More stories

  • in

    Engineers develop an efficient process to make fuel from carbon dioxide

    The search is on worldwide to find ways to extract carbon dioxide from the air or from power plant exhaust and then make it into something useful. One of the more promising ideas is to make it into a stable fuel that can replace fossil fuels in some applications. But most such conversion processes have had problems with low carbon efficiency, or they produce fuels that can be hard to handle, toxic, or flammable.

    Now, researchers at MIT and Harvard University have developed an efficient process that can convert carbon dioxide into formate, a liquid or solid material that can be used like hydrogen or methanol to power a fuel cell and generate electricity. Potassium or sodium formate, already produced at industrial scales and commonly used as a de-icer for roads and sidewalks, is nontoxic, nonflammable, easy to store and transport, and can remain stable in ordinary steel tanks to be used months, or even years, after its production.

    The new process, developed by MIT doctoral students Zhen Zhang, Zhichu Ren, and Alexander H. Quinn; Harvard University doctoral student Dawei Xi; and MIT Professor Ju Li, is described this week in an open-access paper in Cell Reports Physical Science. The whole process — including capture and electrochemical conversion of the gas to a solid formate powder, which is then used in a fuel cell to produce electricity — was demonstrated at a small, laboratory scale. However, the researchers expect it to be scalable so that it could provide emissions-free heat and power to individual homes and even be used in industrial or grid-scale applications.

    Other approaches to converting carbon dioxide into fuel, Li explains, usually involve a two-stage process: First the gas is chemically captured and turned into a solid form as calcium carbonate, then later that material is heated to drive off the carbon dioxide and convert it to a fuel feedstock such as carbon monoxide. That second step has very low efficiency, typically converting less than 20 percent of the gaseous carbon dioxide into the desired product, Li says.

    By contrast, the new process achieves a conversion of well over 90 percent and eliminates the need for the inefficient heating step by first converting the carbon dioxide into an intermediate form, liquid metal bicarbonate. That liquid is then electrochemically converted into liquid potassium or sodium formate in an electrolyzer that uses low-carbon electricity, e.g. nuclear, wind, or solar power. The highly concentrated liquid potassium or sodium formate solution produced can then be dried, for example by solar evaporation, to produce a solid powder that is highly stable and can be stored in ordinary steel tanks for up to years or even decades, Li says.

    Several steps of optimization developed by the team made all the difference in changing an inefficient chemical-conversion process into a practical solution, says Li, who holds joint appointments in the departments of Nuclear Science and Engineering and of Materials Science and Engineering.

    The process of carbon capture and conversion involves first an alkaline solution-based capture that concentrates carbon dioxide, either from concentrated streams such as from power plant emissions or from very low-concentration sources, even open air, into the form of a liquid metal-bicarbonate solution. Then, through the use of a cation-exchange membrane electrolyzer, this bicarbonate is electrochemically converted into solid formate crystals with a carbon efficiency of greater than 96 percent, as confirmed in the team’s lab-scale experiments.

    These crystals have an indefinite shelf life, remaining so stable that they could be stored for years, or even decades, with little or no loss. By comparison, even the best available practical hydrogen storage tanks allow the gas to leak out at a rate of about 1 percent per day, precluding any uses that would require year-long storage, Li says. Methanol, another widely explored alternative for converting carbon dioxide into a fuel usable in fuel cells, is a toxic substance that cannot easily be adapted to use in situations where leakage could pose a health hazard. Formate, on the other hand, is widely used and considered benign, according to national safety standards.

    Several improvements account for the greatly improved efficiency of this process. First, a careful design of the membrane materials and their configuration overcomes a problem that previous attempts at such a system have encountered, where a buildup of certain chemical byproducts changes the pH, causing the system to steadily lose efficiency over time. “Traditionally, it is difficult to achieve long-term, stable, continuous conversion of the feedstocks,” Zhang says. “The key to our system is to achieve a pH balance for steady-state conversion.”

    To achieve that, the researchers carried out thermodynamic modeling to design the new process so that it is chemically balanced and the pH remains at a steady state with no shift in acidity over time. It can therefore continue operating efficiently over long periods. In their tests, the system ran for over 200 hours with no significant decrease in output. The whole process can be done at ambient temperatures and relatively low pressures (about five times atmospheric pressure).

    Another issue was that unwanted side reactions produced other chemical products that were not useful, but the team figured out a way to prevent these side reactions by the introduction of an extra “buffer” layer of bicarbonate-enriched fiberglass wool that blocked these reactions.

    The team also built a fuel cell specifically optimized for the use of this formate fuel to produce electricity. The stored formate particles are simply dissolved in water and pumped into the fuel cell as needed. Although the solid fuel is much heavier than pure hydrogen, when the weight and volume of the high-pressure gas tanks needed to store hydrogen is considered, the end result is an electricity output near parity for a given storage volume, Li says.

    The formate fuel can potentially be adapted for anything from home-sized units to large scale industrial uses or grid-scale storage systems, the researchers say. Initial household applications might involve an electrolyzer unit about the size of a refrigerator to capture and convert the carbon dioxide into formate, which could be stored in an underground or rooftop tank. Then, when needed, the powdered solid would be mixed with water and fed into a fuel cell to provide power and heat. “This is for community or household demonstrations,” Zhang says, “but we believe that also in the future it may be good for factories or the grid.”

    “The formate economy is an intriguing concept because metal formate salts are very benign and stable, and a compelling energy carrier,” says Ted Sargent, a professor of chemistry and of electrical and computer engineering at Northwestern University, who was not associated with this work. “The authors have demonstrated enhanced efficiency in liquid-to-liquid conversion from bicarbonate feedstock to formate, and have demonstrated these fuels can be used later to produce electricity,” he says.

    The work was supported by the U.S. Department of Energy Office of Science. More

  • in

    Bringing the environment to the forefront of engineering

    In a recent podcast interview with MIT President Sally Kornbluth, Associate Professor Desirée Plata described her childhood pastime of roaming the backyards and businesses of her grandmother’s hometown of Gray, Maine. Through her wanderings, Plata noticed a disturbing pattern.

    “I was 7 or 8 when I caught wind of all the illness,” Plata recalls. “It seemed like in every other house there was somebody who had a neurological disorder or a cancer of some sort.”

    While driving home one night with her mom, Plata made her first environmental hypothesis from the back seat. “I told my mom, ‘I think there’s something in the water or air where these people live.’”

    The conversation happened in the late 1980s. Plata was a little older when she learned her intuition was correct: The Environmental Protection Agency determined that a waste disposal facility had contaminated drinking water in the area while processing more than 1 million gallons of waste between 1965 and 1978.

    “There was a New York Times article on it, but it was sort of buried in a Sunday paper and a lot of folks up in Maine didn’t hear about it,” Plata says.

    What most struck Plata was that Gray was a tight-knit community, and the people who owned the waste disposal facility were friends with everybody. Eventually, some of the owner’s children even got sick.

    “People don’t poison their neighbors on purpose,” Plata says. “A lot of industrial contamination happens either by accident or because the engineers don’t know better. As an environmental scientist and engineer, it’s part of my job to help industrial engineers of any variety design their systems and processes such that they are thinking about what’s going into the environment from the start.”

    The insight led Plata to MIT, first as a PhD student, then as a visiting professor, and today as the newly tenured associate professor of civil and environmental engineering.

    These days Plata’s work is a bit more complex than her early backseat musings. In fact, her efforts extend far beyond research and include mentoring students, entrepreneurship, coalition-building, and coordination across industry, academia, and government. But the work can still be traced back to the childhood insight that environmental optimization needs to be a more tangible and important part of everyone’s thinking.

    “People think sustainability is this nebulous thing they can’t get their hands around,” Plata says. “But there are actually a set of rigorous principles you can use, and each one of those has a metric or a thing you can measure to go with it. MIT is such an innovative place. If we can incorporate environmental objectives into design at a place like MIT, the hope is the world can engage as well.”

    Taking the plunge

    Plata was first introduced to environmental research in high school, but it wasn’t until she attended Union College and got to work in a research lab that she knew it was what she’d do for the rest of her life.

    After graduating from Union, Plata decided to skip a master’s degree and “take the plunge” into the MIT-Woods Hole Oceanographic Institution (WHOI) joint doctoral program.

    “Talk about drinking from a firehose,” Plata says. “Everybody you bump into knows something that can help you solve the very hard problem you’re working on.”

    Plata began the program studying oil spills, and a paper she co-authored helped spur a law that changed the way oil is transported off the coast of Massachusetts. But developments in her personal life made her want to prevent environmental disasters before they happen.

    In her last year at Union, Plata’s aunt was diagnosed with breast cancer — a disease that’s been linked to one of the chemicals dumped in Gray, Maine. While Plata was at MIT, her aunt was receiving treatment at Massachusetts General Hospital down the road, so Plata would work at the lab at night, stay with her aunt during treatments all day, and go home with her on the weekends.

    “As I’m sampling oil, I’m recognizing that nothing I’m doing is going to help women like her escape the illness,” Plata recalls.

    In her third year of the MIT-WHOI program, Plata shifted her research to explore how industrial emissions generated during the creation of materials known as carbon nanotubes could inform how those valuable new materials were forming. The work led to a dramatically more sustainable way to make the materials, which are needed for important environmental applications themselves.

    After earning her PhD, Plata served as a visiting professor at MIT for two years before working in faculty positions at Duke University and Yale University, where she studied green chemistry and green optimization. She returned to MIT as an assistant professor in civil and environmental engineering in 2018.

    Working beyond academia

    While at Yale, Plata started a company, Nth Cycle, which uses electric currents to extract critical minerals like cobalt and nickel from lithium-ion batteries and other electronic waste. The company began commercial production last year.

    Plata also works extensively with government and industry, serving on a Massachusetts committee that published a roadmap to decarbonizing the state by 2050 and advising companies both formally and informally. (She estimates she gets a call every two weeks from a new company working on a sustainability problem.)

    “It’s undeniable that industry has an enormous impact on the environment,” Plata says. “Some like to think the government can wave a magic wand and make some regulation and we won’t be in this situation, but that’s not the case. There are technical challenges that need to be solved and businesses play an incredibly important role as agents of change.”

    Plata’s research at MIT, meanwhile, is focused increasingly on methane. Last year she helped create the MIT Methane Network, which she directs.

    Plata’s research has explored ways to convert methane into less harmful carbon dioxide and other fuels in places like dairy farms and coal plants. This past summer she took a team of students to dairy barns to conduct field tests.

    “If you could take methane from coal mining out of the air globally, it’s equivalent to taking all of the combustion engine vehicles off the road, even accounting for the small generation of CO2 that we have [as the result of our process],” Plata says. “If you can fix the problem at dairy farms, it’s like all the combustion engine vehicle emissions times three. It’s a hugely impactful number.”

    Taking action

    When Plata was in fourth grade, her teacher had students pick up trash around a nearby bay. She’s since done the exercise with other fourth graders.

    “You ask them what they think they’ll find, and they say, ‘Nothing. I didn’t see any trash on the way to school today,’ but when you ask them to look, everybody fills their bag by the end of the trip, and you start to realize how much fugitive emissions of waste exists, and then you start to start thinking about all of the chemical contamination that you can’t see,” Plata says.

    One of Plata’s chief research goals can be summed up with that exercise: getting people to appreciate the importance of environmental criteria and motivating them to take action.

    “Today, I see people looking for these silver bullet solutions to solve environmental problems,” Plata says. “That’s not how we got into this mess, and it’s not how we’re going to get out of it. The problem is really distributed, so what we really need is the sum of a lot of small actions to change the system.” More

  • in

    Celebrating Kendall Square’s past and shaping its future

    Kendall Square’s community took a deep dive into the history and future of the region at the Kendall Square Association’s 15th annual meeting on Oct. 19.

    It’s no secret that Kendall Square, located in Cambridge, Massachusetts, moves fast. The event, titled “Looking Back, Looking Ahead,” gave community members a chance to pause and reflect on how far the region has come and to discuss efforts to shape where it’s going next.

    “The impact of the last 15 years of working together with a purposeful commitment to make the world a better place was on display this evening,” KSA Executive Director Beth O’Neill Maloney told the audience toward the end of the evening. “It also shows how Kendall Square can continue contributing to the world.”

    The gathering took place at the Microsoft NERD Center on Memorial Drive, on a floor that also featured music from the Kendall Square Orchestra and, judging by the piles of empty trays at the end of the night, an exceedingly popular selection of food from Kendall Square restaurants. Attendees came from across Cambridge’s prolific innovation ecosystem — not just entrepreneurs and life science workers but also high school and college students, restaurant and retail shop owners, workers at local cleantech and robotics companies, and leaders of nonprofits.

    KSA itself is a nonprofit made up of over 150 organizations across Kendall Square, from major companies to universities like MIT to research organizations like the Broad Institute of MIT and Harvard and the independent shops and restaurants that give Kendall Square its distinct character.

    The night’s programming included talks about recent funding achievements in the region, a panel discussion on the implications of artificial intelligence, and a highly entertaining, whirlwind history lesson led by Daniel Berger-Jones of Cambridge Historical Tours.

    “Our vision for the state is to be the best, and Kendall really represents that,” said Yvonne Hao, Massachusetts secretary of economic development. “When I went to DC to talk to folks about why Massachusetts should win some of these grants, they said, ‘You already have Kendall, that’s what we’re trying to get the whole country to be like!’”

    Hao started her talk by noting her personal connection to Kendall Square. She moved to Cambridge with her family in 2010 and has watched the neighborhood transform, with her kids frequenting the old and new restaurants and shops around town.

    The crux of Hao’s talk was to remind attendees they had more to celebrate than KSA’s anniversary. Massachusetts was recently named the recipient of two major federal grants that will fuel the state’s innovation work. One of those grants, from the Advanced Research Projects Agency for Health (ARPA-H), designated the state an “Investor Catalyst Hub” to accelerate innovation around health care. The other, which came through the federal CHIPS and Science Act, will allow the state to establish the Northeast Microelectronics Coalition Hub to advance microelectronics jobs, workforce training opportunities, and investment in the region’s advanced manufacturing.

    Hao recalled making the pitch for the grants, which could collectively amount to hundreds of millions of dollars in funding over time.

    “The pitch happened in Kendall Square because Kendall highlights everything magical about Massachusetts — we have our universities, MIT, we have our research institutions, nonprofits, small businesses, and great community members,” Hao said. “We were hoping for good weather because we wanted to walk with government officials, because when you walk around Kendall, you see the art, you see the coffee shops, you see the people bumping into each other and talking, and you see why it’s so important that this one square mile of geography become the hub they were looking for.”

    Hao is also part of work to put together the state’s newest economic development plan. She said the group’s tier one priorities are transportation and housing, but listed a number of other areas where she hopes Massachusetts can improve.

    “We can be an amazing, strong economy that’s mission-driven and innovation-driven with all kinds of jobs for all kinds of people, and at the same time an awesome community that loves each other and has great food and small businesses and looks out for each other, that looks diverse just like this room,” Hao said. “That’s the story we want to tell.”

    After the historical tour and the debut of a video explaining the origins of the KSA, attendees fast-forwarded into the future with a panel discussion on the impact and implications of generative AI.

    “I think the paradigm shift we’re seeing with generative AI is going to be as transformative as the internet, perhaps even more so because the pace of adoption is much faster now,” said Microsoft’s Soundar Srinivasan.

    The panel also featured Jennat Jounaidi, a student at Cambridge Rindge and Latin School and member of Innovators for Purpose, a nonprofit that seeks to empower young people from historically marginalized groups to become innovators.

    “I’m interested to see how generative AI shapes my upbringing as well as the lives of future generations, and I think it’s a pivotal moment to decide how we can best develop and incorporate AI into all of our lives,” Jounaidi said.

    Panelists noted that today’s concerns around AI are important, such as its potential to perpetuate inequality and amplify misinformation. But they also discussed the technology’s potential to drive advances in areas like sustainability and health care.

    “I came to Kendall Square to do my PhD in AI at MIT back when the internet was called the ARPA-Net… so a while ago,” said Jeremy Wertheimer SM ’89, PhD ’96. “One of the dreams I had back then was to create a program to read all biology papers. We’re not quite there yet, but I think we’re on the cusp, and it’s very exciting.

    Above all else, the panelists characterized AI as an opportunity. Despite all that’s been accomplished in Kendall Square to date, the prevailing feeling at the event was excitement for the future.

    “Generative AI is giving us chance to stop working in siloes,” Jounaidi said. “Many people in this room go back to their companies and think about corporate responsibility, and I want to expand that to creating shared value in companies by seeking out the community and the people here. I think that’s important, and I’m excited to see what comes next.” More

  • in

    Technologies for water conservation and treatment move closer to commercialization

    The Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) provides Solutions Grants to help MIT researchers launch startup companies or products to commercialize breakthrough technologies in water and food systems. The Solutions Grant Program began in 2015 and is supported by Community Jameel. In addition to one-year, renewable grants of up to $150,000, the program also matches grantees with industry mentors and facilitates introductions to potential investors. Since its inception, the J-WAFS Solutions Program has awarded over $3 million in funding to the MIT community. Numerous startups and products, including a portable desalination device and a company commercializing a novel food safety sensor, have spun out of this support.

    The 2023 J-WAFS Solutions Grantees are Professor C. Cem Tasan of the Department of Materials Science and Engineering and Professor Andrew Whittle of the Department of Civil and Environmental Engineering. Tasan’s project involves reducing water use in steel manufacturing and Whittle’s project tackles harmful algal blooms in water. Project work commences this September.

    “This year’s Solutions Grants are being award to professors Tasan and Whittle to help commercialize technologies they have been developing at MIT,” says J-WAFS executive director Renee J. Robins. “With J-WAFS’ support, we hope to see the teams move their technologies from the lab to the market, so they can have a beneficial impact on water use and water quality challenges,” Robins adds.

    Reducing water consumption by solid-state steelmaking

    Water is a major requirement for steel production. The steel industry ranks fourth in industrial freshwater consumption worldwide, since large amounts of water are needed mainly for cooling purposes in the process. Unfortunately, a strong correlation has also been shown to exist between freshwater use in steelmaking and water contamination. As the global demand for steel increases and freshwater availability decreases due to climate change, improved methods for more sustainable steel production are needed.

    A strategy to reduce the water footprint of steelmaking is to explore steel recycling processes that avoid liquid metal processing. With this motivation, Cem Tasan, the Thomas B. King Associate Professor of Metallurgy in the Department of Materials Science and Engineering, and postdoc Onur Guvenc PhD created a new process called Scrap Metal Consolidation (SMC). SMC is based on a well-established metal forming process known as roll bonding. Conventionally, roll bonding requires intensive prior surface treatment of the raw material, specific atmospheric conditions, and high deformation levels. Tasan and Guvenc’s research revealed that SMC can overcome these restrictions by enabling the solid-state bonding of scrap into a sheet metal form, even when the surface quality, atmospheric conditions, and deformation levels are suboptimal. Through lab-scale proof-of-principle investigations, they have already identified SMC process conditions and validated the mechanical formability of resulting steel sheets, focusing on mild steel, the most common sheet metal scrap.

    The J-WAFS Solutions Grant will help the team to build customer product prototypes, design the processing unit, and develop a scale-up strategy and business model. By simultaneously decreasing water usage, energy demand, contamination risk, and carbon dioxide burden, SMC has the potential to decrease the energy need for steel recycling by up to 86 percent, as well as reduce the linked carbon dioxide emissions and safeguard the freshwater resources that would otherwise be directed to industrial consumption. 

    Detecting harmful algal blooms in water before it’s too late

    Harmful algal blooms (HABs) are a growing problem in both freshwater and saltwater environments worldwide, causing an estimated $13 billion in annual damage to drinking water, water for recreational use, commercial fishing areas, and desalination activities. HABs pose a threat to both human health and aquaculture, thereby threatening the food supply. Toxins in HABs are produced by some cyanobacteria, or blue-green algae, whose communities change in composition in response to eutrophication from agricultural runoff, sewer overflows, or other events. Mitigation of risks from HABs are most effective when there is advance warning of these changes in algal communities. 

    Most in situ measurements of algae are based on fluorescence spectroscopy that is conducted with LED-induced fluorescence (LEDIF) devices, or probes that induce fluorescence of specific algal pigments using LED light sources. While LEDIFs provide reasonable estimates of concentrations of individual pigments, they lack resolution to discriminate algal classes within complex mixtures found in natural water bodies. In prior research, Andrew Whittle, the Edmund K. Turner Professor of Civil and Environmental Engineering, worked with colleagues to design REMORA, a low-cost, field-deployable prototype spectrofluorometer for measuring induced fluorescence. This research was part of a collaboration between MIT and the AMS Institute. Whittle and the team successfully trained a machine learning model to discriminate and quantify cell concentrations for mixtures of different algal groups in water samples through an extensive laboratory calibration program using various algae cultures. The group demonstrated these capabilities in a series of field measurements at locations in Boston and Amsterdam. 

    Whittle will work with Fábio Duarte of the Department of Urban Studies and Planning, the Senseable City Lab, and MIT’s Center for Real Estate to refine the design of REMORA. They will develop software for autonomous operation of the sensor that can be deployed remotely on mobile vessels or platforms to enable high-resolution spatiotemporal monitoring for harmful algae. Sensor commercialization will hopefully be able to exploit the unique capabilities of REMORA for long-term monitoring applications by water utilities, environmental regulatory agencies, and water-intensive industries.  More

  • in

    Supporting sustainability, digital health, and the future of work

    The MIT and Accenture Convergence Initiative for Industry and Technology has selected three new research projects that will receive support from the initiative. The research projects aim to accelerate progress in meeting complex societal needs through new business convergence insights in technology and innovation.

    Established in MIT’s School of Engineering and now in its third year, the MIT and Accenture Convergence Initiative is furthering its mission to bring together technological experts from across business and academia to share insights and learn from one another. Recently, Thomas W. Malone, the Patrick J. McGovern (1959) Professor of Management, joined the initiative as its first-ever faculty lead. The research projects relate to three of the initiative’s key focus areas: sustainability, digital health, and the future of work.

    “The solutions these research teams are developing have the potential to have tremendous impact,” says Anantha Chandrakasan, dean of the School of Engineering and the Vannevar Bush Professor of Electrical Engineering and Computer Science. “They embody the initiative’s focus on advancing data-driven research that addresses technology and industry convergence.”

    “The convergence of science and technology driven by advancements in generative AI, digital twins, quantum computing, and other technologies makes this an especially exciting time for Accenture and MIT to be undertaking this joint research,” says Kenneth Munie, senior managing director at Accenture Strategy, Life Sciences. “Our three new research projects focusing on sustainability, digital health, and the future of work have the potential to help guide and shape future innovations that will benefit the way we work and live.”

    The MIT and Accenture Convergence Initiative charter project researchers are described below.

    Accelerating the journey to net zero with industrial clusters

    Jessika Trancik is a professor at the Institute for Data, Systems, and Society (IDSS). Trancik’s research examines the dynamic costs, performance, and environmental impacts of energy systems to inform climate policy and accelerate beneficial and equitable technology innovation. Trancik’s project aims to identify how industrial clusters can enable companies to derive greater value from decarbonization, potentially making companies more willing to invest in the clean energy transition.

    To meet the ambitious climate goals that have been set by countries around the world, rising greenhouse gas emissions trends must be rapidly reversed. Industrial clusters — geographically co-located or otherwise-aligned groups of companies representing one or more industries — account for a significant portion of greenhouse gas emissions globally. With major energy consumers “clustered” in proximity, industrial clusters provide a potential platform to scale low-carbon solutions by enabling the aggregation of demand and the coordinated investment in physical energy supply infrastructure.

    In addition to Trancik, the research team working on this project will include Aliza Khurram, a postdoc in IDSS; Micah Ziegler, an IDSS research scientist; Melissa Stark, global energy transition services lead at Accenture; Laura Sanderfer, strategy consulting manager at Accenture; and Maria De Miguel, strategy senior analyst at Accenture.

    Eliminating childhood obesity

    Anette “Peko” Hosoi is the Neil and Jane Pappalardo Professor of Mechanical Engineering. A common theme in her work is the fundamental study of shape, kinematic, and rheological optimization of biological systems with applications to the emergent field of soft robotics. Her project will use both data from existing studies and synthetic data to create a return-on-investment (ROI) calculator for childhood obesity interventions so that companies can identify earlier returns on their investment beyond reduced health-care costs.

    Childhood obesity is too prevalent to be solved by a single company, industry, drug, application, or program. In addition to the physical and emotional impact on children, society bears a cost through excess health care spending, lost workforce productivity, poor school performance, and increased family trauma. Meaningful solutions require multiple organizations, representing different parts of society, working together with a common understanding of the problem, the economic benefits, and the return on investment. ROI is particularly difficult to defend for any single organization because investment and return can be separated by many years and involve asymmetric investments, returns, and allocation of risk. Hosoi’s project will consider the incentives for a particular entity to invest in programs in order to reduce childhood obesity.

    Hosoi will be joined by graduate students Pragya Neupane and Rachael Kha, both of IDSS, as well a team from Accenture that includes Kenneth Munie, senior managing director at Accenture Strategy, Life Sciences; Kaveh Safavi, senior managing director in Accenture Health Industry; and Elizabeth Naik, global health and public service research lead.

    Generating innovative organizational configurations and algorithms for dealing with the problem of post-pandemic employment

    Thomas Malone is the Patrick J. McGovern (1959) Professor of Management at the MIT Sloan School of Management and the founding director of the MIT Center for Collective Intelligence. His research focuses on how new organizations can be designed to take advantage of the possibilities provided by information technology. Malone will be joined in this project by John Horton, the Richard S. Leghorn (1939) Career Development Professor at the MIT Sloan School of Management, whose research focuses on the intersection of labor economics, market design, and information systems. Malone and Horton’s project will look to reshape the future of work with the help of lessons learned in the wake of the pandemic.

    The Covid-19 pandemic has been a major disrupter of work and employment, and it is not at all obvious how governments, businesses, and other organizations should manage the transition to a desirable state of employment as the pandemic recedes. Using natural language processing algorithms such as GPT-4, this project will look to identify new ways that companies can use AI to better match applicants to necessary jobs, create new types of jobs, assess skill training needed, and identify interventions to help include women and other groups whose employment was disproportionately affected by the pandemic.

    In addition to Malone and Horton, the research team will include Rob Laubacher, associate director and research scientist at the MIT Center for Collective Intelligence, and Kathleen Kennedy, executive director at the MIT Center for Collective Intelligence and senior director at MIT Horizon. The team will also include Nitu Nivedita, managing director of artificial intelligence at Accenture, and Thomas Hancock, data science senior manager at Accenture. More

  • in

    Bringing sustainable and affordable electricity to all

    When MIT electrical engineer Reja Amatya PhD ’12 arrived in Rwanda in 2015, she was whisked off to a village. She saw that diesel generators provided power to the local health center, bank, and shops, but like most of rural Rwanda, Karambi’s 200 homes did not have electricity. Amatya knew the hilly terrain would make it challenging to connect the village to high-voltage lines from the capital, Kigali, 50 kilometers away.

    While many consider electricity a basic human right, there are places where people have never flipped a light switch. Among the United Nations’ Sustainable Development Goals is global access to affordable, reliable, and sustainable energy by 2030. Recently, the U.N. reported that progress in global electrification had slowed due to the challenge of reaching those hardest to reach.

    Researchers from the MIT Energy Initiative (MITEI) and Comillas Pontifical University in Madrid created Waya Energy Inc., a Cambridge, Massachusetts-based startup commercializing MIT-developed planning and analysis software, to help governments determine the most cost-effective ways to provide electricity to all their citizens.

    The researchers’ 2015 trip to Rwanda marked the beginning of four years of phone calls, Zoom meetings, and international travel to help the east African country — still reeling from the 1994 genocide that killed more than a million people — develop a national electrification strategy and extend its power infrastructure.

    Amatya, Waya president and one of five Waya co-founders, knew that electrifying Karambi and the rest of the country would provide new opportunities for work, education, and connections — and the ability to charge cellphones, often an expensive and inconvenient undertaking.

    To date, Waya — with funding from the Asian Development Bank, the African Development Bank, the Inter-American Development Bank for Latin America, and the World Bank — has helped governments develop electrification plans in 22 countries on almost every continent, including in refugee camps in sub-Saharan Africa’s Sahel and Chad regions, where violence has led to 3 million internally displaced people.

    “With a modeling and visualization tool like ours, we are able to look at the entire spectrum of need and demand and say, ‘OK, what might be the most optimized solution?’” Amatya says.

    More than 15 graduate students and researchers from MIT and Comillas contributed to the development of Waya’s software under the supervision of Robert Stoner, the interim director at MITEI, and Ignacio Pérez-Arriaga, a visiting professor at the MIT Sloan School of Management from Comillas. Pérez-Arriaga looks at how changing electricity use patterns have forced utilities worldwide to rethink antiquated business models.

    The team’s Reference Electrification Model (REM) software pulls information from population density maps, satellite images, infrastructure data, and geospatial points of interest to determine where extending the grid will be most cost-effective and where other solutions would be more practical.

    “I always say we are agnostic to the technology,” Amatya says. “Traditionally, the only way to provide long-term reliable access was through the grid, but that’s changing. In many developing countries, there are many more challenges for utilities to provide reliable service.”

    Off-grid solutions

    Waya co-founder Stoner, who is also the founding director of the MIT Tata Center for Technology and Design, recognized early on that connecting homes to existing infrastructure was not always economically feasible. What’s more, billions of people with grid connections had unreliable access due to uneven regulation and challenging terrain.

    With Waya co-founders Andres Gonzalez-Garcia, a MITEI affiliate researcher, and Professor Fernando de Cuadra Garcia of Comillas, Pérez-Arriaga and Stoner led a team that developed a set of principles to guide universal regional electrification. Their approach — which they dubbed the Integrated Distribution Framework — incorporates elements of optimal planning as well as novel business models and regulation. Getting all three right is “necessary,” Stoner says, “if you want a viable long-term outcome.”

    Amatya says, “Initially, we designed REM to understand what the level of demand is in these countries with very rural and poor populations, and what the system should look like to serve it. We took a lot of that input into developing the model.” In 2019, Waya was created to commercialize the software and add consulting to the package of services the team provides.

    Now, in addition to advising governments and regulators on how to expand existing grids, Waya proposes options such as a mini-grid, powered by renewables like wind, hydropower, or solar, to serve single villages or large-scale mini-grid solutions for larger areas. In some cases, an even more localized, scalable solution is a mesh grid, which might consist of a single solar panel for a few houses that, over time, can be expanded and ultimately connected to the main grid.

    The REM software has been used to design off-grid systems for remote and mountainous regions in Uganda, Peru, Nigeria, Cambodia, Indonesia, India, and elsewhere. When Tata Power, India’s largest integrated power company, saw how well mini-grids would serve parts of east India, the company created a mini-grid division called Tata Renewables.

    Amatya notes that the REM software enables her to come up with an entire national electrification plan from her workspace in Cambridge. But site visits and on-the-ground partners are critical in helping the Waya team understand existing systems, engage with clients to assess demand, and identify stakeholders. In Haiti, an energy consultant reported that the existing grid had typically been operational only six out of every 24 hours. In Karambi, University of Rwanda students surveyed the village’s 200 families and helped lead a community-wide meeting.

    Waya connects with on-the-ground experts and agencies “who can engage directly with the government and other stakeholders, because many times those are the doors that we knock on,” Amatya says. “Local energy ministries, utilities, and regulators have to be open to regulatory change. They have to be open to working with financial institutions and new technology.”

    The goals of regulators, energy providers, funding agencies, and government officials must align in real time “to provide reliable access to energy for a billion people,” she says.

    Moving past challenges

    Growing up in Kathmandu, Amatya used to travel to remote villages with her father, an electrical engineer who designed cable systems for landlines for Nepal Telecom. She remembers being fascinated by the high-voltage lines crisscrossing Nepal on these trips. Now, she points out utility poles to her children and explains how the distribution lines carry power from local substations to customers.

    After majoring in engineering science and physics at Smith College, Amatya completed her PhD in electrical engineering at MIT in 2012. Within two years, she was traveling to off-grid communities in India as a research scientist exploring potential technologies for providing access. There were unexpected challenges: At the time, digitized geospatial data didn’t exist for many regions. In India in 2013, the team used phones to take pictures of paper maps spread out on tables. Team members now scour digital data available through Facebook, Google, Microsoft, and other sources for useful geographical information. 

    It’s one thing to create a plan, Amatya says, but how it gets utilized and implemented becomes a big question. With all the players involved — funding agencies, elected officials, utilities, private companies, and regulators within the countries themselves — it’s sometimes hard to know who’s responsible for next steps.

    “Besides providing technical expertise, our team engages with governments to, let’s say, develop a financial plan or an implementation plan,” she says. Ideally, Waya hopes to stay involved with each project long enough to ensure that its proposal becomes the national electrification strategy of the country. That’s no small feat, given the multiple players, the opaque nature of government, and the need to enact a regulatory framework where none may have existed.

    For Rwanda, Waya identified areas without service, estimated future demand, and proposed the most cost-effective ways to meet that demand with a mix of grid and off-grid solutions. Based on the electrification plan developed by the Waya team, officials have said they hope to have the entire country electrified by 2024.

    In 2017, by the time the team submitted its master plan, which included an off-grid solution for Karambi, Amatya was surprised to learn that electrification in the village had already occurred — an example, she says, of the challenging nature of local planning.

    Perhaps because of Waya’s focus and outreach efforts, Karambi had become a priority. However it happened, Amatya is happy that Karambi’s 200 families finally have access to electricity. More

  • in

    MIT welcomes Brian Deese as its next Institute Innovation Fellow

    MIT has appointed former White House National Economic Council (NEC) director Brian Deese as an MIT Innovation Fellow, focusing on the impact of economic policies that strengthen the United States’ industrial capacity and on accelerating climate investment and innovation. Deese will begin his appointment this summer. 

    “From climate change to U.S. industrial strategy, the people of MIT strive to make serious positive change at scale — and in Brian Deese, we have found a brilliant ally, guide, and inspiration,“ says MIT President Sally Kornbluth. “He pairs an easy command of technological questions with a rare grasp of contemporary policy and the politics it takes for such policies to succeed. We are extremely fortunate to have Brian with us for this pivotal year.” 

    Deese is an accomplished public policy innovator. As President Joe Biden’s top economic advisor, he was instrumental in shaping several pieces of legislation — the bipartisan Infrastructure Investment and Jobs Act, the CHIPS and Science Act, and the Inflation Reduction Act  — that together are expected to yield more than $3 trillion over the next decade in public and private investments in physical infrastructure, semiconductors, and clean energy, as well as a major expansion of scientific research. 

    “I was attracted to MIT by its combination of extraordinary capabilities in engineering, science, and economics, and the desire and enthusiasm to translate those capabilities into real-world outcomes,” says Deese. 

    Climate and economic policy expertise

    Deese’s public service career has spanned multiple periods of global economic crisis. He has helped shape policies ranging from clean energy infrastructure investments to addressing supply chain disruptions triggered by the pandemic and the war in Ukraine. 

    As NEC director in the Biden White House, Deese oversaw the development of domestic and international economic policy. Previously, he served as the global head of sustainable investing at BlackRock, Inc., one of the world’s leading asset management firms; before that, he held several key posts in the Obama White House, serving as the president’s top advisor on climate policy; deputy director of the Office of Management and Budget; and deputy director of the NEC. Early in the Obama Administration, Deese played a key role in developing and implementing the rescue of the U.S. auto industry during the Great Recession. Deese earned a bachelor of arts degree from Middlebury College and his JD from Yale Law School.

    Despite recent legislative progress, the world still faces daunting climate and energy challenges, including the need to reduce greenhouse gas emissions, increase energy capacity, and fill infrastructure gaps, Deese notes.

    “Our biggest challenge is our biggest opportunity,” he says. “We need to build at a speed not seen in generations.”  

    Deese is also thinking about how to effectively design and implement industrial strategy approaches that build on recent efforts to restore the U.S. semiconductor industry. What’s needed, he says, is an approach that can foster innovation and build manufacturing capacity — especially in economically disadvantaged areas of the country — while learning lessons from previous successes and failures in this field. 

    “This is a timely and important appointment because Brian has enormous experience at the top levels of government in shaping public policies for climate, technology, manufacturing, and energy, and the consequences for  shared prosperity nationally and globally — all subjects of intense interest to the MIT community,” says MIT Associate Provost Richard Lester. “I fully expect that faculty and student engagement with Brian while he is with us will help advance MIT research, innovation, and impact in these critical areas.”

    Innovation fellowship

    Previous MIT Innovation Fellows, typically in residence for a year or more, have included luminaries from industry and government, including most recently Virginia M. “Ginny” Rometty, former chair, president, and CEO of IBM; Eric Schmidt, former executive chair of Google’s parent company, Alphabet; the late Ash Carter, former U.S. secretary of defense; and former Massachusetts Governor Deval Patrick.

    During his time at MIT, Deese will work on a project detailing and mapping private investment in clean energy and other climate-related activities. He will also interact with students, staff, and faculty from across the Institute. 

    “I hope my role at MIT can largely be about forging partnerships within the Institute and outside of the Institute to significantly reduce the time between innovation and outcomes into the world,” says Deese. More

  • in

    Will the charging networks arrive in time?

    For many owners of electric vehicles (EVs), or for prospective EV owners, a thorny problem is where to charge them. Even as legacy automakers increasingly invest in manufacturing more all-electric cars and trucks, there is not a dense network of charging stations serving many types of vehicles, which would make EVs more convenient to use.

    “We’re going to have the ability to produce and deliver millions of EVs,” said MIT Professor Charles Fine at the final session this semester of the MIT Mobility Forum. “It’s not clear we’re going to have the ability to charge them. That’s a huge, huge mismatch.”

    Indeed, making EV charging stations as ubiquitous as gas stations could spur a major transition within the entire U.S. vehicle fleet. While the automaker Tesla has built a network of almost 2,000 charging stations across the U.S., and might make some interoperable with other makes of vehicles, independent companies trying to develop a business out of it are still trying to gain significant traction.

    “They don’t have a business model that works yet,” said Fine, the Chrysler Leaders for Global Operations Professor of Management at the MIT Sloan School of Management, speaking of startup firms. “They haven’t figured out their supply chains. They haven’t figured out the customer value proposition. They haven’t figured out their technology standards. It’s a very, very immature domain.”

    The May 12 event drew nearly 250 people as well as an online audience. The MIT Mobility Forum is a weekly set of talks and discussions during the academic year, ranging widely across the field of transportation and design. It is hosted by the MIT Mobility Initiative, which works to advance sustainable, accessible, and safe forms of transportation.

    Fine is a prominent expert in the areas of operations strategy, entrepreneurship, and supply chain management. He has been at MIT Sloan for over 30 years; from 2015 to 2022, he also served as the founding president, dean, and CEO of the Asia School of Business in Kuala Lumpur, Malaysia, a collaboration between MIT Sloan and Bank Negara Malaysia. Fine is also author of “Faster, Smarter, Greener: The Future of the Car and Urban Mobility” (MIT Press, 2017).

    In Fine’s remarks, he discussed the growth stages of startup companies, highlighting three phases where firms try to “nail it, scale it, and sail it” — that is, figure out the concept and workability of their enterprise, try to expand it, and then operate as a larger company. The charging-business startups are still somewhere within the first of these phases.

    At the same time, the established automakers have announced major investments in EVs — a collective $860 billion over the next decade, Fine noted. Among others, Ford says it will invest $50 billion in EV production by 2026; General Motors plans to spend $35 billion on EVs by 2025; and Toyota has announced it will invest $35 billion in EV manufacturing by 2030.

    With all these vehicles potentially coming to market, Fine suggested, the crux of the issue is a kind of “chicken and egg” problem between EVs and the network needed to support them.

    “If you’re a startup company in the charging business, if there aren’t many EVs out there, you’re not going to be making much money, and that doesn’t give you the capital to continue to invest and grow,” Fine said. “So, they need to wait until they have revenue before they can grow further. On the other hand, why should anybody buy an electric car if they don’t think they’re going to be able to charge it?”

    Those living in single-family homes can install chargers. But many others are not in that situation, Fine noted: “For people who don’t have fixed parking spaces and have to rely on the public network, there is this chicken-and-egg problem. They can’t buy an EV unless they know how they’re going to be able to charge it, and charging companies can’t build out their networks unless they know how they’re going to get their revenue.”

    The event featured a question-and-answer session and audience discussion, with a range of questions, and comments from some industry veterans, including Robin Chase SM ’86, the co-founder and former CEO of Zipcar. She expressed some optimism that startup charging companies will be able to get traction in the nascent market before long.

    “The right companies can learn very fast,” Chase said. “There’s no reason why they can’t correct those scaling problems in short-ish order.”

    In answer to other audience questions, Fine noted some of the challenges that will have to be addressed by independent charging firms, such as unified standards and interoperability among automakers and charging stations.

    “For a driver to have to have six different apps, or [their] car doesn’t fit in the plug here or there, or my software doesn’t talk to my credit card … connectivity, standards, technical issues need to be worked out as well,” Fine said.

    There are also varying regulatory issues, including grid policies and what consumers can be billed for, which have to be worked out on a state-by-state basis, meaning that even modest-size startups will have to have knowledgeable and productive legal departments.

    All of which makes it possible, as Fine suggested, that the large legacy automakers will start investing more heavily in the charging business in the near future. Mercedes, he noted, just announced in January that it is entering into a partnership with charging firms ChargePoint and MN8 Energy to develop about 400 charging stations across North America by 2027. By necessity, others might have to follow suit if they want to protect their massive planned investments in the EV sector.

    “I’m not in the business of telling [automakers] what to do, but I do think they have a lot at risk,” Fine said. “They’re spending billions and billions of dollars to produce these cars, and I don’t think they can afford an epic failure [if] people don’t buy them because there’s no charging infrastructure. If they’re waiting for the startups to build out rapidly, then they may be waiting longer than they hope to wait.” More