More stories

  • in

    Co-creating climate futures with real-time data and spatial storytelling

    Virtual story worlds and game engines aren’t just for video games anymore. They are now tools for scientists and storytellers to digitally twin existing physical spaces and then turn them into vessels to dream up speculative climate stories and build collective designs of the future. That’s the theory and practice behind the MIT WORLDING initiative.

    Twice this year, WORLDING matched world-class climate story teams working in XR (extended reality) with relevant labs and researchers across MIT. One global group returned for a virtual gathering online in partnership with Unity for Humanity, while another met for one weekend in person, hosted at the MIT Media Lab.

    “We are witnessing the birth of an emergent field that fuses climate science, urban planning, real-time 3D engines, nonfiction storytelling, and speculative fiction, and it is all fueled by the urgency of the climate crises,” says Katerina Cizek, lead designer of the WORLDING initiative at the Co-Creation Studio of MIT Open Documentary Lab. “Interdisciplinary teams are forming and blossoming around the planet to collectively imagine and tell stories of healthy, livable worlds in virtual 3D spaces and then finding direct ways to translate that back to earth, literally.”

    At this year’s virtual version of WORLDING, five multidisciplinary teams were selected from an open call. In a week-long series of research and development gatherings, the teams met with MIT scientists, staff, fellows, students, and graduates, as well as other leading figures in the field. Guests ranged from curators at film festivals such as Sundance and Venice, climate policy specialists, and award-winning media creators to software engineers and renowned Earth and atmosphere scientists. The teams heard from MIT scholars in diverse domains, including geomorphology, urban planning as acts of democracy, and climate researchers at MIT Media Lab.

    Mapping climate data

    “We are measuring the Earth’s environment in increasingly data-driven ways. Hundreds of terabytes of data are taken every day about our planet in order to study the Earth as a holistic system, so we can address key questions about global climate change,” explains Rachel Connolly, an MIT Media Lab research scientist focused in the “Future Worlds” research theme, in a talk to the group. “Why is this important for your work and storytelling in general? Having the capacity to understand and leverage this data is critical for those who wish to design for and successfully operate in the dynamic Earth environment.”

    Making sense of billions of data points was a key theme during this year’s sessions. In another talk, Taylor Perron, an MIT professor of Earth, atmospheric and planetary sciences, shared how his team uses computational modeling combined with many other scientific processes to better understand how geology, climate, and life intertwine to shape the surfaces of Earth and other planets. His work resonated with one WORLDING team in particular, one aiming to digitally reconstruct the pre-Hispanic Lake Texcoco — where current day Mexico City is now situated — as a way to contrast and examine the region’s current water crisis.

    Democratizing the future

    While WORLDING approaches rely on rigorous science and the interrogation of large datasets, they are also founded on democratizing community-led approaches.

    MIT Department of Urban Studies and Planning graduate Lafayette Cruise MCP ’19 met with the teams to discuss how he moved his own practice as a trained urban planner to include a futurist component involving participatory methods. “I felt we were asking the same limited questions in regards to the future we were wanting to produce. We’re very limited, very constrained, as to whose values and comforts are being centered. There are so many possibilities for how the future could be.”

    Scaling to reach billions

    This work scales from the very local to massive global populations. Climate policymakers are concerned with reaching billions of people in the line of fire. “We have a goal to reach 1 billion people with climate resilience solutions,” says Nidhi Upadhyaya, deputy director at Atlantic Council’s Adrienne Arsht-Rockefeller Foundation Resilience Center. To get that reach, Upadhyaya is turning to games. “There are 3.3 billion-plus people playing video games across the world. Half of these players are women. This industry is worth $300 billion. Africa is currently among the fastest-growing gaming markets in the world, and 55 percent of the global players are in the Asia Pacific region.” She reminded the group that this conversation is about policy and how formats of mass communication can be used for policymaking, bringing about change, changing behavior, and creating empathy within audiences.

    Socially engaged game development is also connected to education at Unity Technologies, a game engine company. “We brought together our education and social impact work because we really see it as a critical flywheel for our business,” said Jessica Lindl, vice president and global head of social impact/education at Unity Technologies, in the opening talk of WORLDING. “We upscale about 900,000 students, in university and high school programs around the world, and about 800,000 adults who are actively learning and reskilling and upskilling in Unity. Ultimately resulting in our mission of the ‘world is a better place with more creators in it,’ millions of creators who reach billions of consumers — telling the world stories, and fostering a more inclusive, sustainable, and equitable world.”

    Access to these technologies is key, especially the hardware. “Accessibility has been missing in XR,” explains Reginé Gilbert, who studies and teaches accessibility and disability in user experience design at New York University. “XR is being used in artificial intelligence, assistive technology, business, retail, communications, education, empathy, entertainment, recreation, events, gaming, health, rehabilitation meetings, navigation, therapy, training, video programming, virtual assistance wayfinding, and so many other uses. This is a fun fact for folks: 97.8 percent of the world hasn’t tried VR [virtual reality] yet, actually.”

    Meanwhile, new hardware is on its way. The WORLDING group got early insights into the highly anticipated Apple Vision Pro headset, which promises to integrate many forms of XR and personal computing in one device. “They’re really pushing this kind of pass-through or mixed reality,” said Dan Miller, a Unity engineer on the poly spatial team, collaborating with Apple, who described the experience of the device as “You are viewing the real world. You’re pulling up windows, you’re interacting with content. It’s a kind of spatial computing device where you have multiple apps open, whether it’s your email client next to your messaging client with a 3D game in the middle. You’re interacting with all these things in the same space and at different times.”

    “WORLDING combines our passion for social-impact storytelling and incredible innovative storytelling,” said Paisley Smith of the Unity for Humanity Program at Unity Technologies. She added, “This is an opportunity for creators to incubate their game-changing projects and connect with experts across climate, story, and technology.”

    Meeting at MIT

    In a new in-person iteration of WORLDING this year, organizers collaborated closely with Connolly at the MIT Media Lab to co-design an in-person weekend conference Oct. 25 – Nov. 7 with 45 scholars and professionals who visualize climate data at NASA, the National Oceanic and Atmospheric Administration, planetariums, and museums across the United States.

    A participant said of the event, “An incredible workshop that had had a profound effect on my understanding of climate data storytelling and how to combine different components together for a more [holistic] solution.”

    “With this gathering under our new Future Worlds banner,” says Dava Newman, director of the MIT Media Lab and Apollo Program Professor of Astronautics chair, “the Media Lab seeks to affect human behavior and help societies everywhere to improve life here on Earth and in worlds beyond, so that all — the sentient, natural, and cosmic — worlds may flourish.” 

    “WORLDING’s virtual-only component has been our biggest strength because it has enabled a true, international cohort to gather, build, and create together. But this year, an in-person version showed broader opportunities that spatial interactivity generates — informal Q&As, physical worksheets, and larger-scale ideation, all leading to deeper trust-building,” says WORLDING producer Srushti Kamat SM ’23.

    The future and potential of WORLDING lies in the ongoing dialogue between the virtual and physical, both in the work itself and in the format of the workshops. More

  • in

    Devices offers long-distance, low-power underwater communication

    MIT researchers have demonstrated the first system for ultra-low-power underwater networking and communication, which can transmit signals across kilometer-scale distances.

    This technique, which the researchers began developing several years ago, uses about one-millionth the power that existing underwater communication methods use. By expanding their battery-free system’s communication range, the researchers have made the technology more feasible for applications such as aquaculture, coastal hurricane prediction, and climate change modeling.

    “What started as a very exciting intellectual idea a few years ago — underwater communication with a million times lower power — is now practical and realistic. There are still a few interesting technical challenges to address, but there is a clear path from where we are now to deployment,” says Fadel Adib, associate professor in the Department of Electrical Engineering and Computer Science and director of the Signal Kinetics group in the MIT Media Lab.

    Underwater backscatter enables low-power communication by encoding data in sound waves that it reflects, or scatters, back toward a receiver. These innovations enable reflected signals to be more precisely directed at their source.

    Due to this “retrodirectivity,” less signal scatters in the wrong directions, allowing for more efficient and longer-range communication.

    When tested in a river and an ocean, the retrodirective device exhibited a communication range that was more than 15 times farther than previous devices. However, the experiments were limited by the length of the docks available to the researchers.

    To better understand the limits of underwater backscatter, the team also developed an analytical model to predict the technology’s maximum range. The model, which they validated using experimental data, showed that their retrodirective system could communicate across kilometer-scale distances.

    The researchers shared these findings in two papers which will be presented at this year’s ACM SIGCOMM and MobiCom conferences. Adib, senior author on both papers, is joined on the SIGCOMM paper by co-lead authors Aline Eid, a former postdoc who is now an assistant professor at the University of Michigan, and Jack Rademacher, a research assistant; as well as research assistants Waleed Akbar and Purui Wang, and postdoc Ahmed Allam. The MobiCom paper is also written by co-lead authors Akbar and Allam.

    Communicating with sound waves

    Underwater backscatter communication devices utilize an array of nodes made from “piezoelectric” materials to receive and reflect sound waves. These materials produce an electric signal when mechanical force is applied to them.

    When sound waves strike the nodes, they vibrate and convert the mechanical energy to an electric charge. The nodes use that charge to scatter some of the acoustic energy back to the source, transmitting data that a receiver decodes based on the sequence of reflections.

    But because the backscattered signal travels in all directions, only a small fraction reaches the source, reducing the signal strength and limiting the communication range.

    To overcome this challenge, the researchers leveraged a 70-year-old radio device called a Van Atta array, in which symmetric pairs of antennas are connected in such a way that the array reflects energy back in the direction it came from.

    But connecting piezoelectric nodes to make a Van Atta array reduces their efficiency. The researchers avoided this problem by placing a transformer between pairs of connected nodes. The transformer, which transfers electric energy from one circuit to another, allows the nodes to reflect the maximum amount of energy back to the source.

    “Both nodes are receiving and both nodes are reflecting, so it is a very interesting system. As you increase the number of elements in that system, you build an array that allows you to achieve much longer communication ranges,” Eid explains.

    In addition, they used a technique called cross-polarity switching to encode binary data in the reflected signal. Each node has a positive and a negative terminal (like a car battery), so when the positive terminals of two nodes are connected and the negative terminals of two nodes are connected, that reflected signal is a “bit one.”

    But if the researchers switch the polarity, and the negative and positive terminals are connected to each other instead, then the reflection is a “bit zero.”

    “Just connecting the piezoelectric nodes together is not enough. By alternating the polarities between the two nodes, we are able to transmit data back to the remote receiver,” Rademacher explains.

    When building the Van Atta array, the researchers found that if the connected nodes were too close, they would block each other’s signals. They devised a new design with staggered nodes that enables signals to reach the array from any direction. With this scalable design, the more nodes an array has, the greater its communication range.

    They tested the array in more than 1,500 experimental trials in the Charles River in Cambridge, Massachusetts, and in the Atlantic Ocean, off the coast of Falmouth, Massachusetts, in collaboration with the Woods Hole Oceanographic Institution. The device achieved communication ranges of 300 meters, more than 15 times longer than they previously demonstrated.

    However, they had to cut the experiments short because they ran out of space on the dock.

    Modeling the maximum

    That inspired the researchers to build an analytical model to determine the theoretical and practical communication limits of this new underwater backscatter technology.

    Building off their group’s work on RFIDs, the team carefully crafted a model that captured the impact of system parameters, like the size of the piezoelectric nodes and the input power of the signal, on the underwater operation range of the device.

    “It is not a traditional communication technology, so you need to understand how you can quantify the reflection. What are the roles of the different components in that process?” Akbar says.

    For instance, the researchers needed to derive a function that captures the amount of signal reflected out of an underwater piezoelectric node with a specific size, which was among the biggest challenges of developing the model, he adds.

    They used these insights to create a plug-and-play model into a which a user could enter information like input power and piezoelectric node dimensions and receive an output that shows the expected range of the system.

    They evaluated the model on data from their experimental trials and found that it could accurately predict the range of retrodirected acoustic signals with an average error of less than one decibel.

    Using this model, they showed that an underwater backscatter array can potentially achieve kilometer-long communication ranges.

    “We are creating a new ocean technology and propelling it into the realm of the things we have been doing for 6G cellular networks. For us, it is very rewarding because we are starting to see this now very close to reality,” Adib says.

    The researchers plan to continue studying underwater backscatter Van Atta arrays, perhaps using boats so they could evaluate longer communication ranges. Along the way, they intend to release tools and datasets so other researchers can build on their work. At the same time, they are beginning to move toward commercialization of this technology.

    “Limited range has been an open problem in underwater backscatter networks, preventing them from being used in real-world applications. This paper takes a significant step forward in the future of underwater communication, by enabling them to operate on minimum energy while achieving long range,” says Omid Abari, assistant professor of computer science at the University of California at Los Angeles, who was not involved with this work. “The paper is the first to bring Van Atta Reflector array technique into underwater backscatter settings and demonstrate its benefits in improving the communication range by orders of magnitude. This can take battery-free underwater communication one step closer to reality, enabling applications such as underwater climate change monitoring and coastal monitoring.”

    This research was funded, in part, by the Office of Naval Research, the Sloan Research Fellowship, the National Science Foundation, the MIT Media Lab, and the Doherty Chair in Ocean Utilization. More

  • in

    MIT at the 2023 Venice Biennale

    The Venice Architecture Biennale, the world’s largest and most visited exhibition focusing on architecture, is once again featuring work by many MIT faculty, students, and alumni. On view through Nov. 26, the 2023 biennale, curated by Ghanaian-Scottish architect, academic, and novelist Lesley Lokko, is showcasing projects responding to the theme of “The Laboratory of Change.”

    Architecture and Planning and curator of the previous Venice Biennale. “Our students, faculty, and alumni have responded to the speculative theme with innovative projects at a range of scales and in varied media.”

    Below are descriptions of MIT-related projects and activities.

    MIT faculty participants

    Xavi Laida Aguirre, assistant professor of architecture

    Project: Everlasting Plastics

    Project description: SPACES, a nonprofit alternative art organization based in Cleveland, Ohio, and the U.S. Department of State’s Bureau of Educational and Cultural Affairs are behind the U.S. Pavilion’s exhibition at this year’s biennale. The theme, Everlasting Plastics, provides a platform for artists and designers to engage audiences in reframing the overabundance of plastic detritus in our waterways, landfills, and streets as a rich resource. Aguirre’s installation covers two rooms and holds a series of partial scenographies examining indoor proofing materials such as coatings, rubbers, gaskets, bent aluminum, silicone, foam, cement board, and beveled edges.

    Yolande Daniels, associate professor of architecture

    Project: The BLACK City Astrolabe: A Constellation of African Diasporic Women

    Project description: From the multiple displacements of race and gender, enter “The BLACK City Astrolabe,” a space-time field comprised of a 3D map and a 24-hour cycle of narratives that reorder the forces of subjugation, devaluation, and displacement through the spaces and events of African diasporic women. The diaspora map traces the flows of descendants of Africa (whether voluntary or forced) atop the visible tension between the mathematical regularity of meridians of longitude and the biases of international date lines.

    In this moment we are running out of time. The meridians and timeline decades are indexed to an infinite conical projection metered in decades. It structures both the diaspora map and timeline and serves as a threshold to project future structures and events. “The BLACK City Astrolabe” is a vehicle to proactively contemplate things that have happened, that are happening, and that will happen. Yesterday, a “Black” woman went to the future, and here she is.

    Mark Jarzombek, professor of architecture

    Project: Kishkindha NY

    Project description: “Kishkindha NY (Office of (Un)Certainty Research: Mark Jarzombek and Vikramaditya Parakash)” is inspired by an imagined forest-city as described in the ancient Indian text the Ramayana. It comes into being not through the limitations of human agency, but through a multi-species creature that destroys and rebuilds. It is exhibited as a video (Space, Time, Existence) and as a special dance performance.

    Ana Miljački, professor of architecture

    Team: Ana Miljački, professor of architecture and director of Critical Broadcasting Lab, MIT; Ous Abou Ras, MArch candidate; Julian Geltman, MArch; Recording and Design, faculty of Dramatic Arts, Belgrade; Calvin Zhong, MArch candidate. Sound design and production: Pavle Dinulović, assistant professor, Department of Sound Recording and Design, University of Arts in Belgrade.

    Collaborators: Melika Konjičanin, researcher, faculty of architecture, Sarajevo; Ana Martina Bakić, assistant professor, head of department of drawing and visual design, faculty of architecture, Zagreb; Jelica Jovanović, Grupa Arhitekata, Belgrade; Andrew Lawler, Belgrade; Sandro Đukić, CCN Images, Zagreb; Other Tomorrows, Boston.

    Project: The Pilgrimage/Pionirsko hodočašće

    Project description:  The artifacts that constitute Yugoslavia’s socialist architectural heritage, and especially those instrumental in the ideological wiring of several postwar generations for anti-fascism and inclusive living, have been subject to many forms of local and global political investment in forgetting their meaning, as well as to vandalism. The “Pilgrimage” synthesizes “memories” from Yugoslavian childhood visits to myriad postwar anti-fascist memorial monuments and offers them in a shifting and spatial multi-channel video presentation accompanied by a nonlinear documentary soundscape, presenting thus anti-fascism and unity as political and activist positions available (and necessary) today, for the sake of the future. Supported by: MIT Center for Art, Science, and Technology (CAST) Mellon Faculty Grant.

    Adèle Naudé Santos, professor of architecture, planning, and urban design; and Mohamad Nahleh, lecturer in architecture and urbanism; in collaboration with the Beirut Urban Lab at the American University of Beirut

    MIT research team: Ghida El Bsat, Joude Mabsout, Sarin Gacia Vosgerichian, Lasse Rau

    Project: Housing as Infrastructure

    Project description: On Aug. 4, 2020, an estimated 2,750 tons of ammonium nitrate stored at the Port of Beirut exploded, resulting in the deaths of more than 200 people and the devastation of port-adjacent neighborhoods. With over 200,000 housing units in disrepair, exploitative real estate ventures, and the lack of equitable housing policies, we viewed the port blast as a potential escalation of the mechanisms that have produced the ongoing affordable housing crisis across the city. 

    The Dar Group requested proposals to rethink the affected part of the city, through MIT’s Norman B. Leventhal Center for Advanced Urbanism. To best ground our design proposal, we invited the Beirut Urban Lab at the American University of Beirut to join us. We chose to work on the heavily impacted low-rise and high-density neighborhood of Mar Mikhael. Our resultant urban strategy anchors housing within a corridor of shared open spaces. Housing is inscribed within this network and sustained through an adaptive system defined by energy-efficiency and climate responsiveness. Cross-ventilation sweeps through the project on all sides, with solar panel lined roofs integrated to always provide adequate levels of electricity for habitation. These strategies are coupled with an array of modular units designed to echo the neighborhood’s intimate quality — all accessible through shared ramps and staircases. Within this context, housing itself becomes the infrastructure, guiding circulation, managing slopes, integrating green spaces, and providing solar energy across the community. 

    Rafi Segal, associate professor of architecture and urbanism, director of the Future Urban Collectives Lab, director of the SMArchS program; and Susannah Drake.

    Contributors: Olivia Serra, William Minghao Du

    Project:  From Redlining to Blue Zoning: Equity and Environmental Risk, Miami 2100 (2021)

    Project description: As part of Susannah Drake and Rafi Segal’s ongoing work on “Coastal Urbanism,” this project examines the legacy of racial segregation in South Florida and the existential threat that climate change poses to communities in Miami. Through models of coops and community-owned urban blocks, this project seeks to empower formerly disenfranchised communities with new methods of equity capture, allowing residents whose parents and grandparents suffered from racial discrimination to build wealth and benefit from increased real estate value and development.

    Nomeda Urbonas, Art, Culture, and Technology research affiliate; and Gediminas Urbonas, ACT associate professor

    Project: The Swamp Observatory

    Project description: “The Swamp Observatory” augmented reality app is a result of two-year collaboration with a school in Gotland Island in the Baltic Sea, arguably the most polluted sea in the world. Developed as a conceptual playground and a digital tool to augment reality with imaginaries for new climate commons, the app offers new perspective to the planning process, suggesting eco-monsters as emergent ecology for the planned stormwater ponds in the new sustainable city. 

    Sarah Williams, associate professor, technology and urban planning

    Team members: listed here.

    Project: DISTANCE UNKNOWN: RISKS AND OPPORTUNITIES OF MIGRATION IN THE AMERICAS 

    Project description: On view are visualizations made by the MIT Civic Data Design Lab and the United Nations World Food Program that helped to shape U.S. migration policy. The exhibition is built from a unique dataset collected from 4,998 households surveyed in El Salvador, Guatemala, and Honduras. A tapestry woven out of money and constructed by the hands of Central America migrants illustrates that migrants spent $2.2 billion to migrate from Central America in 2021.

    MIT student curators

    Carmelo Ignaccolo, PhD candidate, Department of Urban Studies and Planning (DUSP)

    Curator: Carmelo Ignaccolo; advisor: Sarah Williams; researchers: Emily Levenson (DUSP), Melody Phu (MIT), Leo Saenger (Harvard University), Yuke Zheng (Harvard); digital animation designer: Ting Zhang

    Exhibition Design Assistant: Dila Ozberkman (architecture and DUSP)

    Project: The Consumed City 

    Project description: “The Consumed City” narrates a spatial investigation of “overtourism” in the historic city of Venice by harnessing granular data on lodging, dining, and shopping. The exhibition presents two large maps and digital animations to showcase the complexity of urban tourism and to reveal the spatial interplay between urban tourism and urban features, such as landmarks, bridges, and street patterns. By leveraging by-product geospatial datasets and advancing visualization techniques, “The Consumed City” acts as a prototype to call for novel policymaking tools in cities “consumed” by “overtourism.”

    MIT-affiliated auxiliary events

    Rania Ghosn, associate professor of architecture and urbanism, El Hadi Jazairy, Anhong Li, and Emma Jurczynski, with initial contributions from Marco Nieto and Zhifei Xu. Graphic design: Office of Luke Bulman.

    Project: Climate Inheritance

    Project description: “Climate Inheritance” is a speculative design research publication that reckons with the complexity of “heritage” and “world” in the Anthropocene Epoch. The impacts of climate change on heritage sites — from Venice flooding to extinction in the Galapagos Islands — have garnered empathetic attention in a media landscape that has otherwise mostly failed to communicate the urgency of the climate crisis. In a strategic subversion of the media aura of heritage, the project casts World Heritage sites as narrative figures to visualize pervasive climate risks all while situating the present emergency within the wreckage of other ends of worlds, replete with the salvages of extractivism, racism, and settler colonialism.   

    Rebuilding Beirut: Using Data to Co-Design a New Future

    SA+P faculty, researchers, and students are participating in the sixth biennial architecture exhibition “Time Space Existence,” presented by the European Cultural Center. The exhibit showcases three collaborative research and design proposals that support the rebuilding efforts in Beirut following the catastrophic explosion at the Port of Beirut in August 2020.

    “Living Heritage Atlas” captures the significance and vulnerability of Beirut’s cultural heritage. 

    “City Scanner” tracks the environmental impacts of the explosion and the subsequent rebuilding efforts. “Community Streets” supports the redesign of streets and public space. 

    The work is supported by the Dar Group Urban Seed Grant Fund at MIT’s Norman B. Leventhal Center for Advanced Urbanism.

    Team members:Living Heritage AtlasCivic Data Design Lab and Future Heritage Lab at MITAssociate Professor Sarah Williams, co-principal investigator (PI)Associate Professor Azra Aksamija, co-PICity Scanner Senseable City Lab at MIT with the American University of Beirut and FAE Technology Professor Carlo Ratti, co-PIFábio Duarte, co-PISimone Mora, research and project leadCommunity Streets City Form Lab at MIT with the American University of BeirutAssociate Professor Andres Sevtsuk, co-PIProfessor Maya Abou-Zeid, co-PISchool of Architecture and Planning alumni participants   Rodrigo Escandón Cesarman SMArchS Design ’20 (co-curator, Mexican Pavilion)Felecia Davis PhD ’17 Design and Computation, SOFTLAB@PSU (Penn State University)Jaekyung Jung SM ’10, (with the team for the Korean pavilion)Vijay Rajkumar MArch ’22 (with the team for the Bahrain Pavilion)

    Other MIT alumni participants

    Basis with GKZ

    Team: Emily Mackevicius PhD ’18, brain and cognitive sciences, with Zenna Tavares, Kibwe Tavares, Gaika Tavares, and Eli Bingham

    Project description: The nonprofit research group works on rethinking AI as a “reasoning machine.” Their two goals are to develop advanced technological models and to make society able to tackle “intractable problems.” Their approach to technology is founded less on pattern elaboration than on the Bayes’ hypothesis, the ability of machines to work on abductive reasoning, which is the same used by the human mind. Two city-making projects model cities after interaction between experts and stakeholders, and representation is at the heart of the dialogue. More

  • in

    Embracing the future we need

    When you picture MIT doctoral students taking small PhD courses together, you probably don’t imagine them going on class field trips. But it does happen, sometimes, and one of those trips changed Andy Sun’s career.

    Today, Sun is a faculty member at the MIT Sloan School of Management and a leading global expert on integrating renewable energy into the electric grid. Back in 2007, Sun was an operations research PhD candidate with a diversified academic background: He had studied electrical engineering, quantum computing, and analog computing but was still searching for a doctoral research subject involving energy. 

    One day, as part of a graduate energy class taught by visiting professor Ignacio J. Pérez Arriaga, the students visited the headquarters of ISO-New England, the organization that operates New England’s entire power grid and wholesale electricity market. Suddenly, it hit Sun. His understanding of engineering, used to design and optimize computing systems, could be applied to the grid as a whole, with all its connections, circuitry, and need for efficiency. 

    “The power grids in the U.S. continent are composed of two major interconnections, the Western Interconnection, the Eastern Interconnection, and one minor interconnection, the Texas grid,” Sun says. “Within each interconnection, the power grid is one big machine, essentially. It’s connected by tens of thousands of miles of transmission lines, thousands of generators, and consumers, and if anything is not synchronized, the system may collapse. It’s one of the most complicated engineering systems.”

    And just like that, Sun had a subject he was motivated to pursue. “That’s how I got into this field,” he says. “Taking a field trip.”Sun has barely looked back. He has published dozens of papers about optimizing the flow of intermittent renewable energy through the electricity grid, a major practical issue for grid operators, while also thinking broadly about the future form of the grid and the process of making almost all energy renewable. Sun, who in 2022 rejoined MIT as the Iberdrola-Avangrid Associate Professor in Electric Power Systems, and is also an associate professor of operations research, emphasizes the urgency of rapidly switching to renewables.

    “The decarbonization of our energy system is fundamental,” Sun says. “It will change a lot of things because it has to. We don’t have much time to get there. Two decades, three decades is the window in which we have to get a lot of things done. If you think about how much money will need to be invested, it’s not actually that much. We should embrace this future that we have to get to.”

    Successful operations

    Unexpected as it may have been, Sun’s journey toward being an electricity grid expert was informed by all the stages of his higher education. Sun grew up in China, and received his BA in electronic engineering from Tsinghua University in Beijing, in 2003. He then moved to MIT, joining the Media Lab as a graduate student. Sun intended to study quantum computing but instead began working on analog computer circuit design for Professor Neil Gershenfeld, another person whose worldview influenced Sun.  

    “He had this vision about how optimization is very important in things,” Sun says. “I had never heard of optimization before.” 

    To learn more about it, Sun started taking MIT courses in operations research. “I really enjoyed it, especially the nonlinear optimization course taught by Robert Freund in the Operations Research Center,” he recalls. 

    Sun enjoyed it so much that after a while, he joined MIT’s PhD program in operations research, thanks to the guidance of Freund. Later, he started working with MIT Sloan Professor Dimitri Bertsimas, a leading figure in the field. Still, Sun hadn’t quite nailed down what he wanted to focus on within operations research. Thinking of Sun’s engineering skills, Bertsimas suggested that Sun look for a research topic related to energy. 

    “He wasn’t an expert in energy at that time, but he knew that there are important problems there and encouraged me to go ahead and learn,” Sun says. 

    So it was that Sun found himself in ISO-New England headquarters one day in 2007, finally knowing what he wanted to study, and quickly finding opportunities to start learning from the organization’s experts on electricity markets. By 2011, Sun had finished his MIT PhD dissertation. Based in part on ISO-New England data, the thesis presented new modeling to more efficiently integrate renewable energy into the grid; built some new modeling tools grid operators could use; and developed a way to add fair short-term energy auctions to an efficient grid system.

    The core problem Sun deals with is that, unlike some other sources of electricity, renewables tend to be intermittent, generating power in an uneven pattern over time. That’s not an insurmountable problem for grid operators, but it does require some new approaches. Many of the papers Sun has written focus on precisely how to increasingly draw upon intermittent energy sources while ensuring that the grid’s current level of functionality remains intact. This is also the focus of his 2021 book, co-authored with Antonio J. Conejo, “Robust Optimiziation in Electric Energy Systems.”

    “A major theme of my research is how to achieve the integration of renewables and still operate the system reliably,” Sun says. “You have to keep the balance of supply and demand. This requires many time scales of operation from multidecade planning, to monthly or annual maintenance, to daily operations, down through second-by-second. I work on problems in all these timescales.”

    “I sit in the interface between power engineering and operations research,” Sun says. “I’m not a power engineer, but I sit in this boundary, and I keep the problems in optimization as my motivation.”

    Culture shift

    Sun’s presence on the MIT campus represents a homecoming of sorts. After receiving his doctorate from MIT, Sun spent a year as a postdoc at IBM’s Thomas J. Watson Research Center, then joined the faculty at Georgia Tech, where he remained for a decade. He returned to the Institute in January of 2022.

    “I’m just very excited about the opportunity of being back at MIT,” Sun says. “The MIT Energy Initiative is a such a vibrant place, where many people come together to work on energy. I sit in Sloan, but one very strong point of MIT is there are not many barriers, institutionally. I really look forward to working with colleagues from engineering, Sloan, everywhere, moving forward. We’re moving in the right direction, with a lot of people coming together to break the traditional academic boundaries.” 

    Still, Sun warns that some people may be underestimating the severity of the challenge ahead and the need to implement changes right now. The assets in power grids have long life time, lasting multiple decades. That means investment decisions made now could affect how much clean power is being used a generation from now. 

    “We’re talking about a short timeline, for changing something as huge as how a society fundamentally powers itself with energy,” Sun says. “A lot of that must come from the technology we have today. Renewables are becoming much better and cheaper, so their use has to go up.”

    And that means more people need to work on issues of how to deploy and integrate renewables into everyday life, in the electric grid, transportation, and more. Sun hopes people will increasingly recognize energy as a huge growth area for research and applied work. For instance, when MIT President Sally Kornbluth gave her inaugural address on May 1 this year, she emphasized tackling the climate crisis as her highest priority, something Sun noticed and applauded. 

    “I think the most important thing is the culture,” Sun says. “Bring climate up to the front, and create the platform to encourage people to come together and work on this issue.” More

  • in

    A clean alternative to one of the world’s most common ingredients

    Never underestimate the power of a time crunch.

    In 2016, MIT classmates David Heller ’18, Shara Ticku, and Harry McNamara PhD ’19 were less than two weeks away from the deadline to present a final business plan as part of their class MAS.883 (Revolutionary Ventures: How to Invent and Deploy Transformative Technologies). The students had connected over a shared passion for using biology to solve climate challenges, but their first few ideas didn’t pan out, so they went back to the drawing board.

    In a brainstorming session, Ticku began to reminisce about a trip to Singapore she’d taken where the burning of forests had cast a dark haze over the city. The story sparked a memory from halfway across the world in Costa Rica, where McNamara had traveled and noticed endless rows of palm plantations, which are used to harvest palm oil.

    “Besides Shara’s experience in Singapore and Harry’s in Costa Rica, palm was a material none of us had seriously thought about,” Heller recalls. “That conversation made us realize it was a big, big industry, and there’s major issues to the way that palm is produced.”

    The classmates decided to try using synthetic biology to create a sustainable alternative to palm oil. The idea was the beginning of C16 Biosciences. Today C16 is fulfilling that mission at scale with a palm oil alternative it harvests from oil-producing yeast, which ferment sugars in a process similar to brewing beer.

    The company’s product, which it sells to personal care brands and directly to consumers, holds enormous potential to improve the sustainability of the personal care and food industries because, as it turns out, the classmates had stumbled onto a massive problem.

    Palm oil is the most popular vegetable oil in the world. It’s used in everything from soaps and cosmetics to sauces, rolls, and crackers. But palm oil can only be harvested from palm trees near the equator, so producers often burn down tropical rainforests and swamps in those regions to make way for plantations, decimating wildlife habitats and producing a staggering amount of greenhouse gas emissions. One recent study found palm expansion in Southeast Asia could account for 0.75 percent of the world’s total greenhouse gas emissions. That’s not even including the palm expansion happening across west Africa and South America. Among familiar creatures threatened by palm oil deforestation are orangutans, all three species of which are now listed as “critically endangered” — the most urgent status on the IUCN Red List of Threatened Species, a global endangered species list.

    “To respond to increasing demand over the last few decades, large palm producers usually inappropriately seize land,” Heller explains. “They’ll literally slash and burn tropical rainforests to the ground, drive out indigenous people, they’ll kill or drive out local wildlife, and they’ll replace everything with hectares and hectares of palm oil plantations. That land conversion process has been emitting something like a gigaton of CO2 per year, just for the expansion of palm oil.”

    From milliliters to metric tons

    Heller took Revolutionary Ventures his junior year as one of the few undergraduates in the Media Lab-based class, which is also open to students from nearby colleges. On one of the first days, students were asked to stand in front of the class and explain their passions, or “what makes them tick,” as Heller recalls. He focused on climate tech.

    McNamara, who was a PhD candidate in the Harvard-MIT Program in Health Sciences and Technology at the time, talked about his interest in applying new technology to global challenges in biotech and biophysics. Ticku, who was attending Harvard Business School, discussed her experience working in fertility health and her passion for global health initiatives. The three decided to team up.

    “The core group is very, very passionate about using biology to solve major climate problems,” says Heller, who majored in biological engineering while at MIT.

    After a successful final presentation in the class, the founders received a small amount of funding by participating in the MIT $100K Pitch Competition and from the MIT Sandbox Innovation Fund.

    “MIT Sandbox was one of our first bits of financial support,” Heller says. “We also received great mentorship. We learned from other startups at MIT and made connections with professors whom we learned a lot from.”

    By the time Heller graduated in 2018, the team had experimented with different yeast strains and produced a few milliliters of oil. The process has gradually been optimized and scaled up from there. Today C16 is producing metric tons of oil in 50,000-liter tanks and has launched a consumer cosmetic brand called Palmless.

    Heller says C16 started its own brand as a way to spread the word about the harms associated with palm oil and to show larger companies it was ready to be a partner.

    “The oil palm tree is amazing in terms of the yields it generates, but the location needed for the crop is in conflict with what’s essential in our ecosystem: tropical rainforests,” Heller says. “There’s a lot of excitement when it comes to microbial palm alternatives. A lot of brands have been under pressure from consumers and even governments who are feeling the urgency around climate and are feeling the urgency from consumers to make changes to get away from an oil ingredient that is incredibly destructive.”

    Scaling with biology

    C16’s first offering, which it calls Torula Oil, is a premium product compared to traditional palm oil, but Heller notes the cost of palm oil today is deflated because companies don’t factor in its costs to the planet and society. He also notes that C16 has a number of advantages in its quest to upend the $60 billion palm oil industry: It’s far easier to improve the productivity of C16’s precision fermentation process than it is to improve agricultural processes. C16 also expects its costs to plummet as it continues to grow.

    “What’s exciting for us is we have these economies of scale,” Heller says. “We have the opportunity to expand vertically, in large stainless steel tanks, as opposed to horizontally on land, so we can drive down our cost curve by increasing the size of the infrastructure and improving the optimization of our strain. The timelines for improvement in a precision fermentation process are a fraction of the time it takes in an agricultural context.”

    Heller says C16 is currently focused on partnering with large personal care brands and expects to announce some important deals in coming months. Further down the line, C16 also hopes to use its product to replace the palm oil in food products, although additional regulations mean that dream is still a few years away.

    With all of its efforts, C16 tries to shine a light on the problems associated with the palm industry, which the company feels are underappreciated despite palm oil’s ubiquitous presence in our society.

    “We need to find a way to reduce our reliance on deforestation products,” Heller says. “We do a lot of work to help educate people on the palm oil industry. Just because something has palm oil in it doesn’t mean you should stop using it, but you should understand what that means for the world.” More

  • in

    Solve at MIT 2023: Collaboration and climate efforts are at the forefront of social impact

    “The scale, complexity, the global nature of the problems we’re dealing with are so big that no single institution, industry, or country can deal with them alone,” MIT President Sally Kornbluth stated in her first remarks to the Solve community.

    Over 300 social impact leaders from around the world convened on MIT’s campus for Solve at MIT 2023 to celebrate the 2022 Solver class and to discuss some of the world’s greatest challenges and how we can tackle them with innovation, entrepreneurship, and technology.

    These challenges can be complicated and may even feel insurmountable, but Solve at MIT leaves us with the hope, tools, and connections needed to find solutions together.

    Hala Hanna, executive director of MIT Solve, shared what keeps her inspired and at the front line of social impact: “Optimism isn’t about looking away from the issues but looking right at them, believing we can create the solutions and putting in the work. So, anytime I need a dose of optimism, I look to the innovators we work with,” Hanna shared during the opening plenary, Unlocking our Collective Potential.

    Over the course of three days, more than 300 individuals from around the world convened to celebrate the 2022 Solver class, create partnerships that lead to progress, and address solutions to pressing world issues in real-time.

    Every technologist, philanthropist, investor, and innovator present at Solve at MIT left with their own takeaway, but three main themes seemed to underscore the overall discussions.

    Technology and innovation are as neutral as the makers

    Having bias is a natural part of what makes us human. However, being aware of our predispositions is necessary to transform our lived experiences into actionable solutions for others to benefit from. 

    We’ve largely learned that bias can be both unavoidable and applied almost instantly. Sangbae Kim, director of the Biomimetic Robotics Laboratory and professor of mechanical engineering at MIT, proved this through robotics demonstrations where attendees almost unanimously were more impressed with a back-flipping MIT robot compared to one walking in circles. As it turns out, it took one individual three days to program a robot to do a flip and over two weeks for a full team to program one to walk. “We judge through the knowledge and bias we have based on our lived experiences,” Kim pointed out.

    Bias and lived experiences don’t have to be bad things. The solutions we create based on our own lives are what matter. 

    2022 Solver Atif Javed, co-founder and executive director of Tarjimly, began translating for his grandmother as a child and learned about the struggles that come with being a refugee. This led him to develop a humanitarian language-translation application, which connects volunteer translators with immigrants, refugees, nongovernmental organizations (NGOs), and more, on demand. 

    Vanessa Castañeda Gill, 2022 Solver and co-founder and CEO of Social Cipher, transformed her personal experience with ADHD and autism to develop Ava, a video game empowering neuro-divergent youth and facilitating social-emotional learning.

    For Kelsey Wirth, co-founder and chair of Mothers Out Front, the experience of motherhood and the shared concerns for the well-being of children are what unite her with other moms. 

    Whitney Wolf Herd, founder and CEO of Bumble, shared that as a leader in technology and a person who witnessed toxic online spaces, she sees it as her responsibility to spearhead change. 

    During the plenary, “Bringing us Together or Tearing us Apart?” Wolf Herd asked, “What if we could use technology to be a force for positivity?” She shared her vision for equality and respect to be part of the next digital wave. She also called for technology leaders to join her to ensure “guardrails and ground rules” are in place to make sure this goal becomes a reality.

    Social innovation must be intersectional and intergenerational

    During Solve at MIT, industry leaders across sectors, cultures, ages, and expertise banded together to address pressing issues and to form relationships with innovators looking for support in real time.

    Adam Bly, founder and CEO of System Inc., discussed the interconnected nature of all things and why his organization is on a mission to show the links, “We’re seeing rising complexity in the systems that make up life on earth, and it impacts us individually and globally. The way we organize the information and data we need to make decisions about those systems [is highly] siloed and highly fragmented, and it impairs our ability to make decisions in the most systemic, holistic, rational way.”

    President and CEO of the National Resources Defense Council Manish Bapna shared his advocacy for cross-sector work: “Part of what I’ve seen really proliferate and expand in a good way over the past 10 to 15 years are collaborations involving startups in the private sector, governments, and NGOs. No single stakeholder or organization can solve the problem, but by coming together, they bring different perspectives and skills in ways that can create the innovation we need to see.”

    For a long time, STEM (science, technology, engineering, and math) were seen as the subjects that would resolve our complex issues, but as it turns out, art also holds a tremendous amount of power to transcend identity, borders, status, and concerns, to connect us all and aid us in global unity. Artists Beatie Wolfe, Norhan Bayomi, Aida Murad, and Nneka Jones showed us how to bring healing and awareness to topics like social and environmental injustice through their music, embroidery, and painting.

    The 2023 Solv[ED] Innovators, all age 24 or under, have solutions that are improving communication for individuals with hearing loss, transforming plastic waste into sustainable furniture, and protecting the Black birthing community, among other incredible feats.

    Kami Dar, co-founder and CEO of Uniti Networks, summarizes the value of interconnected problem-solving: “My favorite SDG [sustainable development goal] is SDG number 17— the power of partnership. Look for the adjacent problem-solvers and make sure we are not reinventing the wheel.”

    Relationships and the environment connect us all

    Solve is working to address global challenges on an ongoing basis connected to climate, economic prosperity, health, and learning. Many of these focus areas bleed into one another, but social justice and climate action served as a backdrop for many global issues addressed during Solve at MIT.

    “When we started addressing climate change, we saw it primarily as technical issues to bring down emissions … There’s inequality, there’s poverty, there are social tensions that are rising … We are not going to address climate change without addressing the social tensions that are embedded,” said Lewis Akenji, managing director of the Hot or Cool Institute. Akenji sees food, mobility, and housing as the most impactful areas to focus solutions on first.

    During the “Ensuring a Just Transition to Net Zero” plenary, Heather Clancy, vice president and editorial director at Greenbiz, asked panelists what lessons they have learned from their work. Janelle Knox Hayes, ​​professor of economic geography and planning at MIT, shared that listening to communities, especially front-line and Indigenous communities, is needed before deploying solutions to the energy crisis. “Climate work has this sense of urgency, like it rapidly has to be done … to do really engaged environmental justice work, we have to slow down and realize even before we begin, we need a long period of time to plan. But before we even do that, we have to rebuild relationships and trust and reciprocity … [This] will lead to better and longer-lasting solutions.”

    Hina Baloch, executive director and global head of climate change and sustainability strategy and communication at General Motors, asked Chéri Smith, founder of Indigenous Energy Initiative, to share her perspective on energy sovereignty as it relates to Indigenous communities. Smith shared, “Tribes can’t be sovereign if they’re relying on outside sources for their energy. We were founded to support the self-determination of tribes to revamp their energy systems and rebuild, construct, and maintain them themselves.”

    Smith shared an example of human and tribal-centered innovation in the making. Through the Biden administration’s national electronic vehicle (EV) initiative, Indigenous Energy Initiative and Native Sun Community Power Development will collaborate and create an inter-tribal EV charging network. “The last time we built out an electric grid, it deliberately skipped over tribal country. This time, we want to make sure that we not only have a seat at the table, but that we build out the tables and invite everyone to them,” said Smith.

    Solve at MIT led to meaningful discussions about climate change, intersectional and accessible innovation, and the power that human connection has to unite everyone. Entrepreneurship and social change are the paths forward. And although the challenges ahead of us can be daunting, with community, collaboration, and a healthy dose of bravery, global challenges will continue to be solved by agile impact entrepreneurs all around the world. 

    As Adrianne Haslet, a professional ballroom dancer and Boston Marathon bombing survivor, reminded attendees, “What will get you to the finish line is nothing compared to what got you to the start line.” More

  • in

    Recycling plastics from research labs

    In 2019, MIT’s Environment, Health, and Safety (EHS) Office collaborated with several research labs in the Department of Biology to determine the feasibility of recycling clean lab plastics. Based on early successes with waste isolation and plastics collection, EHS collaborated with GreenLabs Recycling, a local startup, to remove and recycle lab plastics from campus. It was a huge success.

    Today, EHS spearheads the campus Lab Plastics Recycling Program, and its EHS technicians regularly gather clean lab plastics from 212 MIT labs, transferring them to GreenLabs for recycling. Since its pilot stage, the number of labs participating in the program has grown, increasing the total amount of plastic gathered and recycled. In 2020, EHS collected 170 pounds of plastic waste per week from participating labs. That increased to 250 pounds per week in 2021. In 2022, EHS collected a total of 19,000 pounds, or 280 pounds of plastic per week.

    Joanna Buchthal, a research assistant with the MIT Media Lab, indicates that, prior to joining the EHS Lab Plastics Recycling Program, “our laboratory was continuously troubled by the substantial volume of plastic waste we produced and disheartened by our inability to recycle it. We frequently addressed this issue during our group meetings and explored various ways to repurpose our waste, yet we never arrived at a viable solution.”

    The EHS program now provides a solution to labs facing similar challenges with plastics use. After pickup and removal, the plastics are shredded and sold as free stock for injection mold product manufacturing. Buchthal says, “My entire lab is delighted to recycle our used tip boxes and transform them into useful items for other labs!”

    Recently, GreenLabs presented EHS with a three-gallon bucket that local manufacturers produced from 100 percent recycled plastic gathered from MIT labs. No fillers or additives were used in its production.

    Keeping it clean

    The now-growing EHS service and operation started as a pilot. In June 2019, MIT restricted which lab-generated items could be placed in single-stream recycling. MIT’s waste vendors were no longer accepting possibly contaminated waste, such as gloves, pipette tip boxes, bottles, and other plastic waste typically generated in biological research labs. The waste vendors would audit MIT’s single-stream recycling and reject items if they observed any contamination.

    Facing these challenges, the EHS coordinator for biology, John Fucillo, and several EHS representatives from the department met with EHS staff to brainstorm potential recycling solutions. Ensuring the decontamination of the plastic and coordinating its removal in an efficient way were the primary challenges for the labs, says Fucillo, who shared his and lab members’ concerns about the amount of plastic being thrown away with Mitch Galanek, EHS associate director for the Radiation Protection Program. Galanek says, “I immediately recognized the frustration expressed by John and other lab contacts as an opportunity to collaborate.”

    In July 2019, Galanek and a team of EHS technicians began segregating and collecting clean plastic waste from several labs within the biology department. EHS provided the labs with collection containers, and its technicians managed the waste removal over a four-month period, which produced a snapshot of the volume and type of waste generated. An audit of the waste determined that approximately 80 percent of the clean plastic waste generated was empty pipette tip boxes and conical tube racks.

    Based on these data, EHS launched a lab plastics recycling pilot program in November 2019. Labs from the Department of Biology and the Koch Institute for Integrative Cancer Research were invited to participate by recycling their clean, uncontaminated pipette tip boxes and conical tube racks. In addition to providing these labs with collection boxes and plastic liners, EHS also developed an online waste collection request tool to submit plastic pickup requests. EHS also collected the waste containers once they were full.

    Assistant professor of biology Seychelle Vos joined the pilot program as soon as she started her lab in fall 2019. Vos shares that “we already use pipette tips boxes that produce minimal waste, and this program allows us to basically recycle any part of the box except for tips. Pipette boxes are a significant source of plastic waste. This program helps us to be more environmentally and climate friendly.” 

    Given the increased participation in the program, EHS technician Dave Pavone says that plastic pickup is now a “regular component of our work schedules.”

    Together, the EHS technicians, commonly known as “techs,” manage the pickup of nearly 300 plastic collection containers across campus. Normand Desrochers, one of the EHS techs, shares that each morning he plans his pickup route “to get the job done efficiently.” While weekly pickups are a growing part of their schedules, Desrochers notes that everyone has been “super appreciative in what we do for their labs. And what we do makes their job that much easier, being able to focus on their research.”

    Barbara Karampalas, a lab operations manager within the Department of Biological Engineering, is one of many to express appreciation for the program: “We have a fairly large lab with 35 researchers, so we generate a lot of plastic waste … [and] knowing how many tip boxes we were using concerned me. I really appreciate the effort EHS has made to implement this program to help us reduce our impact on the environment.” The program also “makes people in the lab more aware of the issue of plastic waste and MIT’s commitment to reduce its impact on the environment,” says Karampalas.

    Looking ahead

    MIT labs continue to enthusiastically embrace the EHS Lab Plastics Recycling Program: 112 faculty across 212 labs are currently participating in the program. While only empty pipette tip boxes and conical tube racks are currently collected, EHS is exploring which lab plastics could be manufactured into products for use in the labs and repeatedly recycled. Specifically, the EHS Office is considering whether recycled plastic could be used to produce secondary containers for collecting hazardous waste and benchtop transfer containers used for collecting medical waste. As Seychelle notes, “Most plastics cannot be recycled in the current schemes due to their use in laboratory science.”

    Says Fucillo, “Our hope is that this program can be expanded to include other products which could be recycled from the wet labs.” John MacFarlane, research engineer and EHS coordinator for civil and environmental engineering, echoes this sentiment: “With plastic recycling facing economic constraints, this effort by the Institute deserves to be promoted and, hopefully, expanded.”

    “Having more opportunities to recycle ’biologically clean’ plastics would help us have a smaller carbon footprint,” agrees Vos. “We love this program and hope it expands further!”

    MIT labs interested in participating in the EHS Lab Plastics Recycling Program can contact pipetip@mit.edu to learn more. More

  • in

    Q&A: Tod Machover on “Overstory Overture,” his new operatic work

    Composers find inspiration from many sources. For renowned MIT Media Lab composer Tod Machover, reading the Richard Powers novel “The Overstory” instantly made him want to adapt it as an operatic composition. This might not seem an obvious choice to some: “The Overstory” is about a group of people, including a wrongly maligned scientist, who band together to save a forest from destruction.

    But Machover’s resulting work, “Overstory Overture,” a 35-minute piece commissioned and performed by the chamber ensemble Sejong Soloists, has come to fruition and will have its world premiere on March 7 in Alice Tully Hall at New York’s Lincoln Center. Opera superstar Joyce DiDonato will have the lead role, with Earl Lee conducting. On March 16, the piece will have its second performance, in Seoul, South Korea. MIT News recently talked to Machover about his original new work.

    Q: How did you get the idea for your new work?

    A: I’ve been a fan of Richard Powers’ novels for a long time. He started out as a musician. He’s a cellist like I am, and was a composer before he was a writer, and he’s also been deeply interested in science for his whole career. All of his novels have something to do with people, ideas, music, and science. He’s always been on my radar.

    Q: What’s compelling to you about this particular Powers book?

    A: “The Overstory” is made up of many stories about characters who come together, improbably, because of trees. It starts with short chapters describing characters with relationships to trees. One is about a family that moved to the Midwest and planted a chestnut tree. It grows for 150 years and they take pictures every year, and it’s at the center of the family until it gets cut down in the 1990s. Another guy is in a plane in Vietnam and gets shot down, and his parachute gets caught in a tree right before he hits the ground.

    One character is named Patricia Westerford and she’s a scientist. Her life work is studying the forest and trees, and she discovers that trees communicate — both underground, through the roots, and through the air, via particles. They’re much more like a network than they are static, isolated objects. Her whole world is discovering the miracle of this network, but nobody believes her and she loses her tenure. And she basically goes and lives in the forest. Eventually all the characters in the book come together to preserve a forest in the Northwest that’s going to be destroyed. They become connected through trees, but in the book, all their lives are basically destroyed. It’s not a happy ending, but you understand how human beings are connected through the natural world, and have to think about this connection in a radically new way.

    Every single character came alive. The book is just a miracle. It’s a great work of art. Immediately, reading it, I thought, this is something I want to work on.

    Q: How did you start turning that into an operatic composition?

    A: I got in touch with Powers soon after that. Richard knew my music and answered immediately, saying, “I’d love to have you do an opera on this, and let’s figure out how.” I started working on it just before the pandemic. Around that time he came to Harvard to give a lecture, so he came here to my office in the Media Lab, and we got to chat.

    Generally novels leave more room for you to decide how to make music out of them; they’re a lot less scripted than a movie or a play, and the many inner thoughts and asides leave room for music to fill in. I asked Richard, “Would you be interested in writing the text for this?” And right away he said, “Look, I’d like to be involved in the process, but I don’t feel equipped to write a libretto.” So, I went to Simon Robson, who worked on “Schoenberg in Hollywood” [another Machover opera], and we started working and checked in with Richard from time to time.

    Just about that time the ensemble Sejong Soloists, who are based in New York and Seoul, offered to have their string orchestra collaborate on a project with a theatrical aspect, which was new for them. I explained I was working on an opera based on “The Overstory,” and I felt we could explore its themes. I could imagine the string instruments being like trees and the orchestra being the forest.

    The next thing I did was contact my favorite singer, Joyce DiDonato. She’s such a beautiful, powerful singer. I did an opera in 1999 for Houston called “Resurrection,” which was based on Tolstoy’s last novel, and we were casting the main female character. We did auditions in New York, Los Angeles, and Europe, couldn’t find the main character, and finally the head of the Houston Grand Opera said, “You know, there’s this young singer in our apprentice program who’s pretty special, and you should hear her.”

    And sure enough, that was Joyce. It was her first major role. We hadn’t done another project together although we remained close over the years, but I called her and said “Joyce, I know how busy you are, but I’ve got this idea, and I’ll send you the book. It’s great and I’d love to focus on this one character, would you consider doing it?” And she said she’d love to, partly because sustainability and the environment is something she really cares about.

    Q: Okay, but how do you get started writing music for a piece when it’s based on a book about trees?

    A: I began with two things. Musically I started with the idea of creating this language for tree communication. I was inspired by this idea that one of the reasons we don’t know about it is it’s underground, it’s low, it’s spreading out. I’m a cellist, and I’ve always loved music that grows from the bottom. When you play the cello, in a lot of the great literature, you’re playing the low part of a quartet or quintet or orchestra, and often people don’t quite hear it as the most prominent thing.

    The second thing I did was start making this text. Which was hard, because it’s a big novel. It’s a 35-minute piece where Joyce is at the center. When she starts, she just talks, for a minute, and then little by little it turns into song. It’s her sharing with everybody what she learned, she brings you into the world of the forest. In time, there’s a crisis, they’re destroying the forest, and as she says, they’re tearing out the lungs — tearing out the mind — of the world. The last part of the piece is a vision of how the trees need us but we need them even more.

    Q: I don’t want to push too hard on this, but the composition sounds parallel with its subject matter. Trees are connected; an orchestra is connected. And then this story is about people building a connection to nature, while you want the audience to feel a connection to the piece. How much did you think about it that way?

    A: I was thinking about that pretty consciously, and I really tried to make something that feels very still and simple, but where there’s a lot going on. It feels like it’s living and moving. The piece starts out with solo instruments, so at first everybody’s doing their bit, then they all join in. The strings make a rich ensemble sound, but in the last section every single instrument has its own part — I wrote an individual part for all these string players so they’re kind of weaving in and out. Musically it’s very much constructed to lead people through a forest that is both diverse but connected together.

    I also enjoy using electronics to add another dimension. In this piece I’ve tried to create an electronic world that doesn’t necessarily remind you of electronics, except for one part where machines comes in ripping the forest apart. But mostly the electronics are blended with the orchestra in a way you might not always notice. The sound and feel, hopefully, will appear more natural than nature.

    Q: You also seem to have clearly identified a story with real operatic drama here, unusual as it may be.

    A: The emotional transition that happens is the awareness of what the forest means, and in your gut what it means to protects it, and what it would mean to lose it, and then a glimpse of what it might feel like to live in a different way. I think the contribution someone like myself might be able to make is to change attitudes, to think about our limits as a species and as individuals. Technical solutions alone aren’t going to solve things; people’s behavior somehow has to change. A piece like this is a way of having the experience of crisis, and a vision of what could be different.

    Q: Here’s something a lot of us want to know: What’s it like working with Joyce DiDonato?

    A: She’s one of those rare people. She’s completely direct and honest and lives life to the fullest. Joyce, I mean, thank God she has the best voice you’ll ever hear and she’s at the top of her game, but she also thinks about the world and ideas, and she did a whole project a few years ago performing a repertoire around the world about war and peace, to jolt people into a new understanding. Every project she’s involved with, she cares about the characters and she’s in it all the way.

    For this piece we did a bunch of Zoom sessions and tried things out. And she’s fantastic at saying, “To make that phrase the best you can for my voice at this point in the piece, would you consider changing that one note?” She has incredibly precise ideas about that. So, we worked musically on every detail and on the whole shape. What a pleasure! She also came here to MIT. She hadn’t been to the Media Lab, so she spent two days here at the beginning of August with her partner. She was so open to all the students and all the ideas and inventions and machines and software, just in the most gracious and truly excited way. You couldn’t have had a better visitor.

    Q: Any last thoughts about this piece you want to share?

    A: In my music in general, I’m pretty voracious at combining different things. I think in this project where it involves the natural world and the language of trees, and the language of melodies and instruments and electronic music, there may be more elements I’ve pulled together than ever. The emotional and even musical world here is larger. That’s my story here: These elements require and invite new thinking. And remember: This is just the first part of a larger project. I hope that you can hear the full “Overstory” opera — perhaps with trees growing in a major opera house — in the not-so-distant future! More