease nausea in patients with gastroparesis.Full story via Wired

    Here’s how to use dreams for creative inspirationMIT scientists found that the earlier stages of sleep are key to sparking creativity and that people can be guided to dream about specific topics, further boosting creativity.Full story via Scientific American

    Astounding art

    An AI opera from 1987 reboots for a new generationProfessor Tod Machover discussed the restaging of his opera “VALIS” at MIT, which featured an artificial intelligence-assisted musical instrument developed by Nina Masuelli ’23.Full story via The Boston Globe

    Surfacing the stories hidden in migration dataAssociate Professor Sarah Williams discussed the Civic Data Design Lab’s “Motivational Tapestry,” a large woven art piece that uses data from the United Nations World Food Program to visually represent the individual motivations of 1,624 Central Americans who have migrated to the U.S.Full story via Metropolis

    Augmented reality-infused production of Wagner’s “Parsifal” opens Bayreuth FestivalProfessor Jay Scheib’s augmented reality-infused production of Richard Wagner’s “Parsifal” brought “fantastical images” to audience members.Full story via the Associated Press

    Understanding our universe

    New image reveals violent events near a supermassive black holeScientists captured a new image of M87*, the black hole at the center of the Messier 87 galaxy, showing the “launching point of a colossal jet of high-energy particles shooting outward into space.”Full story via Reuters

    Gravitational waves: A new universeMIT researchers Lisa Barsotti, Deep Chatterjee, and Victoria Xu explored how advances in gravitational wave detection are enabling a better understanding of the universe.Full story via Curiosity Stream 

    Nergis Mavalvala helped detect the first gravitational wave. Her work doesn’t stop thereProfessor Nergis Mavalvala, dean of the School of Science, discussed her work searching for gravitational waves, the importance of skepticism in scientific research, and why she enjoys working with young people.Full story via Wired

    Hitting the books

    “The Transcendent Brain” review: Beyond ones and zeroesIn his book “The Transcendent Brain: Spirituality in the Age of Science,” Alan Lightman, a professor of the practice of humanities, displayed his gift for “distilling complex ideas and emotions to their bright essence.”Full story via The Wall Street Journal

    What happens when CEOs treat workers better? Companies (and workers) win.Professor of the practice Zeynep Ton published a book, “The Case for Good Jobs,” and is “on a mission to change how company leaders think, and how they treat their employees.”Full story via The Boston Globe

    How to wage war on conspiracy theoriesProfessor Adam Berinsky’s book, “Political Rumors: Why We Accept Misinformation and How to Fight it,” examined “attitudes toward both politics and health, both of which are undermined by distrust and misinformation in ways that cause harm to both individuals and society.”Full story via Politico

    What it takes for Mexican coders to cross the cultural border with Silicon ValleyAssistant Professor Héctor Beltrán discussed his new book, “Code Work: Hacking across the U.S./México Techno-Borderlands,” which explores the culture of hackathons and entrepreneurship in Mexico.Full story via Marketplace

    Cultivating community

    The Indigenous rocketeerNicole McGaa, a fourth-year student at MIT, discussed her work leading MIT’s all-Indigenous rocket team at the 2023 First Nations Launch National Rocket Competition.Full story via Nature

    “You totally got this,” YouTube star and former NASA engineer Mark Rober tells MIT graduatesDuring his Commencement address at MIT, Mark Rober urged graduates to embrace their accomplishments and boldly face any challenges they encounter.Full story via The Boston Globe

    MIT Juggling Club going strong after half centuryAfter almost 50 years, the MIT Juggling Club, which was founded in 1975 and then merged with a unicycle club, is the oldest drop-in juggling club in continuous operation and still welcomes any aspiring jugglers to come toss a ball (or three) into the air.Full story via Cambridge Day

    Volpe Transportation Center opens as part of $750 million deal between MIT and fedsThe John A. Volpe National Transportation Systems Center in Kendall Square was the first building to open in MIT’s redevelopment of the 14-acre Volpe site that will ultimately include “research labs, retail, affordable housing, and open space, with the goal of not only encouraging innovation, but also enhancing the surrounding community.”Full story via The Boston Globe

    Sparking conversation

    The future of AI innovation and the role of academics in shaping itProfessor Daniela Rus emphasized the central role universities play in fostering innovation and the importance of ensuring universities have the computing resources necessary to help tackle major global challenges.Full story via The Boston Globe

    Moving the needle on supply chain sustainabilityProfessor Yossi Sheffi examined several strategies companies could use to help improve supply chain sustainability, including redesigning last-mile deliveries, influencing consumer choices and incentivizing returnable containers.Full story via The Hill

    Expelled from the mountain top?Sylvester James Gates Jr. ’73, PhD ’77 made the case that “diverse learning environments expose students to a broader range of perspectives, enhance education, and inculcate creativity and innovative habits of mind.”Full story via Science

    Marketing magic of “Barbie” movie has lessons for women’s sportsMIT Sloan Lecturer Shira Springer explored how the success of the “Barbie” movie could be applied to women’s sports.Full story via Sports Business Journal

    We’re already paying for universal health care. Why don’t we have it?Professor Amy Finkelstein asserted that the solution to health insurance reform in the U.S. is “universal coverage that is automatic, free and basic.”Full story via The New York Times 

    The internet could be so good. Really.Professor Deb Roy described how “new kinds of social networks can be designed for constructive communication — for listening, dialogue, deliberation, and mediation — and they can actually work.”Full story via The Atlantic

    Fostering educational excellence

    MIT students give legendary linear algebra professor standing ovation in last lectureAfter 63 years of teaching and over 10 million views of his online lectures, Professor Gilbert Strang received a standing ovation after his last lecture on linear algebra. “I am so grateful to everyone who likes linear algebra and sees its importance. So many universities (and even high schools) now appreciate how beautiful it is and how valuable it is,” said Strang.Full story via USA Today

    “Brave Behind Bars”: Reshaping the lives of inmates through coding classesGraduate students Martin Nisser and Marisa Gaetz co-founded Brave Behind Bars, a program designed to provide incarcerated individuals with coding and digital literacy skills to better prepare them for life after prison.Full story via MSNBC

    Melrose TikTok user “Ms. Nuclear Energy” teaching about nuclear power through social mediaGraduate student Kaylee Cunningham discussed her work using social media to help educate and inform the public about nuclear energy.Full story via CBS Boston  More

  • in

    Hearing Amazônia: MIT musicians in Manaus, Brazil

    On Dec. 13, the MIT community came together for the premiere of “We Are The Forest,” a documentary by MIT Video Productions that tells the story of the MIT musicians who traveled to the Brazilian Amazon seeking culture and scientific exchange.

    The film features performances by Djuena Tikuna, Luciana Souza, Anat Cohen, and Evan Ziporyn, with music by Antônio Carlos Jobim. Fred Harris conducts the MIT Festival Jazz Ensemble and MIT Wind Ensemble and Laura Grill Jaye conducts the MIT Vocal Jazz Ensemble.

    Play video

    “We Are The Forest”Video: MIT Video Productions

    The impact of ecological devastation in the Amazon reflects the climate crisis worldwide. During the Institute’s spring break in March 2023, nearly 80 student musicians became only the second student group from MIT to travel to the Brazilian Amazon. Inspired by the research and activism of Talia Khan ’20, who is currently a PhD candidate in MIT’s Department of Mechanical Engineering, the trip built upon experiences of the 2020-21 academic year when virtual visiting artists Luciana Souza and Anat Cohen lectured on Brazilian music and culture before joining the November 2021 launch of Hearing Amazônia — The Responsibility of Existence.

    This consciousness-raising project at MIT, sponsored by the Center for Art, Science and Technology (CAST), began with a concert featuring Brazilian and Amazonian music influenced by the natural world. The project was created and led by MIT director of wind and jazz ensembles and senior lecturer in music Frederick Harris Jr.

    The performance was part eulogy and part praise song: a way of bearing witness to loss, while celebrating the living and evolving cultural heritage of Amazonia. The event included short talks, one of which was by Khan. As the first MIT student to study in the Brazilian Amazonia (via MISTI-Brazil), she spoke of her research on natural botanical resins and traditional carimbó music in Santarém, Pará, Brazil. Soon after, as a Fulbright Scholar, Khan continued her research in Manaus, setting the stage for the most complex trip in the history of MIT Music and Theater Arts.“My experiences in the Brazilian Amazon changed my life,” enthuses Khan. “Getting to know Indigenous musicians and immersing myself in the culture of this part of the world helped me realize how we are all so connected.”

    “Talia’s experiences in Brazil convinced me that the Hearing Amazônia project needed to take a next essential step,” explains Harris. “I wanted to provide as many students as possible with a similar opportunity to bring their musical and scientific talents together in a deep and spiritual manner. She provided a blueprint for our trip to Manaus.”

    An experience of a lifetime

    A multitude of musicians from three MTA ensembles traveled to Manaus, located in the middle of the world’s largest rainforest and home to the National Institute of Amazonian Research (Instituto Nacional de Pesquisas da Amazônia, or INPA), the most important center for scientific studies in the Amazon region for international sustainability issues.

    Tour experiences included cultural/scientific exchanges with Indigenous Amazonians through Nobre Academia de Robótica and the São Sebastião community on the Tarumã Açu River, INPA, the Cultural Center of the Peoples of the Amazon, and the Museu da Amazônia. Musically, students connected with local Indigenous instrument builders and performed with the Amazonas State Jazz Orchestra and renowned vocalist and Indigenous activist Djuena Tikuna.

    “Hearing Amazônia: Arte ê Resistência,” a major concert in the famed 19th century opera house Teatro Amazonas, concluded the trip on March 31. The packed event featured the MIT Wind Ensemble, MIT Festival Jazz Ensemble, MIT Vocal Jazz Ensemble, vocalist Luciana Souza, clarinetist Anat Cohen, MIT professor and composer-clarinetist Evan Ziporyn, and local musicians from Manaus. The program ended with “Nós Somos A Floresta (We Are The Forest) — Eware (Sacred Land) — Reflections on Amazonia,” a large-scale collaborative performance with Djuena Tikuna. The two songs were composed by Tikuna, with Eware newly arranged by Israeli composer-bassist Nadav Erlich for the occasion. It concluded with all musicians and audience members coming together in song: a moving and beautiful moment of mediation on the sacredness of the earth.

    “It was humbling to see the grand display of beauty and diversity that nature developed in the Amazon rainforest,” reflects bass clarinetist and MIT sophomore Richard Chen. “By seeing the bird life, sloths, and other species and the flora, and eating the fruits of the region, I received lessons on my harmony and connection to the natural world around us. I developed a deeper awareness of the urgency of resolving conflicts and stopping the destruction of the Amazon rainforest, and to listening to and celebrating the stories and experiences of those around me.”

    Indigenous musicians embodying the natural world

    “The trip expanded the scope of what music means,” MIT Vocal Jazz Ensemble member and biomedical researcher Autumn Geil explains. “It’s living the music, and you can’t feel that unless you put yourself in new experiences and get yourself out of your comfort zone.”

    Over two Indigenous music immersion days, students spent time listening to, and playing and singing with, musicians who broadened their scope of music’s relationship to nature and cultural sustainability. Indigenous percussionist and instrument builder Eliberto Barroncas and music producer-arranger César Lima presented contrasting approaches with a shared objective — connecting people to the natural world through Indigenous instruments.

    Barroncas played instruments built from materials from the rainforest and from found objects in Manaus that others might consider trash, creating ethereal tones bespeaking his life as one with nature. Students had the opportunity to play his instruments and create a spontaneous composition playing their own instruments and singing with him in a kind of “Amazonia jam session.”

    “Eliberto expressed that making music is visceral; it’s best when it comes from the gut and is tangible and coming from one’s natural environment. When we cannot understand each other using language, using words, logic and thinking, we go back to the body,” notes oboist and ocean engineer Michelle Kornberg ’20. “There’s a difference between teaching music as a skill you learn and teaching music as something you feel, that you experience and give — as a gift.”

    Over the pandemic, César Lima developed an app, “The Roots VR,” as a vehicle for people to discover over 100 Amazonia instruments. Users choose settings to interact with instruments and create pieces using a variety of instrumental combinations; a novel melding of technology with nature to expand the reach of these Indigenous instruments and their cultural significance.

    At the Cultural Center of the Peoples of the Amazon, students gathered around a tree, hand-in-hand singing with Djuena Tikuna, accompanied by percussionist Diego Janatã. “She spoke about being one of the first Indigenous musicians ever to sing in the Teatro Amazonas, which was built on the labor and blood of Indigenous people,” recalls flutist and atmospheric engineer Phoebe Lin, an MIT junior. “And then to hold hands and close our eyes and step back and forth; a rare moment of connection in a tumultuous world — it felt like we were all one.”

    Bringing the forest back to MIT

    On April 29, Djuena Tikuna made her MIT debut at “We Are the Forest — Music of Resilience and Activism,” a special concert for MIT President Sally Kornbluth’s inauguration, presenting music from the Teatro Amazonas event. Led and curated by Harris, the performance included new assistant professor in jazz and saxophonist-composer Miguel Zenón, director of the MIT Vocal Jazz Ensemble; Laura Grill Jaye; and vocalist Sara Serpa, among others. 

    “Music unites people and through art we can draw the world’s attention to the most urgent global challenges such as climate change,” says Djuena Tikuna. “My songs bring the message that every seed will one day germinate to reforest hearts, because we are all from the same village.”

    Hearing Amazônia has set the stage for the blossoming of artistic and scientific collaborations in the Amazon and beyond.

    “The struggle of Indigenous peoples to keep their territories alive should concern us all, and it will take more than science and research to help find solutions for climate change,” notes President Kornbluth. “It will take artists, too, to unite us and raise awareness across all communities. The inclusivity and expressive power of music can help get us all rowing in the same direction — it’s a great way to encourage us all to care and act!” More

  • in

    Accelerated climate action needed to sharply reduce current risks to life and life-support systems

    Hottest day on record. Hottest month on record. Extreme marine heatwaves. Record-low Antarctic sea-ice.

    While El Niño is a short-term factor in this year’s record-breaking heat, human-caused climate change is the long-term driver. And as global warming edges closer to 1.5 degrees Celsius — the aspirational upper limit set in the Paris Agreement in 2015 — ushering in more intense and frequent heatwaves, floods, wildfires, and other climate extremes much sooner than many expected, current greenhouse gas emissions-reduction policies are far too weak to keep the planet from exceeding that threshold. In fact, on roughly one-third of days in 2023, the average global temperature was at least 1.5 C higher than pre-industrial levels. Faster and bolder action will be needed — from the in-progress United Nations Climate Change Conference (COP28) and beyond — to stabilize the climate and minimize risks to human (and nonhuman) lives and the life-support systems (e.g., food, water, shelter, and more) upon which they depend.

    Quantifying the risks posed by simply maintaining existing climate policies — and the benefits (i.e., avoided damages and costs) of accelerated climate action aligned with the 1.5 C goal — is the central task of the 2023 Global Change Outlook, recently released by the MIT Joint Program on the Science and Policy of Global Change.

    Based on a rigorous, integrated analysis of population and economic growth, technological change, Paris Agreement emissions-reduction pledges (Nationally Determined Contributions, or NDCs), geopolitical tensions, and other factors, the report presents the MIT Joint Program’s latest projections for the future of the earth’s energy, food, water, and climate systems, as well as prospects for achieving the Paris Agreement’s short- and long-term climate goals.

    The 2023 Global Change Outlook performs its risk-benefit analysis by focusing on two scenarios. The first, Current Trends, assumes that Paris Agreement NDCs are implemented through the year 2030, and maintained thereafter. While this scenario represents an unprecedented global commitment to limit greenhouse gas emissions, it neither stabilizes climate nor limits climate change. The second scenario, Accelerated Actions, extends from the Paris Agreement’s initial NDCs and aligns with its long-term goals. This scenario aims to limit and stabilize human-induced global climate warming to 1.5 C by the end of this century with at least a 50 percent probability. Uncertainty is quantified using 400-member ensembles of projections for each scenario.

    This year’s report also includes a visualization tool that enables a higher-resolution exploration of both scenarios.

    Energy

    Between 2020 and 2050, population and economic growth are projected to drive continued increases in energy needs and electrification. Successful achievement of current Paris Agreement pledges will reinforce a shift away from fossil fuels, but additional actions will be required to accelerate the energy transition needed to cap global warming at 1.5 C by 2100.

    During this 30-year period under the Current Trends scenario, the share of fossil fuels in the global energy mix drops from 80 percent to 70 percent. Variable renewable energy (wind and solar) is the fastest growing energy source with more than an 8.6-fold increase. In the Accelerated Actions scenario, the share of low-carbon energy sources grows from 20 percent to slightly more than 60 percent, a much faster growth rate than in the Current Trends scenario; wind and solar energy undergo more than a 13.3-fold increase.

    While the electric power sector is expected to successfully scale up (with electricity production increasing by 73 percent under Current Trends, and 87 percent under Accelerated Actions) to accommodate increased demand (particularly for variable renewables), other sectors face stiffer challenges in their efforts to decarbonize.

    “Due to a sizeable need for hydrocarbons in the form of liquid and gaseous fuels for sectors such as heavy-duty long-distance transport, high-temperature industrial heat, agriculture, and chemical production, hydrogen-based fuels and renewable natural gas remain attractive options, but the challenges related to their scaling opportunities and costs must be resolved,” says MIT Joint Program Deputy Director Sergey Paltsev, a lead author of the 2023 Global Change Outlook.

    Water, food, and land

    With a global population projected to reach 9.9 billion by 2050, the Current Trends scenario indicates that more than half of the world’s population will experience pressures to its water supply, and that three of every 10 people will live in water basins where compounding societal and environmental pressures on water resources will be experienced. Population projections under combined water stress in all scenarios reveal that the Accelerated Actions scenario can reduce approximately 40 million of the additional 570 million people living in water-stressed basins at mid-century.

    Under the Current Trends scenario, agriculture and food production will keep growing. This will increase pressure for land-use change, water use, and use of energy-intensive inputs, which will also lead to higher greenhouse gas emissions. Under the Accelerated Actions scenario, less agricultural and food output is observed by 2050 compared to the Current Trends scenario, since this scenario affects economic growth and increases production costs. Livestock production is more greenhouse gas emissions-intensive than crop and food production, which, under carbon-pricing policies, drives demand downward and increases costs and prices. Such impacts are transmitted to the food sector and imply lower consumption of livestock-based products.

    Land-use changes in the Accelerated Actions scenario are similar to those in the Current Trends scenario by 2050, except for land dedicated to bioenergy production. At the world level, the Accelerated Actions scenario requires cropland area to increase by 1 percent and pastureland to decrease by 4.2 percent, but land use for bioenergy must increase by 44 percent.

    Climate trends

    Under the Current Trends scenario, the world is likely (more than 50 percent probability) to exceed 2 C global climate warming by 2060, 2.8 C by 2100, and 3.8 C by 2150. Our latest climate-model information indicates that maximum temperatures will likely outpace mean temperature trends over much of North and South America, Europe, northern and southeast Asia, and southern parts of Africa and Australasia. So as human-forced climate warming intensifies, these regions are expected to experience more pronounced record-breaking extreme heat events.

    Under the Accelerated Actions scenario, global temperature will continue to rise through the next two decades. But by 2050, global temperature will stabilize, and then slightly decline through the latter half of the century.

    “By 2100, the Accelerated Actions scenario indicates that the world can be virtually assured of remaining below 2 C of global warming,” says MIT Joint Program Deputy Director C. Adam Schlosser, a lead author of the report. “Nevertheless, additional policy mechanisms must be designed with more comprehensive targets that also support a cleaner environment, sustainable resources, as well as improved and equitable human health.”

    The Accelerated Actions scenario not only stabilizes global precipitation increase (by 2060), but substantially reduces the magnitude and potential range of increases to almost one-third of Current Trends global precipitation changes. Any global increase in precipitation heightens flood risk worldwide, so policies aligned with the Accelerated Actions scenario would considerably reduce that risk.

    Prospects for meeting Paris Agreement climate goals

    Numerous countries and regions are progressing in fulfilling their Paris Agreement pledges. Many have declared more ambitious greenhouse gas emissions-mitigation goals, while financing to assist the least-developed countries in sustainable development is not forthcoming at the levels needed. In this year’s Global Stocktake Synthesis Report, the U.N. Framework Convention on Climate Change evaluated emissions reductions communicated by the parties of the Paris Agreement and concluded that global emissions are not on track to fulfill the most ambitious long-term global temperature goals of the Paris Agreement (to keep warming well below 2 C — and, ideally, 1.5 C — above pre-industrial levels), and there is a rapidly narrowing window to raise ambition and implement existing commitments in order to achieve those targets. The Current Trends scenario arrives at the same conclusion.

    The 2023 Global Change Outlook finds that both global temperature targets remain achievable, but require much deeper near-term emissions reductions than those embodied in current NDCs.

    Reducing climate risk

    This report explores two well-known sets of risks posed by climate change. Research highlighted indicates that elevated climate-related physical risks will continue to evolve by mid-century, along with heightened transition risks that arise from shifts in the political, technological, social, and economic landscapes that are likely to occur during the transition to a low-carbon economy.

    “Our Outlook shows that without aggressive actions the world will surpass critical greenhouse gas concentration thresholds and climate targets in the coming decades,” says MIT Joint Program Director Ronald Prinn. “While the costs of inaction are getting higher, the costs of action are more manageable.” More

  • in

    Ayomikun Ayodeji ’22 named a 2024 Rhodes Scholar

    Ayomikun “Ayo” Ayodeji ’22 from Lagos, Nigeria, has been selected as a Rhodes Scholar for West Africa. He will begin fully funded postgraduate studies at Oxford University in the U.K. next fall.

    Ayodeji was supported by Associate Dean Kim Benard and the Distinguished Fellowships team in Career Advising and Professional Development, and received additional mentorship from the Presidential Committee on Distinguished Fellowships.

    “Ayo has worked hard to develop his vision and to express it in ways that will capture the imagination of the broader world. It is a thrill to see him recognized this year as a Rhodes Scholar,” says Professor Nancy Kanwisher, who co-chairs the committee along with Professor Will Broadhead.

    Ayodeji graduated from MIT in 2022 with BS degrees in chemical engineering and management. He is currently an associate at Boston Consulting Group.

    He is passionate about championing reliable energy access across the African landscape and fostering culturally inclusive communities. As a Rhodes Scholar, he will pursue an MSc in energy systems and an MSc in global governance and diplomacy.

    During his time at MIT, Ayodeji’s curiosity for energy innovations was fueled by his research on perovskite solar cells under the MIT Energy Initiative. He then went on to intern at Pioneer Natural Resources where he explored the boundless applications of machine learning tools in completions. At BCG, Ayodeji supports both public and private sector clients on a variety of renewable energy topics including clean energy transition, decarbonization roadmaps, and workforce development.

    Ayodeji’s community-oriented mindset led him to team up with a group of friends and partner with the Northeast Children’s Trust (NECT), an organization that helps children affected by the Boko Haram insurgency in northeastern Nigeria. The project, sponsored by Davis Projects for Peace and MIT’s PKG Center, expanded NECT’s programs via an offline, portable classroom server.

    Ayodeji served as an undergraduate representative on the MIT Department of Chemical Engineering’s Diversity, Equity, and Inclusion Committee. He was also vice president of the MIT African Students’ Association and a coordinator for the annual MIT International Students Orientation. More

  • in

    MIT startup has big plans to pull carbon from the air

    In order to avoid the worst effects of climate change, the United Nations has said we’ll need to not only reduce emissions but also remove carbon dioxide from the atmosphere. One method for achieving carbon removal is direct air capture and storage. Such technologies are still in their infancy, but many efforts are underway to scale them up quickly in hopes of heading off the most catastrophic effects of climate change.

    The startup Noya, founded by Josh Santos ’14, is working to accelerate direct-air carbon removal with a low-power, modular system that can be mass manufactured and deployed around the world. The company plans to power its system with renewable energy and build its facilities near injection wells to store carbon underground.

    Using third-party auditors to verify the amount of carbon dioxide captured and stored, Noya is selling carbon credits to help organizations reach net-zero emissions targets.

    “Think of our systems for direct air capture like solar panels for carbon negativity,” says Santos, who formerly played a role in Tesla’s much-publicized manufacturing scale-up for its Model 3 electric sedan. “We can stack these boxes in a LEGO-like fashion to achieve scale in the field.”

    The three-year old company is currently building its first commercial pilot facility, and says its first full-scale commercial facility will have the capacity to pull millions of tons of carbon from the air each year. Noya has already secured millions of dollars in presales to help build its first facilities from organizations including Shopify, Watershed, and a university endowment.

    Santos says the ambitious approach, which is driven by the urgent need to scale carbon removal solutions, was influenced by his time at MIT.

    “I need to thank all of my MIT professors,” Santos says. “I don’t think any of this would be possible without the way in which MIT opened up my horizons by showing me what’s possible when you work really hard.”

    Finding a purpose

    Growing up in the southeastern U.S., Santos says he first recognized climate change as an issue by experiencing the increasing intensity of hurricanes in his neighborhood. One year a hurricane forced his family to evacuate their town. When they returned, their church was gone.

    “The storm left a really big mark on me and how I thought about the world,” Santos says. “I realized how much climate change can impact people.”

    When Santos came to MIT as an undergraduate, he took coursework related to climate change and energy systems, eventually majoring in chemical engineering. He also learned about startups through courses he took at the MIT Sloan School of Management and by taking part in MIT’s Undergraduate Research Opportunities Program (UROP), which exposed him to researchers in the early stages of commercializing research from MIT labs.

    More than the coursework, though, Santos says MIT instilled in him a desire to make a positive impact on the world, in part through a four-day development workshop called LeaderShape that he took one January during the Institute’s Independent Activities Period (IAP).

    “LeaderShape teaches students how to lead with integrity, and the core lesson is that any privilege you have you should try to leverage to improve the lives of other people,” Santos says. “That really stuck with me. Going to MIT is a huge privilege, and it makes me feel like I have a responsibility to put that privilege to work to the betterment of society. It shaped a lot of how I view my career.”

    After graduation, Santos worked at Tesla, then at Harley Davidson, where he worked on electric powertrains. Eventually he decided electric vehicle technology couldn’t solve climate change on its own, so in the spring of 2020 he founded Noya with friend Daniel Cavaro.

    The initial idea for Noya was to attach carbon capture devices to cooling towers to keep equipment costs low. The founders pivoted in response to the passage of the Inflation Reduction Act in 2022 because their machines weren’t big enough to qualify for the new tax credits in the law, which required each system to capture at least 1,000 tons of CO2 per year.

    Noya’s new systems will combine thousands of its modular units to create massive facilities that can capture millions of tons of CO2 right next to existing injection wells.

    Each of Noya’s units is about the size of a solar panel at about 6 feet wide, 4.5 feet tall, and 1 foot thick. A fan blows air through tiny channels in each unit that contain Noya’s carbon capture material. The company’s material solution consists of an activated carbon monolith and a proprietary chemical feedstock that binds to the carbon in the air. When the material becomes saturated with carbon, electricity is applied to the material and a light vacuum collects a pure stream of carbon.

    The goal is for each of Noya’s modules to remove about 60 tons of CO2 from the atmosphere per year.

    “Other direct air capture companies need a big hot piece of equipment — like an oven, steam generator, or kiln — that takes electricity and converts it to get heat to the material,” Santos says. “Any lost heat into the surrounding environment is excess cost. We skip the need for the excess equipment and their inefficiencies by adding the electricity directly to the material itself.”

    Scaling with urgency

    From its office in Oakland, California, Noya is putting an experimental module through tests to optimize its design. Noya will launch its first testing facility, which should remove about 350 tons of CO2 per year, in 2024. It has already secured renewable energy and injection storage partners for that facility. Over the next few years Noya plans to capture and remove thousands of tons of CO2, and the company’s first commercial-scale facility will aim to remove about 3 million tons of carbon annually.

    “That design is what we’ll replicate across the world to grow our planetary impact,” Santos says. “We’re trying to scale up as fast as possible.”

    Noya has already sold all of the carbon credits it expects to generate in its first five years, and the founders believe the growing demand from companies and governments to purchase high-quality carbon credits will outstrip supply for at least the next 10 years in the nascent carbon removal industry, which also includes approaches like enhanced rock weathering, biomass carbon storage, and ocean alkalinity enhancement.

    “We’re going to need something like 30 companies the size of Shell to achieve the scale we need,” Santos says. “I think there will be large companies in each of those verticals. We’re in the early innings here.”

    Santos believes the carbon removal market can scale without government mandates, but he also sees increasing government and public support for carbon removal technologies around the world.

    “Carbon removal is a waste management problem,” Santos says. “You can’t just throw trash in the middle of the street. The way we currently deal with trash is polluters pay to clean up their waste. Carbon removal should be like that. CO2 is a waste product, and we should have regulations in place that are requiring polluters, like businesses, to clean up their waste emissions. It’s a public good to provide cleaner air.” More

  • in

    How to tackle the global deforestation crisis

    Imagine if France, Germany, and Spain were completely blanketed in forests — and then all those trees were quickly chopped down. That’s nearly the amount of deforestation that occurred globally between 2001 and 2020, with profound consequences.

    Deforestation is a major contributor to climate change, producing between 6 and 17 percent of global greenhouse gas emissions, according to a 2009 study. Meanwhile, because trees also absorb carbon dioxide, removing it from the atmosphere, they help keep the Earth cooler. And climate change aside, forests protect biodiversity.

    “Climate change and biodiversity make this a global problem, not a local problem,” says MIT economist Ben Olken. “Deciding to cut down trees or not has huge implications for the world.”

    But deforestation is often financially profitable, so it continues at a rapid rate. Researchers can now measure this trend closely: In the last quarter-century, satellite-based technology has led to a paradigm change in charting deforestation. New deforestation datasets, based on the Landsat satellites, for instance, track forest change since 2000 with resolution at 30 meters, while many other products now offer frequent imaging at close resolution.

    “Part of this revolution in measurement is accuracy, and the other part is coverage,” says Clare Balboni, an assistant professor of economics at the London School of Economics (LSE). “On-site observation is very expensive and logistically challenging, and you’re talking about case studies. These satellite-based data sets just open up opportunities to see deforestation at scale, systematically, across the globe.”

    Balboni and Olken have now helped write a new paper providing a road map for thinking about this crisis. The open-access article, “The Economics of Tropical Deforestation,” appears this month in the Annual Review of Economics. The co-authors are Balboni, a former MIT faculty member; Aaron Berman, a PhD candidate in MIT’s Department of Economics; Robin Burgess, an LSE professor; and Olken, MIT’s Jane Berkowitz Carlton and Dennis William Carlton Professor of Microeconomics. Balboni and Olken have also conducted primary research in this area, along with Burgess.

    So, how can the world tackle deforestation? It starts with understanding the problem.

    Replacing forests with farms

    Several decades ago, some thinkers, including the famous MIT economist Paul Samuelson in the 1970s, built models to study forests as a renewable resource; Samuelson calculated the “maximum sustained yield” at which a forest could be cleared while being regrown. These frameworks were designed to think about tree farms or the U.S. national forest system, where a fraction of trees would be cut each year, and then new trees would be grown over time to take their place.

    But deforestation today, particularly in tropical areas, often looks very different, and forest regeneration is not common.

    Indeed, as Balboni and Olken emphasize, deforestation is now rampant partly because the profits from chopping down trees come not just from timber, but from replacing forests with agriculture. In Brazil, deforestation has increased along with agricultural prices; in Indonesia, clearing trees accelerated as the global price of palm oil went up, leading companies to replace forests with palm tree orchards.

    All this tree-clearing creates a familiar situation: The globally shared costs of climate change from deforestation are “externalities,” as economists say, imposed on everyone else by the people removing forest land. It is akin to a company that pollutes into a river, affecting the water quality of residents.

    “Economics has changed the way it thinks about this over the last 50 years, and two things are central,” Olken says. “The relevance of global externalities is very important, and the conceptualization of alternate land uses is very important.” This also means traditional forest-management guidance about regrowth is not enough. With the economic dynamics in mind, which policies might work, and why?

    The search for solutions

    As Balboni and Olken note, economists often recommend “Pigouvian” taxes (named after the British economist Arthur Pigou) in these cases, levied against people imposing externalities on others. And yet, it can be hard to identify who is doing the deforesting.

    Instead of taxing people for clearing forests, governments can pay people to keep forests intact. The UN uses Payments for Environmental Services (PES) as part of its REDD+ (Reducing Emissions from Deforestation and forest Degradation) program. However, it is similarly tough to identify the optimal landowners to subsidize, and these payments may not match the quick cash-in of deforestation. A 2017 study in Uganda showed PES reduced deforestation somewhat; a 2022 study in Indonesia found no reduction; another 2022 study, in Brazil, showed again that some forest protection resulted.

    “There’s mixed evidence from many of these [studies],” Balboni says. These policies, she notes, must reach people who would otherwise clear forests, and a key question is, “How can we assess their success compared to what would have happened anyway?”

    Some places have tried cash transfer programs for larger populations. In Indonesia, a 2020 study found such subsidies reduced deforestation near villages by 30 percent. But in Mexico, a similar program meant more people could afford milk and meat, again creating demand for more agriculture and thus leading to more forest-clearing.

    At this point, it might seem that laws simply banning deforestation in key areas would work best — indeed, about 16 percent of the world’s land overall is protected in some way. Yet the dynamics of protection are tricky. Even with protected areas in place, there is still “leakage” of deforestation into other regions. 

    Still more approaches exist, including “nonstate agreements,” such as the Amazon Soy Moratorium in Brazil, in which grain traders pledged not to buy soy from deforested lands, and reduced deforestation without “leakage.”

    Also, intriguingly, a 2008 policy change in the Brazilian Amazon made agricultural credit harder to obtain by requiring recipients to comply with environmental and land registration rules. The result? Deforestation dropped by up to 60 percent over nearly a decade. 

    Politics and pulp

    Overall, Balboni and Olken observe, beyond “externalities,” two major challenges exist. One, it is often unclear who holds property rights in forests. In these circumstances, deforestation seems to increase. Two, deforestation is subject to political battles.

    For instance, as economist Bard Harstad of Stanford University has observed, environmental lobbying is asymmetric. Balboni and Olken write: “The conservationist lobby must pay the government in perpetuity … while the deforestation-oriented lobby need pay only once to deforest in the present.” And political instability leads to more deforestation because “the current administration places lower value on future conservation payments.”

    Even so, national political measures can work. In the Amazon from 2001 to 2005, Brazilian deforestation rates were three to four times higher than on similar land across the border, but that imbalance vanished once the country passed conservation measures in 2006. However, deforestation ramped up again after a 2014 change in government. Looking at particular monitoring approaches, a study of Brazil’s satellite-based Real-Time System for Detection of Deforestation (DETER), launched in 2004, suggests that a 50 percent annual increase in its use in municipalities created a 25 percent reduction in deforestation from 2006 to 2016.

    How precisely politics matters may depend on the context. In a 2021 paper, Balboni and Olken (with three colleagues) found that deforestation actually decreased around elections in Indonesia. Conversely, in Brazil, one study found that deforestation rates were 8 to 10 percent higher where mayors were running for re-election between 2002 and 2012, suggesting incumbents had deforestation industry support.

    “The research there is aiming to understand what the political economy drivers are,” Olken says, “with the idea that if you understand those things, reform in those countries is more likely.”

    Looking ahead, Balboni and Olken also suggest that new research estimating the value of intact forest land intact could influence public debates. And while many scholars have studied deforestation in Brazil and Indonesia, fewer have examined the Democratic Republic of Congo, another deforestation leader, and sub-Saharan Africa.

    Deforestation is an ongoing crisis. But thanks to satellites and many recent studies, experts know vastly more about the problem than they did a decade or two ago, and with an economics toolkit, can evaluate the incentives and dynamics at play.

    “To the extent that there’s ambuiguity across different contexts with different findings, part of the point of our review piece is to draw out common themes — the important considerations in determining which policy levers can [work] in different circumstances,” Balboni says. “That’s a fast-evolving area. We don’t have all the answers, but part of the process is bringing together growing evidence about [everything] that affects how successful those choices can be.” More

  • in

    Explained: The 1.5 C climate benchmark

    The summer of 2023 has been a season of weather extremes.

    In June, uncontrolled wildfires ripped through parts of Canada, sending smoke into the U.S. and setting off air quality alerts in dozens of downwind states. In July, the world set the hottest global temperature on record, which it held for three days in a row, then broke again on day four.

    From July into August, unrelenting heat blanketed large parts of Europe, Asia, and the U.S., while India faced a torrential monsoon season, and heavy rains flooded regions in the northeastern U.S. And most recently, whipped up by high winds and dry vegetation, a historic wildfire tore through Maui, devastating an entire town.

    These extreme weather events are mainly a consequence of climate change driven by humans’ continued burning of coal, oil, and natural gas. Climate scientists agree that extreme weather such as what people experienced this summer will likely grow more frequent and intense in the coming years unless something is done, on a persistent and planet-wide scale, to rein in global temperatures.

    Just how much reining-in are they talking about? The number that is internationally agreed upon is 1.5 degrees Celsius. To prevent worsening and potentially irreversible effects of climate change, the world’s average temperature should not exceed that of preindustrial times by more than 1.5 degrees Celsius (2.7 degrees Fahrenheit).

    As more regions around the world face extreme weather, it’s worth taking stock of the 1.5-degree bar, where the planet stands in relation to this threshold, and what can be done at the global, regional, and personal level, to “keep 1.5 alive.”

    Why 1.5 C?

    In 2015, in response to the growing urgency of climate impacts, nearly every country in the world signed onto the Paris Agreement, a landmark international treaty under which 195 nations pledged to hold the Earth’s temperature to “well below 2 degrees Celsius above pre-industrial levels,” and going further, aim to “limit the temperature increase to 1.5 degrees Celsius above pre-industrial levels.”

    The treaty did not define a particular preindustrial period, though scientists generally consider the years from 1850 to 1900 to be a reliable reference; this time predates humans’ use of fossil fuels and is also the earliest period when global observations of land and sea temperatures are available. During this period, the average global temperature, while swinging up and down in certain years, generally hovered around 13.5 degrees Celsius, or 56.3 degrees Fahrenheit.

    The treaty was informed by a fact-finding report which concluded that, even global warming of 1.5 degrees Celsius above the preindustrial average, over an extended, decades-long period, would lead to high risks for “some regions and vulnerable ecosystems.” The recommendation then, was to set the 1.5 degrees Celsius limit as a “defense line” — if the world can keep below this line, it potentially could avoid the more extreme and irreversible climate effects that would occur with a 2 degrees Celsius increase, and for some places, an even smaller increase than that.

    But, as many regions are experiencing today, keeping below the 1.5 line is no guarantee of avoiding extreme, global warming effects.

    “There is nothing magical about the 1.5 number, other than that is an agreed aspirational target. Keeping at 1.4 is better than 1.5, and 1.3 is better than 1.4, and so on,” says Sergey Paltsev, deputy director of MIT’s Joint Program on the Science and Policy of Global Change. “The science does not tell us that if, for example, the temperature increase is 1.51 degrees Celsius, then it would definitely be the end of the world. Similarly, if the temperature would stay at 1.49 degrees increase, it does not mean that we will eliminate all impacts of climate change. What is known: The lower the target for an increase in temperature, the lower the risks of climate impacts.”

    How close are we to 1.5 C?

    In 2022, the average global temperature was about 1.15 degrees Celsius above preindustrial levels. According to the World Meteorological Organization (WMO), the cyclical weather phenomenon La Niña recently contributed to temporarily cooling and dampening the effects of human-induced climate change. La Niña lasted for three years and ended around March of 2023.

    In May, the WMO issued a report that projected a significant likelihood (66 percent) that the world would exceed the 1.5 degrees Celsius threshold in the next four years. This breach would likely be driven by human-induced climate change, combined with a warming El Niño — a cyclical weather phenomenon that temporarily heats up ocean regions and pushes global temperatures higher.

    This summer, an El Niño is currently underway, and the event typically raises global temperatures in the year after it sets in, which in this case would be in 2024. The WMO predicts that, for each of the next four years, the global average temperature is likely to swing between 1.1 and 1.8 degrees Celsius above preindustrial levels.

    Though there is a good chance the world will get hotter than the 1.5-degree limit as the result of El Niño, the breach would be temporary, and for now, would not have failed the Paris Agreement, which aims to keep global temperatures below the 1.5-degree limit over the long term (averaged over several decades rather than a single year).

    “But we should not forget that this is a global average, and there are variations regionally and seasonally,” says Elfatih Eltahir, the H.M. King Bhumibol Professor and Professor of Civil and Environmental Engineering at MIT. “This year, we had extreme conditions around the world, even though we haven’t reached the 1.5 C threshold. So, even if we control the average at a global magnitude, we are going to see events that are extreme, because of climate change.”

    More than a number

    To hold the planet’s long-term average temperature to below the 1.5-degree threshold, the world will have to reach net zero emissions by the year 2050, according to the Intergovernmental Panel on Climate Change (IPCC). This means that, in terms of the emissions released by the burning of coal, oil, and natural gas, the entire world will have to remove as much as it puts into the atmosphere.

    “In terms of innovations, we need all of them — even those that may seem quite exotic at this point: fusion, direct air capture, and others,” Paltsev says.

    The task of curbing emissions in time is particularly daunting for the United States, which generates the most carbon dioxide emissions of any other country in the world.

    “The U.S.’s burning of fossil fuels and consumption of energy is just way above the rest of the world. That’s a persistent problem,” Eltahir says. “And the national statistics are an aggregate of what a lot of individuals are doing.”

    At an individual level, there are things that can be done to help bring down one’s personal emissions, and potentially chip away at rising global temperatures.

    “We are consumers of products that either embody greenhouse gases, such as meat, clothes, computers, and homes, or we are directly responsible for emitting greenhouse gases, such as when we use cars, airplanes, electricity, and air conditioners,” Paltsev says. “Our everyday choices affect the amount of emissions that are added to the atmosphere.”

    But to compel people to change their emissions, it may be less about a number, and more about a feeling.

    “To get people to act, my hypothesis is, you need to reach them not just by convincing them to be good citizens and saying it’s good for the world to keep below 1.5 degrees, but showing how they individually will be impacted,” says Eltahir, who specializes on the study of regional climates, focusing on how climate change impacts the water cycle and frequency of extreme weather such as heat waves.

    “True climate progress requires a dramatic change in how the human system gets its energy,” Paltsev says. “It is a huge undertaking. Are you ready personally to make sacrifices and to change the way of your life? If one gets an honest answer to that question, it would help to understand why true climate progress is so difficult to achieve.” More

  • in

    Q&A: A high-tech take on Wagner’s “Parsifal” opera

    The world-famous Bayreuth Festival in Germany, annually centered around the works of composer Richard Wagner, launched this summer on July 25 with a production that has been making headlines. Director Jay Scheib, an MIT faculty member, has created a version of Wagner’s celebrated opera “Parsifal” that is set in an apocalyptic future (rather than the original Medieval past), and uses augmented reality headset technology for a portion of the audience, among other visual effects. People using the headsets see hundreds of additional visuals, from fast-moving clouds to arrows being shot at them. The AR portion of the production was developed through a team led by designer and MIT Technical Instructor Joshua Higgason.

    The new “Parsifal” has engendered extensive media attention and discussion among opera followers and the viewing public. Five years in the making, it was developed with the encouragement of Bayreuth Festival general manager Katharina Wagner, Richard Wagner’s great-granddaughter. The production runs until Aug. 27, and can also be streamed on Stage+. Scheib, the Class of 1949 Professor in MIT’s Music and Theater Arts program, recently talked to MIT News about the project from Bayreuth.

    Q: Your production of “Parsifal” led off this year’s entire Bayreuth festival. How’s it going?

    A: From my point of view it’s going quite swimmingly. The leading German opera critics and the audiences have been super-supportive and Bayreuth makes it possible for a work to evolve … Given the complexity of the technical challenge of making an AR project function in an opera house, the bar was so high, it was a difficult challenge, and we’re really happy we found a way forward, a way to make it work, and a way to make it fit into an artistic process. I feel great.

    Q: You offer a new interpretation of “Parsifal,” and a new setting for it. What is it, and why did you choose to interpret it this way?

    A: One of the main themes in “Parsifal” is that the long-time king of this holy grail cult is wounded, and his wound will not heal. [With that in mind], we looked at what the world was like when the opera premiered in the late 19th century, around the time of what was known as the Great African Scramble, when Europe re-drew the map of Africa, largely based on resources, including mineral resources.

    Cobalt remains [the focus of] dirty mining practices in the Democratic Republic of Congo, and is a requirement for a lot of our electronic objects, in particular batteries. There are also these massive copper deposits discovered under a Buddhist temple in Afghanistan, and lithium under a sacred site in Nevada. We face an intense challenge in climate change, and the predictions are not good. Some of our solutions like electric cars require these materials, so they’re only solutions for some people, while others suffer [where minerals are being mined]. We started thinking about how wounds never heal, and when the prospect of creating a better world opens new wounds in other communities. … That became a theme. It also comes out of the time when we were making it, when Covid happened and George Floyd was murdered, which created an opportunity in the U.S. to start speaking very openly about wounds that have not healed.

    We set it in a largely post-human environment, where we didn’t succeed, and everything has collapsed. In the third act, there’s derelict mining equipment, and the holy water is this energy-giving force, but in fact it’s this lithium-ion pool, which gives us energy and then poisons us. That’s the theme we created.

    Q: What were your goals about integrating the AR technology into the opera, and how did you achieve that?

    A: First, I was working with my collaborator Joshua Higgason. No one had ever really done this before, so we just started researching whether it was possible. And most of the people we talked to said, “Don’t do it. It’s just not going to work.” Having always been a daredevil at heart, I was like, “Oh, come on, we can figure this out.”

    We were diligent in exploring the possibilities. We made multiple trips to Bayreuth and made these milimeter-accurate laser scans of the auditorium and the stage. We built a variety of models to see how to make AR work in a large environment, where 2,000 headsets could respond simultaneously. We built a team of animators and developers and programmers and designers, from Portugal to Cambridge to New York to Hungary, the UK, and a group in Germany. Josh led this team, and they got after it, but it took us the better part of two years to make it possible for an audience, some of whom don’t really use smartphones, to put on an AR headset and have it just work.

    I can’t even believe we did this. But it’s working.

    Q: In opera there’s hopefully a productive tension between tradition and innovation. How do you think about that when it comes to Wagner at Bayreuth?

    A: Innovation is the tradition at Bayreuth. Musically and scenographically. “Parsifal” was composed for this particular opera house, and I’m incredibly respectful of what this event is made for. We are trying to create a balanced and unified experience, between the scenic design and the AR and the lighting and the costume design, and create perfect moments of convergence where you really lose yourself in the environment. I believe wholly in the production and the performers are extraordinary. Truly, truly, truly extraordinary.

    Q: People have been focused on the issue of bringing AR to Bayreuth, but what has Bayreuth brought to you as a director?

    A: Working in Bayreuth has been an incredible experience. The level of intellectual integrity among the technicians is extraordinary. The amount of care and patience and curiosity and expertise in Bayreuth is off the charts. This community of artists is the greatest. … People come here because it’s an incredible meeting of the minds, and for that I’m immensely filled with gratitude every day I come into the rehearsal room. The conductor, Pablo Heras-Casado, and I have been working on this for several years. And the music is still first. We’re setting up technology not to overtake the music, but to support it, and visually amplify it.

    It must be said that Katharina Wagner has been one of the most powerfully supportive artistic directors I have ever worked with. I find it inspiring to witness her tenacity and vision in seeing all of this through, despite the hurdles. It’s been a great collaboration. That’s the essence: great collaboration. More