More stories

  • in

    A clean alternative to one of the world’s most common ingredients

    Never underestimate the power of a time crunch.

    In 2016, MIT classmates David Heller ’18, Shara Ticku, and Harry McNamara PhD ’19 were less than two weeks away from the deadline to present a final business plan as part of their class MAS.883 (Revolutionary Ventures: How to Invent and Deploy Transformative Technologies). The students had connected over a shared passion for using biology to solve climate challenges, but their first few ideas didn’t pan out, so they went back to the drawing board.

    In a brainstorming session, Ticku began to reminisce about a trip to Singapore she’d taken where the burning of forests had cast a dark haze over the city. The story sparked a memory from halfway across the world in Costa Rica, where McNamara had traveled and noticed endless rows of palm plantations, which are used to harvest palm oil.

    “Besides Shara’s experience in Singapore and Harry’s in Costa Rica, palm was a material none of us had seriously thought about,” Heller recalls. “That conversation made us realize it was a big, big industry, and there’s major issues to the way that palm is produced.”

    The classmates decided to try using synthetic biology to create a sustainable alternative to palm oil. The idea was the beginning of C16 Biosciences. Today C16 is fulfilling that mission at scale with a palm oil alternative it harvests from oil-producing yeast, which ferment sugars in a process similar to brewing beer.

    The company’s product, which it sells to personal care brands and directly to consumers, holds enormous potential to improve the sustainability of the personal care and food industries because, as it turns out, the classmates had stumbled onto a massive problem.

    Palm oil is the most popular vegetable oil in the world. It’s used in everything from soaps and cosmetics to sauces, rolls, and crackers. But palm oil can only be harvested from palm trees near the equator, so producers often burn down tropical rainforests and swamps in those regions to make way for plantations, decimating wildlife habitats and producing a staggering amount of greenhouse gas emissions. One recent study found palm expansion in Southeast Asia could account for 0.75 percent of the world’s total greenhouse gas emissions. That’s not even including the palm expansion happening across west Africa and South America. Among familiar creatures threatened by palm oil deforestation are orangutans, all three species of which are now listed as “critically endangered” — the most urgent status on the IUCN Red List of Threatened Species, a global endangered species list.

    “To respond to increasing demand over the last few decades, large palm producers usually inappropriately seize land,” Heller explains. “They’ll literally slash and burn tropical rainforests to the ground, drive out indigenous people, they’ll kill or drive out local wildlife, and they’ll replace everything with hectares and hectares of palm oil plantations. That land conversion process has been emitting something like a gigaton of CO2 per year, just for the expansion of palm oil.”

    From milliliters to metric tons

    Heller took Revolutionary Ventures his junior year as one of the few undergraduates in the Media Lab-based class, which is also open to students from nearby colleges. On one of the first days, students were asked to stand in front of the class and explain their passions, or “what makes them tick,” as Heller recalls. He focused on climate tech.

    McNamara, who was a PhD candidate in the Harvard-MIT Program in Health Sciences and Technology at the time, talked about his interest in applying new technology to global challenges in biotech and biophysics. Ticku, who was attending Harvard Business School, discussed her experience working in fertility health and her passion for global health initiatives. The three decided to team up.

    “The core group is very, very passionate about using biology to solve major climate problems,” says Heller, who majored in biological engineering while at MIT.

    After a successful final presentation in the class, the founders received a small amount of funding by participating in the MIT $100K Pitch Competition and from the MIT Sandbox Innovation Fund.

    “MIT Sandbox was one of our first bits of financial support,” Heller says. “We also received great mentorship. We learned from other startups at MIT and made connections with professors whom we learned a lot from.”

    By the time Heller graduated in 2018, the team had experimented with different yeast strains and produced a few milliliters of oil. The process has gradually been optimized and scaled up from there. Today C16 is producing metric tons of oil in 50,000-liter tanks and has launched a consumer cosmetic brand called Palmless.

    Heller says C16 started its own brand as a way to spread the word about the harms associated with palm oil and to show larger companies it was ready to be a partner.

    “The oil palm tree is amazing in terms of the yields it generates, but the location needed for the crop is in conflict with what’s essential in our ecosystem: tropical rainforests,” Heller says. “There’s a lot of excitement when it comes to microbial palm alternatives. A lot of brands have been under pressure from consumers and even governments who are feeling the urgency around climate and are feeling the urgency from consumers to make changes to get away from an oil ingredient that is incredibly destructive.”

    Scaling with biology

    C16’s first offering, which it calls Torula Oil, is a premium product compared to traditional palm oil, but Heller notes the cost of palm oil today is deflated because companies don’t factor in its costs to the planet and society. He also notes that C16 has a number of advantages in its quest to upend the $60 billion palm oil industry: It’s far easier to improve the productivity of C16’s precision fermentation process than it is to improve agricultural processes. C16 also expects its costs to plummet as it continues to grow.

    “What’s exciting for us is we have these economies of scale,” Heller says. “We have the opportunity to expand vertically, in large stainless steel tanks, as opposed to horizontally on land, so we can drive down our cost curve by increasing the size of the infrastructure and improving the optimization of our strain. The timelines for improvement in a precision fermentation process are a fraction of the time it takes in an agricultural context.”

    Heller says C16 is currently focused on partnering with large personal care brands and expects to announce some important deals in coming months. Further down the line, C16 also hopes to use its product to replace the palm oil in food products, although additional regulations mean that dream is still a few years away.

    With all of its efforts, C16 tries to shine a light on the problems associated with the palm industry, which the company feels are underappreciated despite palm oil’s ubiquitous presence in our society.

    “We need to find a way to reduce our reliance on deforestation products,” Heller says. “We do a lot of work to help educate people on the palm oil industry. Just because something has palm oil in it doesn’t mean you should stop using it, but you should understand what that means for the world.” More

  • in

    Professor Emeritus Richard Wurtman, influential figure in translational research, dies at 86

    Richard Wurtman, the Cecil H. Green Distinguished Professor Emeritus and a member of the MIT faculty for 44 years, died on Dec. 13. He was 86.

    Wurtman received an MD from Harvard Medical School in 1960 and trained at Massachusetts General Hospital before joining the laboratory of Nobel laureate Julius Axelrod at the National Institutes of Health in 1962. In 1967, MIT invited him to start a neurochemistry and neuropharmacology program in the Department of Nutrition and Food Science. In the early 1980s he joined the newly formed Department of Brain and Cognitive Sciences. Wurtman was also deeply involved in the National Institutes of Health-established Clinical Research Center at MIT, which he also directed for 25 years.

    His initial placement in Nutrition and Food Science was fortuitous, recalled Wurtman in a 2011 profile, because it “sensitized me to the fact that nutrients are chemicals the way drugs are chemicals. A compound like folic acid is a vitamin in foods, but when given alone in higher doses it becomes a drug that safeguards the developing nervous system.”

    Wurtman’s search for new biological properties and therapeutic uses of known molecules — hormones, nutrients, or existing pharmaceuticals — was highly fruitful. His research on the pineal gland, which started when he was a medical student, led to the discovery that melatonin, the hormone made by the gland, regulates sleep. 

    “Dick Wurtman was a pioneer in studying the role of neurotransmitters in the brain, and neuroendocrine regulation of normal and abnormal brain function,” says Newton Professor of Neuroscience Mriganka Sur, who served as head of the Department of Brain and Cognitive Sciences from 1997 to 2012. “His work on the impact of nutrition on neurotransmitters such as acetylcholine and on neuronal membrane synthesis laid the groundwork for later translational work on brain diseases such as Alzheimer’s disease.”

    Wurtman’s lab discovered that consuming carbohydrates increases tryptophan levels in the brain and consequently the production of the neurotransmitter serotonin. This led to a long collaboration with his wife Judith Wurtman, an MIT research affiliate, in which they found that carbohydrates were often consumed by individuals as a form of self-medication when they experienced changes in mood, such as late in the afternoon or when suffering from premenstrual syndrome (PMS). The Wurtmans’ research led to the development of Sarafem, the first drug for severe PMS, and a drink, PMS Escape, used for milder forms of this syndrome.

    To commercialize some of his findings, Wurtman founded Interneuron Pharmaceuticals in 1988; the company was renamed Indevus in 2002 and acquired by Endo Pharmaceuticals in 2009.

    Wurtman’s research advanced the idea that substrate availability, and not simply enzyme activity, can control metabolic processes in the brain. He discovered that the dietary availability of neurotransmitter precursors (e.g., acetylcholine, dopamine, and GABA) can increase their levels in the brain and modulate their metabolism. Moreover, he applied this concept to synaptic structural components such as brain phosphatides and found that dietary intake of three rate-limiting precursors — uridine, choline, and the omega-3 fatty acid DHA — led to increased brain phosphatide levels, increased dendritic spine density, and improved memory performance. These findings led to the development of Souvenaid, a specifically formulated multi-nutrient drink based on the three essential phosphatide precursors of Wurtman’s later research. It has been the subject of numerous clinical trials for Alzheimer’s disease, and, most recently, for age-related cognitive decline.

    “Dick Wurtman was a pioneer on studying how nutrients influence brain function,” says Li-Huei Tsai, Picower Professor of Neuroscience and director of The Picower Institute for Learning and Memory. “His nutrient clinical trial work and establishment of the MIT Clinical Research Center have been tremendously helpful for my own work on understanding how high doses of supplement choline could potentially help reduce certain Alzheimer’s risk, and our team’s development of clinical studies at MIT to test Alzheimer’s therapies.”

    “Dick’s legacy resides within the careers of hundreds of trainees and collaborators he launched or enhanced, the 1,000-plus published research articles, his numerous patent awards, and people who benefited from his therapeutic approaches,” says former postdoc Bertha Madras, now a professor of psychobiology at McLean Hospital and Harvard Medical School. “Yet, these quantitative metrics, legacies of research and mentoring, do not illustrate the charitable qualities of this remarkable man. I witnessed his deep intellect, boundless energy, enthusiasm, optimism, and generosity toward trainees, qualities that helped to sustain me during crests and troughs encountered in the adventures of a scientific career. Dr. Richard Wurtman was a creative, brilliant scientist, a mentor, a devoted husband to his beloved wife.”

    “Dick was an inspiration, a motivation, and a guide to all his students and colleagues in shaping thoughts to be precise and purposeful,” says Tony Nader PhD ’89, who did his doctoral research with Wurtman. “His rigorous scientific approach and the application of his findings have contributed to make life better. His legacy is huge.”

    Richard and Judith Wurtman have also made a lasting philanthropic impact at MIT. They endowed a professorship in the Department of Brain and Cognitive Sciences in honor of the late Institute Professor and provost Walter Rosenblith; the chair was held first by Ann Graybiel, who is now an Institute Professor; Nancy Kanwisher is the current Walter A. Rosenblith Professor of Cognitive Neuroscience. The Wurtmans have also been longtime supporters of MIT Hillel.

    Elazer R. Edelman, the Edward J. Poitras Professor in Medical Engineering and Science at MIT, professor of medicine at Harvard Medical School, and director of the MIT Institute for Medical Engineering and Science, recalls that Wurtman was also supportive of the Harvard-MIT Program in Health Sciences and Technology: “He changed our school and our world — he and Judith coupled immense charity with exceptional intellect and they made us all better for it.”

    Richard Wurtman is survived by his wife, Judith; daughter Rachael; son David and daughter-in-law Jean Chang; and grandchildren Dvora Toren, Yael Toren and Jacob Vider.  More

  • in

    Four researchers with MIT ties earn Schmidt Science Fellowships

    Four researchers with MIT ties — Juncal Arbelaiz, Xiangkun (Elvis) Cao, Sandya Subramanian, and Heather Zlotnick ’17 — have been honored with competitive Schmidt Science Fellowships.

    Created in 2017, the fellows program aims to bring together the world’s brightest minds “to solve society’s toughest challenges.”

    The four MIT-affiliated researchers are among 29 Schmidt Science Fellows from around the world who will receive postdoctoral support for either one or two years with an annual stipend of $100,000, along with individualized mentoring and participation in the program’s Global Meeting Series. The fellows will also have opportunities to engage with thought-leaders from science, business, policy, and society. According to the award announcement, the fellows are expected to pursue research that shifts from the focus of their PhDs, to help expand and enhance their futures as scientific leaders.

    Juncal Arbelaiz is a PhD candidate in applied mathematics at MIT, who is completing her doctorate this summer. Her doctoral research at MIT is advised by Ali Jadbabaie, the JR East Professor of Engineering and head of the Department of Civil and Environmental Engineering; Anette Hosoi, the Neil and Jane Pappalardo Professor of Mechanical Engineering and associate dean of the School of Engineering; and Bassam Bamieh, professor of mechanical engineering and associate director of the Center for Control, Dynamical Systems, and Computation at the University of California at Santa Barbara. Arbelaiz’s research revolves around the design of optimal decentralized intelligence for spatially-distributed dynamical systems.

    “I cannot think of a better way to start my independent scientific career. I feel very excited and grateful for this opportunity,” says Arbelaiz. With her fellowship, she will enlist systems biology to explore how the nervous system encodes and processes sensory information to address future safety-critical artificial intelligence applications. “The Schmidt Science Fellowship will provide me with a unique opportunity to work at the intersection of biological and machine intelligence for two years and will be a steppingstone towards my longer-term objective of becoming a researcher in bio-inspired machine intelligence,” she says.

    Xiangkun (Elvis) Cao is currently a postdoc in the lab of T. Alan Hatton, the Ralph Landau Professor in Chemical Engineering, and an Impact Fellow at the MIT Climate and Sustainability Consortium. Cao received his PhD in mechanical engineering from Cornell University in 2021, during which he focused on microscopic precision in the simultaneous delivery of light and fluids by optofluidics, with advances relevant to health and sustainability applications. As a Schmidt Science Fellow, he plans to be co-advised by Hatton on carbon capture, and Ted Sargent, professor of chemistry at Northwestern University, on carbon utilization. Cao is passionate about integrated carbon capture and utilization (CCU) from molecular to process levels, machine learning to inspire smart CCU, and the nexus of technology, business, and policy for CCU.

    “The Schmidt Science Fellowship provides the perfect opportunity for me to work across disciplines to study integrated carbon capture and utilization from molecular to process levels,” Cao explains. “My vision is that by integrating carbon capture and utilization, we can concurrently make scientific discoveries and unlock economic opportunities while mitigating global climate change. This way, we can turn our carbon liability into an asset.”

    Sandya Subramanian, a 2021 PhD graduate of the Harvard-MIT Program in Health Sciences and Technology (HST) in the area of medical engineering and medical physics, is currently a postdoc at Stanford Data Science. She is focused on the topics of biomedical engineering, statistics, machine learning, neuroscience, and health care. Her research is on developing new technologies and methods to study the interactions between the brain, the autonomic nervous system, and the gut. “I’m extremely honored to receive the Schmidt Science Fellowship and to join the Schmidt community of leaders and scholars,” says Subramanian. “I’ve heard so much about the fellowship and the fact that it can open doors and give people confidence to pursue challenging or unique paths.”

    According to Subramanian, the autonomic nervous system and its interactions with other body systems are poorly understood but thought to be involved in several disorders, such as functional gastrointestinal disorders, Parkinson’s disease, diabetes, migraines, and eating disorders. The goal of her research is to improve our ability to monitor and quantify these physiologic processes. “I’m really interested in understanding how we can use physiological monitoring technologies to inform clinical decision-making, especially around the autonomic nervous system, and I look forward to continuing the work that I’ve recently started at Stanford as Schmidt Science Fellow,” she says. “A huge thank you to all of the mentors, colleagues, friends, and leaders I had the pleasure of meeting and working with at HST and MIT; I couldn’t have done this without everything I learned there.”

    Hannah Zlotnick ’17 attended MIT for her undergraduate studies, majoring in biological engineering with a minor in mechanical engineering. At MIT, Zlotnick was a student-athlete on the women’s varsity soccer team, a UROP student in Alan Grodzinsky’s laboratory, and a member of Pi Beta Phi. For her PhD, Zlotnick attended the University of Pennsylvania, and worked in Robert Mauck’s laboratory within the departments of Bioengineering and Orthopaedic Surgery.

    Zlotnick’s PhD research focused on harnessing remote forces, such as magnetism or gravity, to enhance engineered cartilage and osteochondral repair both in vitro and in large animal models. Zlotnick now plans to pivot to the field of biofabrication to create tissue models of the knee joint to assess potential therapeutics for osteoarthritis. “I am humbled to be a part of the Schmidt Science Fellows community, and excited to venture into the field of biofabrication,” Zlotnick says. “Hopefully this work uncovers new therapies for patients with inflammatory joint diseases.” More