HOTTEST
If your team cares about protecting the environment and lowering business costs, then an active recycling program for your workplace may be the answer. Recycling has become a serious agenda item for Australia’s business community, as regulations and public pressure mount on organisations to improve their environmental footprint. According to the HP Australia Environmental Sustainability […] More
Today’s electric vehicle boom is tomorrow’s mountain of electronic waste. And while myriad efforts are underway to improve battery recycling, many EV batteries still end up in landfills.A research team from MIT wants to help change that with a new kind of self-assembling battery material that quickly breaks apart when submerged in a simple organic liquid. In a new paper published in Nature Chemistry, the researchers showed the material can work as the electrolyte in a functioning, solid-state battery cell and then revert back to its original molecular components in minutes.The approach offers an alternative to shredding the battery into a mixed, hard-to-recycle mass. Instead, because the electrolyte serves as the battery’s connecting layer, when the new material returns to its original molecular form, the entire battery disassembles to accelerate the recycling process.“So far in the battery industry, we’ve focused on high-performing materials and designs, and only later tried to figure out how to recycle batteries made with complex structures and hard-to-recycle materials,” says the paper’s first author Yukio Cho PhD ’23. “Our approach is to start with easily recyclable materials and figure out how to make them battery-compatible. Designing batteries for recyclability from the beginning is a new approach.”Joining Cho on the paper are PhD candidate Cole Fincher, Ty Christoff-Tempesta PhD ’22, Kyocera Professor of Ceramics Yet-Ming Chiang, Visiting Associate Professor Julia Ortony, Xiaobing Zuo, and Guillaume Lamour.Better batteriesThere’s a scene in one of the “Harry Potter” films where Professor Dumbledore cleans a dilapidated home with the flick of the wrist and a spell. Cho says that image stuck with him as a kid. (What better way to clean your room?) When he saw a talk by Ortony on engineering molecules so that they could assemble into complex structures and then revert back to their original form, he wondered if it could be used to make battery recycling work like magic.That would be a paradigm shift for the battery industry. Today, batteries require harsh chemicals, high heat, and complex processing to recycle. There are three main parts of a battery: the positively charged cathode, the negatively charged electrode, and the electrolyte that shuttles lithium ions between them. The electrolytes in most lithium-ion batteries are highly flammable and degrade over time into toxic byproducts that require specialized handling.To simplify the recycling process, the researchers decided to make a more sustainable electrolyte. For that, they turned to a class of molecules that self-assemble in water, named aramid amphiphiles (AAs), whose chemical structures and stability mimic that of Kevlar. The researchers further designed the AAs to contain polyethylene glycol (PEG), which can conduct lithium ions, on one end of each molecule. When the molecules are exposed to water, they spontaneously form nanoribbons with ion-conducting PEG surfaces and bases that imitate the robustness of Kevlar through tight hydrogen bonding. The result is a mechanically stable nanoribbon structure that conducts ions across its surface.“The material is composed of two parts,” Cho explains. “The first part is this flexible chain that gives us a nest, or host, for lithium ions to jump around. The second part is this strong organic material component that is used in the Kevlar, which is a bulletproof material. Those make the whole structure stable.”When added to water, the nanoribbons self-assemble to form millions of nanoribbons that can be hot-pressed into a solid-state material.“Within five minutes of being added to water, the solution becomes gel-like, indicating there are so many nanofibers formed in the liquid that they start to entangle each other,” Cho says. “What’s exciting is we can make this material at scale because of the self-assembly behavior.”The team tested the material’s strength and toughness, finding it could endure the stresses associated with making and running the battery. They also constructed a solid-state battery cell that used lithium iron phosphate for the cathode and lithium titanium oxide as the anode, both common materials in today’s batteries. The nanoribbons moved lithium ions successfully between the electrodes, but a side-effect known as polarization limited the movement of lithium ions into the battery’s electrodes during fast bouts of charging and discharging, hampering its performance compared to today’s gold-standard commercial batteries.“The lithium ions moved along the nanofiber all right, but getting the lithium ion from the nanofibers to the metal oxide seems to be the most sluggish point of the process,” Cho says.When they immersed the battery cell into organic solvents, the material immediately dissolved, with each part of the battery falling away for easier recycling. Cho compared the materials’ reaction to cotton candy being submerged in water.“The electrolyte holds the two battery electrodes together and provides the lithium-ion pathways,” Cho says. “So, when you want to recycle the battery, the entire electrolyte layer can fall off naturally and you can recycle the electrodes separately.”Validating a new approachCho says the material is a proof of concept that demonstrates the recycle-first approach.“We don’t want to say we solved all the problems with this material,” Cho says. “Our battery performance was not fantastic because we used only this material as the entire electrolyte for the paper, but what we’re picturing is using this material as one layer in the battery electrolyte. It doesn’t have to be the entire electrolyte to kick off the recycling process.”Cho also sees a lot of room for optimizing the material’s performance with further experiments.Now, the researchers are exploring ways to integrate these kinds of materials into existing battery designs as well as implementing the ideas into new battery chemistries.“It’s very challenging to convince existing vendors to do something very differently,” Cho says. “But with new battery materials that may come out in five or 10 years, it could be easier to integrate this into new designs in the beginning.”Cho also believes the approach could help reshore lithium supplies by reusing materials from batteries that are already in the U.S.“People are starting to realize how important this is,” Cho says. “If we can start to recycle lithium-ion batteries from battery waste at scale, it’ll have the same effect as opening lithium mines in the U.S. Also, each battery requires a certain amount of lithium, so extrapolating out the growth of electric vehicles, we need to reuse this material to avoid massive lithium price spikes.”The work was supported, in part, by the National Science Foundation and the U.S. Department of Energy. More
The accumulation of plastic waste in the oceans, soil, and even in our bodies is one of the major pollution issues of modern times, with over 5 billion tons disposed of so far. Despite major efforts to recycle plastic products, actually making use of that motley mix of materials has remained a challenging issue.
A key problem is that plastics come in so many different varieties, and chemical processes for breaking them down into a form that can be reused in some way tend to be very specific to each type of plastic. Sorting the hodgepodge of waste material, from soda bottles to detergent jugs to plastic toys, is impractical at large scale. Today, much of the plastic material gathered through recycling programs ends up in landfills anyway. Surely there’s a better way.
According to new research from MIT and elsewhere, it appears there may indeed be a much better way. A chemical process using a catalyst based on cobalt has been found to be very effective at breaking down a variety of plastics, such as polyethylene (PET) and polypropylene (PP), the two most widely produced forms of plastic, into a single product, propane. Propane can then be used as a fuel for stoves, heaters, and vehicles, or as a feedstock for the production of a wide variety of products — including new plastics, thus potentially providing at least a partial closed-loop recycling system.
The finding is described today in the open access journal JACS Au, in a paper by MIT professor of chemical engineering Yuriy Román-Leshkov, postdoc Guido Zichitella, and seven others at MIT, the SLAC National Accelerator Laboratory, and the National Renewable Energy Laboratory.
Recycling plastics has been a thorny problem, Román-Leshkov explains, because the long-chain molecules in plastics are held together by carbon bonds, which are “very stable and difficult to break apart.” Existing techniques for breaking these bonds tend to produce a random mix of different molecules, which would then require complex refining methods to separate out into usable specific compounds. “The problem is,” he says, “there’s no way to control where in the carbon chain you break the molecule.”
But to the surprise of the researchers, a catalyst made of a microporous material called a zeolite that contains cobalt nanoparticles can selectively break down various plastic polymer molecules and turn more than 80 percent of them into propane.
Although zeolites are riddled with tiny pores less than a nanometer wide (corresponding to the width of the polymer chains), a logical assumption had been that there would be little interaction at all between the zeolite and the polymers. Surprisingly, however, the opposite turned out to be the case: Not only do the polymer chains enter the pores, but the synergistic work between cobalt and the acid sites in the zeolite can break the chain at the same point. That cleavage site turned out to correspond to chopping off exactly one propane molecule without generating unwanted methane, leaving the rest of the longer hydrocarbons ready to undergo the process, again and again.
“Once you have this one compound, propane, you lessen the burden on downstream separations,” Román-Leshkov says. “That’s the essence of why we think this is quite important. We’re not only breaking the bonds, but we’re generating mainly a single product” that can be used for many different products and processes.
The materials needed for the process, zeolites and cobalt, “are both quite cheap” and widely available, he says, although today most cobalt comes from troubled areas in the Democratic Republic of Congo. Some new production is being developed in Canada, Cuba, and other places. The other material needed for the process is hydrogen, which today is mostly produced from fossil fuels but can easily be made other ways, including electrolysis of water using carbon-free electricity such as solar or wind power.
The researchers tested their system on a real example of mixed recycled plastic, producing promising results. But more testing will be needed on a greater variety of mixed waste streams to determine how much fouling takes place from various contaminants in the material — such as inks, glues, and labels attached to the plastic containers, or other nonplastic materials that get mixed in with the waste — and how that affects the long-term stability of the process.
Together with collaborators at NREL, the MIT team is also continuing to study the economics of the system, and analyzing how it can fit into today’s systems for handling plastic and mixed waste streams. “We don’t have all the answers yet,” Román-Leshkov says, but preliminary analysis looks promising.
The research team included Amani Ebrahim and Simone Bare at the SLAC National Accelerator Laboratory; Jie Zhu, Anna Brenner, Griffin Drake and Julie Rorrer at MIT; and Greg Beckham at the National Renewable Energy Laboratory. The work was supported by the U.S. Department of Energy (DoE), the Swiss National Science Foundation, and the DoE’s Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office (AMO), and Bioenergy Technologies Office (BETO), as part of the the Bio-Optimized Technologies to keep Thermoplastics out of Landfills and the Environment (BOTTLE) Consortium. More
The future of lighting waste is looking brighter as light bulbs become greener and smarter, however we still have a long way to go. In Australia, millions of light bulbs are discarded into the rubbish bin and eventually end up in landfill every year. In fact, authorities estimate 95 per cent of mercury-containing lamps are […] More
While recycling systems and bottle deposits have become increasingly widespread in the U.S., actual rates of recycling are “abysmal,” according to a team of MIT researchers who studied the rates for recycling of PET, the plastic commonly used in beverage bottles. However, their findings suggest some ways to change this.The present rate of recycling for PET, or polyethylene terephthalate, bottles nationwide is about 24 percent and has remained stagnant for a decade, the researchers say. But their study indicates that with a nationwide bottle deposit program, the rates could increase to 82 percent, with nearly two-thirds of all PET bottles being recycled into new bottles, at a net cost of just a penny a bottle when demand is robust. At the same time, they say, policies would be needed to ensure a sufficient demand for the recycled material.The findings are being published today in the Journal of Industrial Ecology, in a paper by MIT professor of materials science and engineering Elsa Olivetti, graduate students Basuhi Ravi and Karan Bhuwalka, and research scientist Richard Roth.The team looked at PET bottle collection and recycling rates in different states as well as other nations with and without bottle deposit policies, and with or without curbside recycling programs, as well as the inputs and outputs of various recycling companies and methods. The researchers say this study is the first to look in detail at the interplay between public policies and the end-to-end realities of the packaging production and recycling market.They found that bottle deposit programs are highly effective in the areas where they are in place, but at present there is not nearly enough collection of used bottles to meet the targets set by the packaging industry. Their analysis suggests that a uniform nationwide bottle deposit policy could achieve the levels of recycling that have been mandated by proposed legislation and corporate commitments.The recycling of PET is highly successful in terms of quality, with new products made from all-recycled material virtually matching the qualities of virgin material. And brands have shown that new bottles can be safely made with 100 percent postconsumer waste. But the team found that collection of the material is a crucial bottleneck that leaves processing plants unable to meet their needs. However, with the right policies in place, “one can be optimistic,” says Olivetti, who is the Jerry McAfee Professor in Engineering and the associate dean of the School of Engineering.“A message that we have found in a number of cases in the recycling space is that if you do the right work to support policies that think about both the demand but also the supply,” then significant improvements are possible, she says. “You have to think about the response and the behavior of multiple actors in the system holistically to be viable,” she says. “We are optimistic, but there are many ways to be pessimistic if we’re not thinking about that in a holistic way.”For example, the study found that it is important to consider the needs of existing municipal waste-recovery facilities. While expanded bottle deposit programs are essential to increase recycling rates and provide the feedstock to companies recycling PET into new products, the current facilities that process material from curbside recycling programs will lose revenue from PET bottles, which are a relatively high-value product compared to the other materials in the recycled waste stream. These companies would lose a source of their income if the bottles are collected through deposit programs, leaving them with only the lower-value mixed plastics.The researchers developed economic models based on rates of collection found in the states with deposit programs, recycled-content requirements, and other policies, and used these models to extrapolate to the nation as a whole. Overall, they found that the supply needs of packaging producers could be met through a nationwide bottle deposit system with a 10-cent deposit per bottle — at a net cost of about 1 cent per bottle produced when demand is strong. This need not be a federal program, but rather one where the implementation would be left up to the individual states, Olivetti says.Other countries have been much more successful in implementing deposit systems that result in very high participation rates. Several European countries manage to collect more than 90 percent of PET bottles for recycling, for example. But in the U.S., less than 29 percent are collected, and after losses in the recycling chain about 24 percent actually get recycled, the researchers found. Whereas 73 percent of Americans have access to curbside recycling, presently only 10 states have bottle deposit systems in place.Yet the demand is there so far. “There is a market for this material,” says Olivetti. While bottles collected through mixed-waste collection can still be recycled to some extent, those collected through deposit systems tend to be much cleaner and require less processing, and so are more economical to recycle into new bottles, or into textiles.To be effective, policies need to not just focus on increasing rates of recycling, but on the whole cycle of supply and demand and the different players involved, Olivetti says. Safeguards would need to be in place to protect existing recycling facilities from the lost revenues they would suffer as a result of bottle deposits, perhaps in the form of subsidies funded by fees on the bottle producers, to avoid putting these essential parts of the processing chain out of business. And other policies may be needed to ensure the continued market for the material that gets collected, including recycled content requirements and extended producer responsibility regulations, the team found.At this stage, it’s important to focus on the specific waste streams that can most effectively be recycled, and PET, along with many metals, clearly fit that category. “When we start to think about mixed plastic streams, that’s much more challenging from an environmental perspective,” she says. “Recycling systems need to be pursuing extended producers’ responsibility, or specifically thinking about materials designed more effectively toward recycled content,” she says.It’s also important to address “what the right metrics are to design for sustainably managed materials streams,” she says. “It could be energy use, could be circularity [for example, making old bottles into new bottles], could be around waste reduction, and making sure those are all aligned. That’s another kind of policy coordination that’s needed.” More