More stories

  • in

    Lytic archaeal viruses infect abundant primary producers in Earth’s crust

    1.Flemming, H. C. & Wuertz, S. Bacteria and archaea on Earth and their abundance in biofilms. Nat. Rev. Microbiol. 17, 247–260 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Magnabosco, C. et al. The biomass and biodiversity of the continental subsurface. Nat. Geosci. 11, 707–717 (2018).CAS 
    Article 
    ADS 

    Google Scholar 
    3.Anantharaman, K. et al. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nat. Commun. 7, 13219 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    4.Hug, L. A. et al. A new view of the tree of life. Nat. Microbiol. 1, 16048 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Castelle, C. J. et al. Genomic expansion of domain archaea highlights roles for organisms from new phyla in anaerobic carbon cycling. Curr. Biol. 25, 690–701 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Nunoura, T. et al. Insights into the evolution of Archaea and eukaryotic protein modifier systems revealed by the genome of a novel archaeal group. Nucleic Acids Res. 39, 3204–3223 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Probst, A. J. et al. Biology of a widespread uncultivated archaeon that contributes to carbon fixation in the subsurface. Nat. Commun. 5, 5497 (2014).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    8.Zaremba-Niedzwiedzka, K. et al. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541, 353–358 (2017).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    9.Weinbauer, M. G. & Rassoulzadegan, F. Are viruses driving microbial diversification and diversity? Environ. Microbiol. 6, 1–11 (2004).PubMed 
    Article 

    Google Scholar 
    10.Engelhardt, T., Kallmeyer, J., Cypionka, H. & Engelen, B. High virus-to-cell ratios indicate ongoing production of viruses in deep subsurface sediments. ISME J. 8, 1503–1509 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Danovaro, R. et al. Virus-mediated archaeal hecatomb in the deep seafloor. Sci. Adv. 2, e1600492 (2016).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    12.Kyle, J. E., Eydal, H. S., Ferris, F. G. & Pedersen, K. Viruses in granitic groundwater from 69 to 450 m depth of the Äspö hard rock laboratory, Sweden. ISME J. 2, 571–574 (2008).PubMed 
    Article 

    Google Scholar 
    13.Labonté, J. M. et al. Single cell genomics indicates horizontal gene transfer and viral infections in a deep subsurface Firmicutes population. Front. Microbiol. 6, 349 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    14.Hylling, O. et al. Two novel bacteriophage genera from a groundwater reservoir highlight subsurface environments as underexplored biotopes in bacteriophage ecology. Sci. Rep. 10, 11879 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    15.Daly, R. A. et al. Viruses control dominant bacteria colonizing the terrestrial deep biosphere after hydraulic fracturing. Nat. Microbiol. 4, 352–361 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    16.Horvath, P. & Barrangou, R. CRISPR/Cas, the immune system of bacteria and archaea. Science 327, 167–170 (2010).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    17.Pauly, M. D., Bautista, M. A., Black, J. A. & Whitaker, R. J. Diversified local CRISPR-Cas immunity to viruses of Sulfolobus islandicus. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20180093 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Probst, A. J. et al. Differential depth distribution of microbial function and putative symbionts through sediment-hosted aquifers in the deep terrestrial subsurface. Nat. Microbiol. 3, 328–336 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Henneberger, R., Moissl, C., Amann, T., Rudolph, C. & Huber, R. New insights into the lifestyle of the cold-loving SM1 euryarchaeon: natural growth as a monospecies biofilm in the subsurface. Appl. Environ. Microbiol. 72, 192–199 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    20.Probst, A. J. et al. Tackling the minority: sulfate-reducing bacteria in an archaea-dominated subsurface biofilm. ISME J. 7, 635–651 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    21.Bird, J. T., Baker, B. J., Probst, A. J., Podar, M. & Lloyd, K. G. Culture independent genomic comparisons reveal environmental adaptations for Altiarchaeales. Front. Microbiol. 7, 1221 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Hernsdorf, A. W. et al. Potential for microbial H2 and metal transformations associated with novel bacteria and archaea in deep terrestrial subsurface sediments. ISME J. 11, 1915–1929 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Moissl, C., Rachel, R., Briegel, A., Engelhardt, H. & Huber, R. The unique structure of archaeal ‘hami’, highly complex cell appendages with nano-grappling hooks. Mol. Microbiol. 56, 361–370 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Rudolph, C., Wanner, G. & Huber, R. Natural communities of novel archaea and bacteria growing in cold sulfurous springs with a string-of-pearls-like morphology. Appl. Environ. Microbiol. 67, 2336–2344 (2001).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    25.Rudolph, C., Moissl, C., Henneberger, R. & Huber, R. Ecology and microbial structures of archaeal/bacterial strings-of-pearls communities and archaeal relatives thriving in cold sulfidic springs. FEMS Microbiol. Ecol. 50, 1–11 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    26.Schwank, K. et al. An archaeal symbiont-host association from the deep terrestrial subsurface. ISME J. 13, 2135–2139 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Probst, A. J. & Moissl-Eichinger, C. “Altiarchaeales”: uncultivated archaea from the subsurface. Life 5, 1381–1395 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Makarova, K. S. et al. Dark matter in archaeal genomes: a rich source of novel mobile elements, defense systems and secretory complexes. Extremophiles 18, 877–893 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Vik, D. R. et al. Putative archaeal viruses from the mesopelagic ocean. PeerJ 5, e3428 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    30.Anderson, R. E., Brazelton, W. J. & Baross, J. A. The deep viriosphere: assessing the viral impact on microbial community dynamics in the deep subsurface. Carbon Earth 75, 649–675 (2013).CAS 
    Article 

    Google Scholar 
    31.Rodrigues, R. A. L. et al. An anthropocentric view of the virosphere-host relationship. Front. Microbiol. 8, 1673 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Munson-McGee, J. H., Snyder, J. C. & Young, M. J. Archaeal viruses from high-temperature environments. Genes 9, 128 (2018).PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 
    33.Paez-Espino, D. et al. Uncovering Earth’s virome. Nature 536, 425–430 (2016).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    34.Philosof, A. et al. Novel abundant oceanic viruses of uncultured marine group II Euryarchaeota. Curr. Biol. 27, 1362–1368 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Ahlgren, N. A., Fuchsman, C. A., Rocap, G. & Fuhrman, J. A. Discovery of several novel, widespread, and ecologically distinct marine Thaumarchaeota viruses that encode amoC nitrification genes. ISME J. 13, 618–631 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    36.Gudbergsdottir, S. R., Menzel, P., Krogh, A., Young, M. & Peng, X. Novel viral genomes identified from six metagenomes reveal wide distribution of archaeal viruses and high viral diversity in terrestrial hot springs. Environ. Microbiol. 18, 863–874 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    37.Munson-McGee, J. H., Rooney, C. & Young, M. J. An uncultivated virus infecting a nanoarchaeal parasite in the hot springs of Yellowstone National Park. J. Virol. 94, e01213-19 (2020).38.Zablocki, O., van Zyl, L. J., Kirby, B. & Trindade, M. Diversity of dsDNA viruses in a South African hot spring assessed by metagenomics and microscopy. Viruses 9, 348 (2017).PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 
    39.Emerson, J. B. et al. Host-linked soil viral ecology along a permafrost thaw gradient. Nat. Microbiol. 3, 870–880 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Trubl, G. et al. Soil viruses are underexplored players in ecosystem carbon processing. mSystems 3, 338103 (2018).Article 

    Google Scholar 
    41.Hochstein, R. A., Amenabar, M. J., Munson-McGee, J. H., Boyd, E. S. & Young, M. J. Acidianus tailed spindle virus: a new archaeal large tailed spindle virus discovered by culture-independent methods. J. Virol. 90, 3458–3468 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Jahn, M. T. et al. Lifestyle of sponge symbiont phages by host prediction and correlative microscopy. ISME J. 15, 1–11 (2021).43.Anderson, R. E., Brazelton, W. J. & Baross, J. A. Is the genetic landscape of the deep subsurface biosphere affected by viruses? Front. Microbiol. 2, 219 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Chen, I. A. et al. IMG/M v.5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Res. 47, D666–D677 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    45.Bornemann, T. L. V. et al. Geological degassing enhances microbial metabolism in the continental subsurface. https://doi.org/10.1101/2020.03.07.980714 (2020).46.Sharrar, A. M. et al. Novel large sulfur bacteria in the metagenomes of groundwater-fed chemosynthetic microbial mats in the Lake Huron Basin. Front. Microbiol. 8, 791 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Roux, S., Enault, F., Hurwitz, B. L. & Sullivan, M. B. VirSorter: mining viral signal from microbial genomic data. PeerJ 3, e985 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    48.Kieft, K. et al. Virus-associated organosulfur metabolism in human and environmental systems. Cell Reports, in press (2021).49.Allers, E. et al. Single-cell and population level viral infection dynamics revealed by phageFISH, a method to visualize intracellular and free viruses. Environ. Microbiol. 15, 2306–2318 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Roux, S. et al. Minimum information about an uncultivated virus genome (MIUViG). Nat. Biotechnol. 37, 29–37 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    51.Breitbart, M. & Rohwer, F. Here a virus, there a virus, everywhere the same virus? Trends Microbiol. 13, 278–284 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    52.Short, C. M. & Suttle, C. A. Nearly identical bacteriophage structural gene sequences are widely distributed in both marine and freshwater environments. Appl. Environ. Microbiol. 71, 480–486 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    53.Bautista, M. A., Black, J. A., Youngblut, N. D. & Whitaker, R. J. Differentiation and structure in Sulfolobus islandicus rod-shaped virus populations. Viruses 9, 120 (2017).PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 
    54.Held, N. L. & Whitaker, R. J. Viral biogeography revealed by signatures in Sulfolobus islandicus genomes. Environ. Microbiol. 11, 457–466 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    55.Baquero, D. P. et al. New virus isolates from Italian hydrothermal environments underscore the biogeographic pattern in archaeal virus communities. ISME J. 14, 1821–1833 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Molnár, J. et al. Identification of a novel archaea virus, detected in hydrocarbon polluted Hungarian and Canadian samples. PLoS ONE 15, e0231864 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    57.Prangishvili, D., Garrett, R. A. & Koonin, E. V. Evolutionary genomics of archaeal viruses: unique viral genomes in the third domain of life. Virus Res. 117, 52–67 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    58.Deng, L., Garrett, R. A., Shah, S. A., Peng, X. & She, Q. A novel interference mechanism by a type IIIB CRISPR-Cmr module in Sulfolobus. Mol. Microbiol. 87, 1088–1099 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    59.Silas, S. et al. Type III CRISPR-Cas systems can provide redundancy to counteract viral escape from type I systems. Elife 6, e27601 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Guo, T., Han, W. & She, Q. Tolerance of Sulfolobus SMV1 virus to the immunity of IA and III-B CRISPR-Cas systems in Sulfolobus islandicus. RNA Biol. 16, 549–556 (2019).PubMed 
    Article 

    Google Scholar 
    61.Athukoralage, J. S. et al. An anti-CRISPR viral ring nuclease subverts type III CRISPR immunity. Nature 577, 572–575 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    62.Bhoobalan-Chitty, Y., Johansen, T. B., Di Cianni, N. & Peng, X. Inhibition of type III CRISPR-Cas immunity by an archaeal virus-encoded anti-CRISPR protein. Cell 179, 448–458 e411 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    63.Thingstad, T. F. & Lignell, R. Theoretical models for the control of bacterial growth rate, abundance, diversity and carbon demand. Aquat. Microbiol. Ecol. 13, 19–27 (1997).Article 

    Google Scholar 
    64.Wilhelm, S. W. & Suttle, C. A. Viruses and nutrient cycles in the sea—viruses play critical roles in the structure and function of aquatic food webs. Bioscience 49, 781–788 (1999).Article 

    Google Scholar 
    65.Probst, A. J. et al. Lipid analysis of CO2-rich subsurface aquifers suggests an autotrophy-based deep biosphere with lysolipids enriched in CPR bacteria. ISME J. 14, 1547–1560 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Dong, X. et al. Fermentative spirochaetes mediate necromass recycling in anoxic hydrocarbon-contaminated habitats. ISME J. 12, 2039–2050 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Vidakovic, L., Singh, P. K., Hartmann, R., Nadell, C. D. & Drescher, K. Dynamic biofilm architecture confers individual and collective mechanisms of viral protection. Nat. Microbiol. 3, 26–31 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    68.Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    69.Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    70.Probst, A. J. et al. Coupling genetic and chemical microbiome profiling reveals heterogeneity of archaeome and bacteriome in subsurface biofilms that are dominated by the same archaeal species. PLoS ONE 9, e99801 (2014).71.John, S. G. et al. A simple and efficient method for concentration of ocean viruses by chemical flocculation. Environ. Microbiol. Rep. 3, 195–202 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    72.Joshi, N. & Fass, J. Sickle: a sliding-window, adaptive, quality-based trimming tool for FastQ files (Version 1.33) [Software]. https://github.com/najoshi/sickle (2011).73.Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 27, 824–834 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    74.Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 11, 119 (2010).Article 
    CAS 

    Google Scholar 
    75.Suzek, B. E., Huang, H., McGarvey, P., Mazumder, R. & Wu, C. H. UniRef: comprehensive and non-redundant UniProt reference clusters. Bioinformatics 23, 1282–1288 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    76.Bornemann, T. L. V., Esser, S. P., Stach, T. L., Burg, T. & Probst, A.J. uBin—a manual refining tool for metagenomic bins designed for educational purposes. https://doi.org/10.1101/2020.07.15.204776 (2020).77.Couvin, D. et al. CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Res. 46, W246–W251 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    78.Medvedeva, S. et al. Virus-borne mini-CRISPR arrays are involved in interviral conflicts. Nat. Commun. 10, 5204 (2019).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    79.Iranzo, J., Faure, G., Wolf, Y. I. & Koonin, E. V. Game-theoretical modeling of interviral conflicts mediated by mini-CRISPR arrays. Front. Microbiol. 11, 381 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.Denman, R. B. Using Rnafold to predict the activity of small catalytic RNAs. Biotechniques 15, 1090-& (1993).
    Google Scholar 
    81.Lange, S. J., Alkhnbashi, O. S., Rose, D., Will, S. & Backofen, R. CRISPRmap: an automated classification of repeat conservation in prokaryotic adaptive immune systems. Nucleic Acids Res. 41, 8034–8044 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    82.Moller, A. G. & Liang, C. MetaCRAST: reference-guided extraction of CRISPR spacers from unassembled metagenomes. PeerJ 5, e3788 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    83.Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    84.Bischoff, V. et al. Cobaviruses—a new globally distributed phage group infecting Rhodobacteraceae in marine ecosystems. ISME J. 13, 1404–1421 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    85.Boratyn, G. M. et al. Domain enhanced lookup time accelerated BLAST. Biol. Direct 7, 12 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    86.Grazziotin, A. L., Koonin, E. V. & Kristensen, D. M. Prokaryotic virus orthologous groups (pVOGs): a resource for comparative genomics and protein family annotation. Nucleic Acids Res. 45, D491–D498 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    87.Remmert, M., Biegert, A., Hauser, A. & Söding, J. HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nat. Methods 9, 173–175 (2011).PubMed 
    Article 
    CAS 

    Google Scholar 
    88.Marz, M. et al. Challenges in RNA virus bioinformatics. Bioinformatics 30, 1793–1799 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    89.Finn, R. D. et al. InterPro in 2017-beyond protein family and domain annotations. Nucleic Acids Res. 45, D190–D199 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    90.Kearse, M. et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    91.Söding, J., Biegert, A. & Lupas, A. N. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res. 33, W244–W248 (2005).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    92.Zimmermann, L. et al. A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J. Mol. Biol. 430, 2237–2243 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    93.Potter, S. C. et al. HMMER web server: 2018 update. Nucleic Acids Res. 46, W200–W204 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    94.Meier-Kolthoff, J. P. & Göker, M. VICTOR: genome-based phylogeny and classification of prokaryotic viruses. Bioinformatics 33, 3396–3404 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    95.Meier-Kolthoff, J. P., Auch, A. F., Klenk, H. P. & Göker, M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform. 14, 60 (2013).Article 

    Google Scholar 
    96.Göker, M., Garcia-Blazquez, G., Voglmayr, H., Telleria, M. T. & Martin, M. P. Molecular taxonomy of phytopathogenic fungi: a case study in Peronospora. PLoS ONE 4, e6319 (2009).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    97.Bin Jang, H. et al. Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. Nat. Biotechnol. 37, 632–639 (2019).Article 
    CAS 

    Google Scholar 
    98.Bolduc, B. et al. vConTACT: an iVirus tool to classify double-stranded DNA viruses that infect archaea and bacteria. PeerJ 5, e3243 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    99.Brister, J. R., Ako-Adjei, D., Bao, Y. & Blinkova, O. NCBI viral genomes resource. Nucleic Acids Res. 43, D571–D577 (2015).CAS 
    Article 

    Google Scholar 
    100.Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    101.Moraru, C., Varsani, A. & Kropinski, A. M. VIRIDIC-A novel tool to calculate the intergenomic similarities of prokaryote-infecting viruses. Viruses 12, 1268 (2020).102.Guy, L., Kultima, J. R. & Andersson, S. G. genoPlotR: comparative gene and genome visualization in R. Bioinformatics 26, 2334–2335 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    103.Team RC. R: a language and environment for statistical computing. (R Foundation for Statistical Computing, 2019). https://www.R-project.org/.104.Papadopoulos, J. S. & Agarwala, R. COBALT: constraint-based alignment tool for multiple protein sequences. Bioinformatics 23, 1073–1079 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    105.Edgar, R. C. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinform. 5, 113 (2004).Article 
    CAS 

    Google Scholar 
    106.Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    107.Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540–552 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    108.Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    109.Rambaut, A. FigTree, a graphical viewer of phylogenetic trees and as a program for producing publication-ready figures. http://tree.bio.ed.ac.uk/software/figtree/ (2006).110.Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    111.Barrero-Canosa, J. & Moraru, C. Linking microbes to their genes at single cell level with direct-geneFISH. In: An Overview of FISH Concepts and Protocols for Microbial Cells (eds Almeida, C. & Azevedo, N.). (Springer Nature, 2020).112.Barrero-Canosa, J., Moraru, C., Zeugner, L., Fuchs, B. M. & Amann, R. Direct-geneFISH: a simplified protocol for the simultaneous detection and quantification of genes and rRNA in microorganisms. Environ. Microbiol. 19, 70–82 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    113.Perras, A. K. et al. S-layers at second glance? Altiarchaeal grappling hooks (hami) resemble archaeal S-layer proteins in structure and sequence. Front. Microbiol. 6, 543 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    114.Wallner, G., Amann, R. & Beisker, W. Optimizing fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry 14, 136–143 (1993).CAS 
    PubMed 
    Article 

    Google Scholar 
    115.Moissl, C., Rudolph, C., Rachel, R., Koch, M. & Huber, R. In situ growth of the novel SM1 euryarchaeon from a string-of-pearls-like microbial community in its cold biotope, its physical separation and insights into its structure and physiology. Arch. Microbiol. 180, 211–217 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    116.Flechsler, J. et al. 2D and 3D immunogold localization on (epoxy) ultrathin sections with and without osmium tetroxide. Microsc. Res. Tech. 83, 691–705 (2020).117.Schlitzer, R. Data Analysis and Visualization with Ocean Data View, CMOS Bulletin SCMO. 43, 9–13 (2015). More

  • in

    Earthworms drastically change fungal and bacterial communities during vermicomposting of sewage sludge

    The composition of bacterial and fungal microbiotas changes during vermicomposting of sewage sludgeThe bacterial community of the raw sewage sludge included 19 phyla and was mainly comprised of Bacteroidota, Bdellovibrionota, Campilobacterota, Firmicutes and Proteobacteria (Fig. 1). Bacterial communities of fresh earthworm casts were dominated by the phyla Bacteroidota, Proteobacteria and Verrucomicrobiota (Fig. 1). Large changes in bacterial community composition were found after transit of the sewage sludge through the gut of the earthworms (GAP), with significant decreases in the abundance of Campilobacterota, Firmicutes and Bacteroidota, and significant increases in the abundance of Verrucomicrobiota, Proteobacteria and Bacteroidota (Supplementary Table S1). At the genus level, transit through the gut significantly reduced the abundance of bacterial genera Terrimonas, Acetoanaerobium, Bacteroides, Cloacibacterium, Proteocatella and Macellibacteroides among others (Fig. 1, Supplementary Table S2), and increased significantly the abundance of Dyadobacter, Aeromonas, Luteolibacter, Edaphobaculum, Cellvibrio, Pedobacter, Sphingomonas, Devosia, Cetobacterium and Rhodanobacter among others (Fig. 1, Supplementary Table S2). At ASV level, transit through the earthworm gut significantly reduced the relative abundance of 49 bacterial ASVs and increased the relative abundance of 54 bacterial ASVs (Supplementary Table S3).Figure 1Relative abundance of the main phyla and genera of bacteria in sewage sludge, fresh earthworm casts and vermicompost (3 months old) during vermicomposting of sewage sludge. Low abundance bacterial phyla and genera ( More

  • in

    Male diet affects female fitness and sperm competition in human- and bat-associated lineages of the common bedbug, Cimex lectularius

    1.Coyne, J. A. & Orr, A. H. Speciation. (Sinauer associates, Inc., 2004).2.Nosil, P. Ecological speciation. (Oxford University Press, 2012). https://doi.org/10.1093/acprof:osobl/9780199587100.001.00013.Parker, G. A. Sperm competition and its evolutionary consequences in the insects. Biol. Rev. 45, 525–567 (1970).Article 

    Google Scholar 
    4.Almbro, M., Dowling, D. K. & Simmons, L. W. Effects of vitamin E and beta-carotene on sperm competitiveness. Ecol. Lett. 14, 891–895 (2011).PubMed 
    Article 

    Google Scholar 
    5.Sutter, A. & Immler, S. Within-ejaculate sperm competition. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 375, 20200066 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Balfour, V. L., Black, D. & Shuker, D. M. Mating failure shapes the patterns of sperm precedence in an insect. Behav. Ecol. Sociobiol. 74, 1–14 (2020).Article 

    Google Scholar 
    7.Reinhardt, K., Dobler, R. & Abbott, J. An ecology of sperm: Sperm diversification by natural selection. Annu. Rev. Ecol. Evol. Syst. 46, 435–459 (2015).Article 

    Google Scholar 
    8.Dobler, R. & Reinhardt, K. Heritability, evolvability, phenotypic plasticity and temporal variation in sperm-competition success of Drosophila melanogaster. J. Evol. Biol. 29, 929–941 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Evans, J. P., Lymbery, R. A., Wiid, K. S., Rahman, M. M. & Gasparini, C. Sperm as moderators of environmentally induced paternal effects in a livebearing fish. Biol. Lett. 13, 20170087 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Alavi, S. M. H. & Cosson, J. Sperm motility in fishes. I. Effects of temperature and pH: A review. Cell Biol. Int. 29, 101–110 (2005).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Foresta, C. et al. Human papillomavirus found in sperm head of young adult males affects the progressive motility. Fertil. Steril. 93, 802–806 (2010).PubMed 
    Article 

    Google Scholar 
    12.Mann, T. The biochemistry of semen and the male reproductive tract. (London: Methuen & Co (1964), 1964).13.Otti, O., McTighe, A. P. & Reinhardt, K. In vitro antimicrobial sperm protection by an ejaculate-like substance. Funct. Ecol. 27, 219–226 (2013).Article 

    Google Scholar 
    14.Valdebenito, I., Fletcher, C., Vera, V. & Fernández, J. Physical-chemical factors that regulate spermatic motility in fish: Basic and applied aspects. A review. . Arch. Med. Vet. 41, 97–106 (2009).CAS 
    Article 

    Google Scholar 
    15.Werner, M. & Simmons, L. W. Insect sperm motility. Biol. Rev. 83, 191–208 (2008).PubMed 
    Article 

    Google Scholar 
    16.Barros, C. M., Pegorer, M. F., Vasconcelos, J. L. M., Eberhardt, B. G. & Monteiro, F. M. Importance of sperm genotype (indicus versus taurus) for fertility and embryonic development at elevated temperatures. Theriogenology 65, 210–218 (2006).PubMed 
    Article 

    Google Scholar 
    17.Blanco, J. M., Gee, G., Wildt, D. E. & Donoghue, A. M. Species variation in osmotic, cryoprotectant, and cooling rate tolerance in poultry, eagle, and peregrine falcon spermatozoa. Biol. Reprod. 63, 1164–1171 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    18.Chacur, M. G. M., Mizusaki, K. T., Filho, L. R. A. G., Oba, E. & Ramos, A. A. Seasonal effects on semen and testosterone in zebu and taurine bulls. Acta Sci. Vet. 41, 1110 (2013).
    Google Scholar 
    19.Lewis, S. M., Tigreros, N., Fedina, T. & Ming, Q. L. Genetic and nutritional effects on male traits and reproductive performance in Tribolium flour beetles. J. Evol. Biol. 25, 438–451 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    20.Schramm, G.-P. Studies on genotype specific modified methods for cryopreservation of cock semen. Züchtungskunde 80, 137–145 (2008).
    Google Scholar 
    21.Rohmer, C., David, J. R., Moreteau, B. & Joly, D. Heat induced male sterility in Drosophila melanogaster: Adaptive genetic variations among geographic populations and role of the Y chromosome. J. Exp. Biol. 207, 2735–2743 (2004).PubMed 
    Article 

    Google Scholar 
    22.Reinhardt, K. & Otti, O. Comparing sperm swimming speed. Evol. Ecol. Res. 14, 1–8 (2012).
    Google Scholar 
    23.Öst, A. et al. Paternal diet defines offspring chromatin state and intergenerational obesity. Cell 159, 1352–1364 (2014).PubMed 
    Article 
    CAS 

    Google Scholar 
    24.Wathes, D. C., Abayasekara, D. R. E. & Aitken, R. J. Polyunsaturated fatty acids in male and female reproduction. Biol. Reprod. 77, 190–201 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Diaz-Fontdevila, M. & Bustos-Obregon, E. Cholesterol and polyunsaturated acid enriched diet: Effect on kinetics of the acrosome reaction in rabbit spermatozoa. Mol. Reprod. Dev. 35, 176–180 (1993).CAS 
    PubMed 
    Article 

    Google Scholar 
    26.Keber, R., Rozman, D. & Horvat, S. Sterols in spermatogenesis and sperm maturation. J. Lipid Res. 54, 20–33 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Guo, R. & Reinhardt, K. Dietary polyunsaturated fatty acids affect volume and metabolism of Drosophila melanogaster sperm. J. Evol. Biol. https://doi.org/10.1111/jeb.13591 (2020).Article 
    PubMed 

    Google Scholar 
    28.Rato, L., Alves, M. G., Cavaco, J. E. & Oliveira, P. F. High-energy diets: a threat for male fertility?. Obes. Rev. 15, 996–1007 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    29.Ferramosca, A., Moscatelli, N., Di Giacomo, M. & Zara, V. Dietary fatty acids influence sperm quality and function. Andrology 5, 423–430 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    30.Paynter, E. et al. Insights into the molecular basis of long-term storage and survival of sperm in the honeybee (Apis mellifera). Sci. Rep. 7, 1–9 (2017).Article 
    CAS 

    Google Scholar 
    31.Chinoy, N. J., Mehta, D. & Jhala, D. Effects of fluoride ingestion with protein deficient or protein enriched diets on sperm function of mice. Fluoride 39, 11–16 (2006).CAS 

    Google Scholar 
    32.Watkins, A. J. et al. Paternal diet programs offspring health through sperm- and seminal plasma-specific pathways in mice. Proc. Natl. Acad. Sci. U. S. A. 115, 10064–10069 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Ferramosca, A. & Zara, V. Bioenergetics of mammalian sperm capacitation. Biomed Res. Int. 2014, 902953 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Vawda, A. I. & Mandlwana, J. G. The effects of dietary protein deficiency on rat testicular function. Andrologia 22, 575–583 (1990).CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Carvalho, M. et al. Effects of diet and development on the Drosophila lipidome. Mol. Syst. Biol. 8, 600 (2012).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    36.Macartney, E. L., Crean, A. J., Nakagawa, S. & Bonduriansky, R. Effects of nutrient limitation on sperm and seminal fluid: a systematic review and meta-analysis. Biol. Rev. 94, 1722–1739 (2019).PubMed 
    Article 

    Google Scholar 
    37.Avila, F. W., Sirot, L. K., LaFlamme, B. A., Rubinstein, C. D. & Wolfner, M. F. Insect seminal fluid proteins: Identification and function. Annu. Rev. Entomol. 56, 21–40 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Wainwright, M. S. et al. Drosophila Sex Peptide controls the assembly of lipid microcarriers in seminal fluid. Proc. Natl. Acad. Sci. USA 118, e2019622118 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Elofsson, H., Van Look, K., Borg, B. & Mayer, I. Influence of salinity and ovarian fluid on sperm motility in the fifteen-spined stickleback. J. Fish Biol. 63, 1429–1438 (2003).Article 

    Google Scholar 
    40.Otti, O., Johnston, P. R., Horsburgh, G. J., Galindo, J. & Reinhardt, K. Female transcriptomic response to male genetic and nongenetic ejaculate variation. Behav. Ecol. 26, 681–688 (2015).Article 

    Google Scholar 
    41.Balvín, O., Munclinger, P., Kratochvíl, L. & Vilímová, J. Mitochondrial DNA and morphology show independent evolutionary histories of bedbug Cimex lectularius (Heteroptera: Cimicidae) on bats and humans. Parasitol. Res. 111, 457–469 (2012).PubMed 
    Article 

    Google Scholar 
    42.Booth, W., Balvín, O., Vargo, E. L., Vilímová, J. & Schal, C. Host association drives genetic divergence in the bed bug. Cimex lectularius. Mol. Ecol. 24, 980–992 (2015).PubMed 
    Article 

    Google Scholar 
    43.Wawrocka, K. & Bartonička, T. Two different lineages of bedbug (Cimex lectularius) reflected in host specificity. Parasitol. Res. 112, 3897–3904 (2013).PubMed 
    Article 

    Google Scholar 
    44.Aak, A. & Rukke, B. A. Bed bugs, their blood sources and life history parameters: A comparison of artificial and natural feeding. Med. Vet. Entomol. 28, 50–59 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Reinhardt, K., Naylor, R. & Siva-Jothy, M. T. Reducing a cost of traumatic insemination: Female bedbugs evolve a unique organ. Proc. R. Soc. B Biol. Sci. 270, 2371–2375 (2003).Article 

    Google Scholar 
    46.Reinhardt, K., Naylor, R. A. & Siva-Jothy, M. T. Situation exploitation: Higher male mating success when female resistance is reduced by feeding. Evolution (N. Y.). 63, 29–39 (2009).
    Google Scholar 
    47.Siva-Jothy, M. T. & Stutt, A. D. A matter of taste: Direct detection of female mating status in the bedbug. Proc. R. Soc. B Biol. Sci. 270, 649–652 (2003).Article 

    Google Scholar 
    48.Davis, N. T. Studies of the reproductive physiology of Cimicidae (Hemiptera)-II. Artificial insemination and the function of the seminal fluid. J. Insect. Physiol. 11, 355–366 (1965).Article 

    Google Scholar 
    49.Kaldun, B. & Otti, O. Condition-dependent ejaculate production affects male mating behavior in the common bedbug Cimex lectularius. Ecol. Evol. 6, 2548–2558 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Reinhardt, K., Naylor, R. A. & Siva-Jothy, M. T. Ejaculate components delay reproductive senescence while elevating female reproductive rate in an insect. Proc. Natl. Acad. Sci. USA 106, 21743–21747 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    51.Reinhardt, K., Naylor, R. & Siva-Jothy, M. T. Male mating rate is constrained by seminal fluid availability in bedbugs, Cimex lectularius. . PLoS ONE 6, 282 (2011).Article 
    CAS 

    Google Scholar 
    52.Fountain, T., Duvaux, L., Horsburgh, G., Reinhardt, K. & Butlin, R. K. Human-facilitated metapopulation dynamics in an emerging pest species. Cimex lectularius. Mol. Ecol. 23, 1071–1084 (2014).PubMed 
    Article 

    Google Scholar 
    53.R Core Team. R: A language and environment for statistical computing. (2020).54.Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    55.Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).Article 

    Google Scholar 
    56.Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).Article 

    Google Scholar 
    57.Therneau, T. M. coxme: Mixed effects cox models. (2019).58.Harrison, X. A. A comparison of observation-level randomeffect and Beta-Binomial models for modelling overdispersion in Binomial data in ecology & evolution. PeerJ 2015, 114 (2015).
    Google Scholar 
    59.Clark, A. G., Aguadé, M., Prout, T. R., Harshman, L. G. & Langley, C. H. Variation in sperm displacement and its association with accessory gland protein loci in Drosophila melanogaster. Genetics 139, 189–201 (1995).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Friberg, U., Lew, T. A., Byrne, P. G. & Rice, W. R. Assessing the potential for an ongoing arms race within and between the sexes: selection and heritable variation. Evol. (N.Y.) 59, 1540 (2005).
    Google Scholar 
    61.Morimoto, J. & Wigby, S. Differential effects of male nutrient balance on pre-and post-copulatory traits, and consequences for female reproduction in Drosophila melanogaster. Sci. Rep. 6, 27673 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    62.Rahman, M. M., Gasparini, C., Turchini, G. M. & Evans, J. P. Experimental reduction in dietary omega-3 polyunsaturated fatty acids depresses sperm competitiveness. Biol. Lett. 10, 20140623 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    63.Hawkey, C. M. Comparative mammalian haematology : cellular components and blood coagulation of captive wild animals. (Butterworth-Heinemann, 2017).64.Wawrocka, K. & Bartonička, T. Erythrocyte size as one of potential causes of host preferences in cimicids (Heteroptera: Cimicidae: Cimex). Vespertilio 17, 215–220 (2014).
    Google Scholar 
    65.Bunning, H. et al. Protein and carbohydrate intake influence sperm number and fertility in male cockroaches, but not sperm viability. Proc. R. Soc. B Biol. Sci. 282, 1 (2015).CAS 

    Google Scholar 
    66.Perez-Staples, D., Harmer, A. M. T., Collins, S. R. & Taylor, P. W. Potential for pre-release diet supplements to increase the sexual performance and longevity of male Queensland fruit flies. Agric. For. Entomol. 10, 255–262 (2008).Article 

    Google Scholar 
    67.Dàvila, F. & Aron, S. Protein restriction affects sperm number but not sperm viability in male ants. J. Insect. Physiol. 100, 71–76 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    68.Olsen, J. & Ramlau-Hansen, C. H. Dietary fats may impact semen quantity and quality. Asian J. Androl. 14, 511–512 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Birkhead, T. R., Martínez, J. G., Burke, T. & Froman, D. P. Sperm mobility determines the outcome of sperm competition in the domestic fowl. Proc. R. Soc. B Biol. Sci. 266, 1759–1764 (1999).CAS 
    Article 

    Google Scholar 
    70.Colegrave, N., Birkhead, T. R. & Lessells, C. M. Sperm precedence in zebra finches does not require special mechanisms of sperm competition. Proc. R. Soc. B Biol. Sci. 259, 223–228 (1995).Article 
    ADS 

    Google Scholar 
    71.Simmons, L. W. Sperm competition and its evolutionary consequences in the insects. (Princeton University Press, 2001).72.Tsubaki, Y. & Yamagishi, M. ‘Longevity’ of sperm within the female of the melon fly, Dacus cucurbitae (Diptera: Tephritidae), and its relevance to sperm competition. J. Insect. Behav. 4, 243–250 (1991).Article 

    Google Scholar 
    73.Yamagishi, M., Itô, Y. & Tsubaki, Y. Sperm competition in the melon fly, Bactrocera cucurbitae (Diptera: Tephritidae): Effects of sperm ‘longevity’ on sperm precedence. J. Insect. Behav. 5, 599–608 (1992).Article 

    Google Scholar 
    74.Reinhardt, K. Evolutionary consequences of sperm cell aging. Q. Rev. Biol. 82, 375–393 (2007).PubMed 
    Article 

    Google Scholar 
    75.Frankham, R. & Ralls, K. Inbreeding leads to extinction. Nature 392, 441–442 (1998).CAS 
    Article 
    ADS 

    Google Scholar  More

  • in

    Large-scale protein level comparison of Deltaproteobacteria reveals cohesive metabolic groups

    1.Waite DW, Chuvochina M, Pelikan C, Parks DH, Yilmaz P, Wagner M, et al. Proposal to reclassify the proteobacterial classes Deltaproteobacteria and Oligoflexia, and the phylum Thermodesulfobacteria into four phyla reflecting major functional capabilities. Int J Syst Evol Microbiol. 2020;70:5972–6016.CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Mußmann M, Ishii K, Rabus R, Amann R. Diversity and vertical distribution of cultured and uncultured Deltaproteobacteria in an intertidal mud flat of the Wadden Sea. Environ Microbiol. 2005;7:405–18.PubMed 
    Article 

    Google Scholar 
    3.Minz D, Flax JL, Green SJ, Muyzer G, Cohen Y, Wagner M, et al. Diversity of sulfate-reducing bacteria in oxic and anoxic regions of a microbial mat characterized by comparative analysis of dissimilatory sulfite reductase genes. Appl Environ Microbiol. 1999;65:4666–71.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Sorokin DY, Yu, Sorokin D, Tourova TP, Henstra AM, Stams AJM, et al. Sulfidogenesis under extremely haloalkaline conditions by Desulfonatronospira thiodismutans gen. nov., sp. nov., and Desulfonatronospira delicata sp. nov. – a novel lineage of Deltaproteobacteria from hypersaline soda lakes. Microbiology 2008;154:1444–53.CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Si Y, Zou Y, Liu X, Si X, Mao J. Mercury methylation coupled to iron reduction by dissimilatory iron-reducing bacteria. Chemosphere 2015;122:206–12.CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Gilmour CC, Podar M, Bullock AL, Graham AM, Brown SD, Somenahally AC, et al. Mercury methylation by novel microorganisms from new environments. Environ Sci Technol. 2013;47:11810–20.CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Bergmann F, Selesi D, Weinmaier T, Tischler P, Rattei T, Meckenstock RU. Genomic insights into the metabolic potential of the polycyclic aromatic hydrocarbon degrading sulfate-reducing Deltaproteobacterium N47. Environ Microbiol. 2011;13:1125–37.CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Tan S, Liu J, Fang Y, Hedlund BP, Lian Z-H, Huang L-Y, et al. Insights into ecological role of a new deltaproteobacterial order Candidatus Acidulodesulfobacterales by metagenomics and metatranscriptomics. ISME J 2019;13:2044–57.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Masuda Y, Itoh H, Shiratori Y, Isobe K, Otsuka S, Senoo K. Predominant but previously-overlooked prokaryotic drivers of reductive nitrogen transformation in paddy soils, revealed by metatranscriptomics. Microbes Environ. 2017;32:180–3.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Liu J, Häggblom MM. Genome-guided identification of organohalide-respiring Deltaproteobacteria from the marine environment. MBio 2018;9:e02471–18.PubMed 
    PubMed Central 

    Google Scholar 
    11.Lovley DR, Phillips EJ. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol. 1988;54:1472–80.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Lonergan DJ, Jenter HL, Coates JD, Phillips EJ, Schmidt TM, Lovley DR. Phylogenetic analysis of dissimilatory Fe(III)-reducing bacteria. J Bacteriol. 1996;178:2402–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Dawid W. Biology and global distribution of myxobacteria in soils. FEMS Microbiol Rev. 2000;24:403–27.CAS 
    PubMed 
    Article 

    Google Scholar 
    14.Swan BK, Martinez-Garcia M, Preston CM, Sczyrba A, Woyke T, Lamy D, et al. Potential for chemolithoautotrophy among ubiquitous bacteria lineages in the dark ocean. Science. 2011;333:1296–1300.CAS 
    PubMed 
    Article 

    Google Scholar 
    15.Sheik CS, Jain S, Dick GJ. Metabolic flexibility of enigmatic SAR324 revealed through metagenomics and metatranscriptomics. Environ Microbiol. 2014;16:304–17.CAS 
    PubMed 
    Article 

    Google Scholar 
    16.Delgado-Baquerizo M, Oliverio AM, Brewer TE, Benavent-González A, Eldridge DJ, Bardgett RD, et al. A global atlas of the dominant bacteria found in soil. Science. 2018;359:320–5.CAS 
    PubMed 
    Article 

    Google Scholar 
    17.Hug LA, Thomas BC, Sharon I, Brown CT, Sharma R, Hettich RL, et al. Critical biogeochemical functions in the subsurface are associated with bacteria from new phyla and little studied lineages. Environ Microbiol. 2016;18:159–73.CAS 
    PubMed 
    Article 

    Google Scholar 
    18.Liu Y, Zhang J, Zhao L, Zhang X, Xie S. Spatial distribution of bacterial communities in high-altitude freshwater wetland sediment. Limnology. 2014;15:249–56.Article 

    Google Scholar 
    19.Wang Y, Sheng H-F, He Y, Wu J-Y, Jiang Y-X, Tam NF-Y, et al. Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of illumina tags. Appl Environ Microbiol. 2012;78:8264–71.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Yilmaz P, Yarza P, Rapp JZ, Glöckner FO. Expanding the world of marine bacterial and archaeal clades. Front Microbiol. 2016;6:1524.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Jochum LM, Schreiber L, Marshall IPG, Jørgensen BB, Schramm A, Kjeldsen KU. Single-cell genomics reveals a diverse metabolic potential of uncultivated Desulfatiglans-related Deltaproteobacteria widely distributed in marine sediment. Front Microbiol. 2018;9:2038.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Anantharaman K, Brown CT, Hug LA, Sharon I, Castelle CJ, Probst AJ, et al. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nat Commun. 2016;7:13219.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Parks DH, Rinke C, Chuvochina M, Chaumeil P-A, Woodcroft BJ, Evans PN, et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat Microbiol. 2017;2:1533–42.CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Dombrowski N, Teske AP, Baker BJ. Expansive microbial metabolic versatility and biodiversity in dynamic Guaymas Basin hydrothermal sediments. Nat Commun. 2018;9:4999.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    25.Joshi N, Sickle FJ. A sliding-window, adaptive, quality-based trimming tool for FastQ files (Version 1.33). 2011. https://github.com/najoshi/sickle.26.Peng Y, Leung HCM, Yiu SM, Chin FYL. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 2012;28:1420–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 2011;17:10–12.Article 

    Google Scholar 
    28.Li D, Luo R, Liu C-M, Leung C-M, Ting H-F, Sadakane K, et al. MEGAHIT v1.0: A fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods 2016;102:3–11.CAS 
    PubMed 
    Article 

    Google Scholar 
    29.Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009;25:1754–60.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence alignment/map format and SAMtools. Bioinformatics 2009;25:2078–9.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    31.Alneberg J, Bjarnason BS, de Bruijn I, Schirmer M, Quick J, Ijaz UZ, et al. Binning metagenomic contigs by coverage and composition. Nat Methods. 2014;11:1144–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 2019;7:e7359.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Sieber CMK, Probst AJ, Sharrar A, Thomas BC, Hess M, Tringe SG, et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat Microbiol. 2018;3:836–43.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Wu Y-W, Simmons BA, Singer SW. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 2016;32:605–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    36.Eren AM, Esen ÖC, Quince C, Vineis JH, Sogin ML, Delmont TO. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ 2015;3:e1319.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Darling AE, Jospin G, Lowe E, Matsen FA, Bik HM, Eisen JA. PhyloSift: phylogenetic analysis of genomes and metagenomes. PeerJ 2014;2:e243.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, et al. GenBank. Nucleic Acids Res. 2013;41:D36–42.CAS 
    Article 

    Google Scholar 
    39.Pruitt KD, Tatusova T, Brown GR, Maglott DR. NCBI reference sequences (RefSeq): current status, new features and genome annotation policy. Nucleic Acids Res. 2012;40:D130–5.CAS 
    PubMed 
    Article 

    Google Scholar 
    40.Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009;25:1972–3.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    41.Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014;30:1312–3.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, et al. ARB: a software environment for sequence data. Nucleic Acids Res. 2004;32:1363–71.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Criscuolo A, Gribaldo S. BMGE (block mapping and gathering with entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol Biol. 2010;10:210.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    44.Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 2016;44:W242–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the genome taxonomy database. Bioinformatics 2019;36:1925–7.PubMed Central 
    PubMed 

    Google Scholar 
    46.Bowers RM. The Genome Standards Consortium, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat Biotechnol. 2017;35:725–31.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Contreras-Moreira B, Vinuesa P. GET_HOMOLOGUES, a versatile software package for scalable and robust microbial pangenome analysis. Appl Environ Microbiol. 2013;79:7696–701.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 2007;35:W182–5.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Finn RD, Clements J, Eddy SR. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 2011;39:W29–37.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–402.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform. 2019;20:1160–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020;37:1530–4.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Greening C, Biswas A, Carere CR, Jackson CJ, Taylor MC, Stott MB, et al. Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival. ISME J. 2016;10:761–77.CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Søndergaard D, Pedersen CNS, Greening C. HydDB: A web tool for hydrogenase classification and analysis. Sci Rep. 2016;6:34212.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    55.Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60.CAS 
    Article 

    Google Scholar 
    56.Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinforma. 2010;11:119.Article 
    CAS 

    Google Scholar 
    57.Yin Y, Mao X, Yang J, Chen X, Mao F, Xu Y. dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2012;40:W445–51.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Greening C. Greening lab metabolic marker gene databases. https://doi.org/10.26180/c.5230745.59.Zhou Z, Tran P, Liu Y, Kieft K, Anantharaman K. METABOLIC: a scalable high-throughput metabolic and biogeochemical functional trait profiler based on microbial genomes. bioRxiv. 2019. Preprint at https://doi.org/10.1101/761643.60.Terrapon N, Lombard V, Drula E, Coutinho PM, Henrissat B. The CAZy database/the carbohydrate-active enzyme (CAZy) database: principles and usage guidelines. In: Aoki-Kinoshita KF (ed). A Practical Guide to Using Glycomics Databases. (Springer Japan, Tokyo, 2017) pp 117–31.61.Peabody MA, Laird MR, Vlasschaert C, Lo R, Brinkman FSL. PSORTdb: expanding the bacteria and archaea protein subcellular localization database to better reflect diversity in cell envelope structures. Nucleic Acids Res. 2016;44:D663–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    62.Callaghan AV, Wawrik B. AnHyDeg: a curated database of anaerobic hydrocarbon degradation genes. GitHub. 2016. https://github.com/AnaerobesRock/AnHyDeg.63.McDaniel EA, Peterson BD, Stevens SLR, Tran PQ, Anantharaman K, McMahon KD. Expanded phylogenetic diversity and metabolic flexibility of mercury-methylating microorganisms. mSystems 2020;5:e00299–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.McDaniel EA, Anantharaman K, McMahon KD. metabolisHMM: Phylogenomic analysis for exploration of microbial phylogenies and metabolic pathways. bioRxiv. 2019. Preprint at https://doi.org/10.1101/2019.12.20.884627.65.De Anda V, Zapata-Peñasco I, Poot-Hernandez AC, Eguiarte LE, Contreras-Moreira B, Souza V. MEBS, a software platform to evaluate large (meta)genomic collections according to their metabolic machinery: unraveling the sulfur cycle. Gigascience 2017;6:1–17.PubMed 
    PubMed Central 

    Google Scholar 
    66.Ticak T, Kountz DJ, Girosky KE, Krzycki JA, Ferguson DJ Jr. A nonpyrrolysine member of the widely distributed trimethylamine methyltransferase family is a glycine betaine methyltransferase. Proc Natl Acad Sci. 2014;111:E4668–76.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Diamond S, Andeer PF, Li Z, Crits-Christoph A, Burstein D, Anantharaman K, et al. Mediterranean grassland soil C-N compound turnover is dependent on rainfall and depth and is mediated by genomically divergent microorganisms. Nat Microbiol. 2019;4:1356–67.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Woodcroft BJ, Singleton CM, Boyd JA, Evans PN, Emerson JB, Zayed AAF, et al. Genome-centric view of carbon processing in thawing permafrost. Nature 2018;560:49–54.CAS 
    PubMed 
    Article 

    Google Scholar 
    69.Slobodkina GB, Reysenbach A-L, Panteleeva AN, Kostrikina NA, Wagner ID, Bonch-Osmolovskaya EA, et al. Deferrisoma camini gen. nov., sp. nov., a moderately thermophilic, dissimilatory iron(III)-reducing bacterium from a deep-sea hydrothermal vent that forms a distinct phylogenetic branch in the Deltaproteobacteria. Int J Syst Evol Microbiol. 2012;62:2463–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    70.Han K, Li Z-F, Peng R, Zhu L-P, Zhou T, Wang L-G, et al. Extraordinary expansion of a Sorangium cellulosum genome from an alkaline milieu. Sci Rep. 2013;3:1–7.
    Google Scholar 
    71.Sanford RA, Cole JR, Tiedje JM. Characterization and description of Anaeromyxobacter dehalogenans gen. nov., sp. nov., an aryl-halorespiring facultative anaerobic myxobacterium. Appl Environ Microbiol. 2002;68:893–900.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    72.Castaño-Cerezo S, Pastor JM, Renilla S, Bernal V, Iborra JL, Cánovas M. An insight into the role of phosphotransacetylase (pta) and the acetate/acetyl-CoA node in Escherichia coli. Micro Cell Fact. 2009;8:54.Article 
    CAS 

    Google Scholar 
    73.Meinke A, Gilkes NR, Kwan E, Kilburn DG, Warren RA, Miller RC,Jr. et al. CbhA) from the cellulolytic bacterium Cellulomonas fimi is a beta-1,4-exocellobiohydrolase analogous to Trichoderma reesei CBH II. Mol Microbiol. 1994;12:413–22.CAS 
    PubMed 
    Article 

    Google Scholar 
    74.Zverlov VV, Hertel C, Bronnenmeier K, Hroch A, Kellermann J, Schwarz WH. The thermostable alpha-L-rhamnosidase RamA of Clostridium stercorarium: biochemical characterization and primary structure of a bacterial alpha-L-rhamnoside hydrolase, a new type of inverting glycoside hydrolase. Mol Microbiol. 2000;35:173–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    75.Galinier A, Josef Deutscher, Martin-Verstraete I. Phosphorylation of either Crh or HPr mediates binding of CcpA to the Bacillus subtilis xyn cre and catabolite repression of the xyn operon. Edited by IB Holland. J Mol Biol. 1999; 286: 307–14.76.Schmetterer G, Valladares A, Pils D, Steinbach S, Pacher M, Muro-Pastor AM, et al. The coxBAC operon encodes a cytochrome c oxidase required for heterotrophic growth in the cyanobacterium Anabaena variabilis strain ATCC 29413. J Bacteriol. 2001;183:6429–34.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    77.Ducluzeau A-L, Ouchane S, Nitschke W. The cbb3 oxidases are an ancient innovation of the domain bacteria. Mol Biol Evol. 2008;25:1158–66.CAS 
    PubMed 
    Article 

    Google Scholar 
    78.Green GN, Fang H, Lin RJ, Newton G, Mather M, Georgiou CD, et al. The nucleotide sequence of the cyd locus encoding the two subunits of the cytochrome d terminal oxidase complex of Escherichia coli. J Biol Chem. 1988;263:13138–43.CAS 
    PubMed 
    Article 

    Google Scholar 
    79.Upadhyay AK, Hooper AB, Hendrich MP. NO reductase activity of the tetraheme cytochrome C554 of Nitrosomonas europaea. J Am Chem Soc. 2006;128:4330–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.Kuypers MMM, Marchant HK, Kartal B. The microbial nitrogen-cycling network. Nat Rev Microbiol. 2018;16:263–76.CAS 
    PubMed 
    Article 

    Google Scholar 
    81.Davidova IA, Marks CR, Suflita JM. Anaerobic hydrocarbon-degrading Deltaproteobacteria. In: McGenity TJ (ed). Taxonomy, Genomics and Ecophysiology of Hydrocarbon-Degrading Microbes. (Springer International Publishing, Cham, 2019) pp 207–43.82.Strijkstra A, Trautwein K, Jarling R, Wöhlbrand L, Dörries M, Reinhardt R, et al. Anaerobic activation of p-cymene in denitrifying betaproteobacteria: methyl group hydroxylation versus addition to fumarate. Appl Environ Microbiol. 2014;80:7592–603.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    83.Temme HR, Carlson A, Novak PJ. Presence, diversity, and enrichment of respiratory reductive dehalogenase and non-respiratory hydrolytic and oxidative dehalogenase genes in terrestrial environments. Front Microbiol. 2019;10:1–14.Article 

    Google Scholar 
    84.Borisov VB, Gennis RB, Hemp J, Verkhovsky MI. The cytochrome bd respiratory oxygen reductases. Biochim Biophys Acta. 2011;1807:1398–413.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    85.Lemos RS, Gomes CM, Santana M, LeGall J, Xavier AV, Teixeira M. The ‘strict’ anaerobe Desulfovibrio gigas contains a membrane-bound oxygen-reducing respiratory chain. FEBS Lett. 2001;496:40–43.CAS 
    PubMed 
    Article 

    Google Scholar 
    86.Aeckersberg F, Rainey FA, Widdel F. Growth, natural relationships, cellular fatty acids and metabolic adaptation of sulfate-reducing bacteria that utilize long-chain alkanes under anoxic conditions. Arch Microbiol. 1998;170:361–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    87.Kniemeyer O, Musat F, Sievert SM, Knittel K, Wilkes H, Blumenberg M, et al. Anaerobic oxidation of short-chain hydrocarbons by marine sulphate-reducing bacteria. Nature 2007;449:898–901.CAS 
    PubMed 
    Article 

    Google Scholar 
    88.Parks JM, Johs A, Podar M, Bridou R, Hurt RA Jr, Smith SD, et al. The genetic basis for bacterial mercury methylation. Science 2013;339:1332–5.CAS 
    PubMed 
    Article 

    Google Scholar 
    89.Krzycki JA. Function of genetically encoded pyrrolysine in corrinoid-dependent methylamine methyltransferases. Curr Opin Chem Biol. 2004;8:484–91.CAS 
    PubMed 
    Article 

    Google Scholar 
    90.Cole JR, Fathepure BZ, Tiedje JM. Tetrachloroethene and 3-chlorobenzoate dechlorination activities are co-induced in Desulfomonile tiedjei DCB-1. Biodegradation 1995;6:167–72.CAS 
    PubMed 
    Article 

    Google Scholar 
    91.Caccavo F Jr, Lonergan DJ, Lovley DR, Davis M, Stolz JF, McInerney MJ. Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism. Appl Environ Microbiol. 1994;60:3752–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    92.Roden EE, Lovley DR. Dissimilatory Fe(III) reduction by the marine microorganism Desulfuromonas acetoxidans. Appl Environ Microbiol. 1993;59:734–42.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    93.Lovley DR, Ueki T, Zhang T, Malvankar NS, Shrestha PM, Flanagan KA, et al. Geobacter: the microbe electric’s physiology, ecology, and practical applications. Adv Micro Physiol. 2011;59:1–100.CAS 
    Article 

    Google Scholar 
    94.Liesack W, Finster K. Phylogenetic analysis of five strains of gram-negative, obligately anaerobic, sulfur-reducing bacteria and description of Desulfuromusa gen. nov., including Desulfuromusa kysingii sp. nov., Desulfuromusa bakii sp. nov., and Desulfuromusa succinoxidans sp. nov. Int J Syst Bacteriol. 1994;44:753–8.Article 

    Google Scholar 
    95.Pfennig N, Biebl H. Desulfuromonas acetoxidans gen. nov. and sp. nov., a new anaerobic, sulfur-reducing, acetate-oxidizing bacterium. Arch Microbiol. 1976;110:3–12.CAS 
    PubMed 
    Article 

    Google Scholar 
    96.Tremblay P-L, Lovley DR. Role of the NiFe hydrogenase Hya in oxidative stress defense in Geobacter sulfurreducens. J Bacteriol. 2012;194:2248–53.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    97.McInerney MJ, Rohlin L, Mouttaki H, Kim U, Krupp RS, Rios-Hernandez L, et al. The genome of Syntrophus aciditrophicus: life at the thermodynamic limit of microbial growth. Proc Natl Acad Sci USA. 2007;104:7600–5.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    98.Imachi H, Sekiguchi Y, Kamagata Y, Loy A, Qiu Y-L, Hugenholtz P, et al. Non-sulfate-reducing, syntrophic bacteria affiliated with Desulfotomaculum cluster I are widely distributed in methanogenic environments. Appl Environ Microbiol. 2006;72:2080–91.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    99.Bertagnolli AD, Konstantinidis KT, Stewart FJ. Non-denitrifier nitrous oxide reductases dominate marine biomes. Environ Microbiol Rep. 2020;12:681–92.CAS 
    PubMed 
    Article 

    Google Scholar 
    100.Wasmund K, Mußmann M, Loy A. The life sulfuric: microbial ecology of sulfur cycling in marine sediments. Environ Microbiol Rep. 2017;9:323–44.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    101.Thorup C, Schramm A, Findlay AJ, Finster KW, Schreiber L. Disguised as a sulfate reducer: growth of the Deltaproteobacterium Desulfurivibrio alkaliphilus by sulfide oxidation with nitrate. MBio 2017;8:e00671–17.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    102.Marcia M, Ermler U, Peng G, Michel H. A new structure-based classification of sulfide:quinone oxidoreductases. Proteins 2010;78:1073–83.CAS 
    PubMed 
    Article 

    Google Scholar 
    103.Lencina AM, Ding Z, Schurig-Briccio LA, Gennis RB. Characterization of the type III sulfide:quinone oxidoreductase from Caldivirga maquilingensis and its membrane binding. BBA-Bioenerg. 2013;1827:266–75.CAS 
    Article 

    Google Scholar 
    104.Onley JR, Ahsan S, Sanford RA, Löffler FE. Denitrification by Anaeromyxobacter dehalogenans, a common soil bacterium lacking the nitrite reductase genes nirS and nirK. Appl Environ Microbiol. 2018;84:e01985–17.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    105.Masuda Y, Yamanaka H, Xu Z-X, Shiratori Y, Aono T, Amachi S, et al. Diazotrophic Anaeromyxobacter isolates from soils. Appl Environ Microbiol. 2020;86:e01985–17.
    Google Scholar 
    106.Chistoserdova L. Modularity of methylotrophy, revisited. Environ Microbiol. 2011;13:2603–22.CAS 
    PubMed 
    Article 

    Google Scholar 
    107.Taubert M, Grob C, Howat AM, Burns OJ, Pratscher J, Jehmlich N, et al. Methylamine as a nitrogen source for microorganisms from a coastal marine environment. Environ Microbiol. 2017;19:2246–57.CAS 
    PubMed 
    Article 

    Google Scholar 
    108.Kaneko R, Hayashi T, Tanahashi M, Naganuma T. Phylogenetic diversity and distribution of dissimilatory sulfite reductase genes from deep-sea sediment cores. Mar Biotechnol. 2007;9:429–36.CAS 
    Article 

    Google Scholar 
    109.Capo E, Bravo AG, Soerensen AL, Bertilsson S, Pinhassi J, Feng C, et al. Deltaproteobacteria and spirochaetes-like bacteria are abundant putative mercury methylators in oxygen-deficient water and marine particles in the Baltic Sea. Front Microbiol. 2020;11:574080.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    110.Villar E, Cabrol L, Heimbürger-Boavida L-E. Widespread microbial mercury methylation genes in the global ocean. Env Microbiol Rep. 2020;12:277–87.CAS 
    Article 

    Google Scholar 
    111.Xia Y, Lü C, Hou N, Xin Y, Liu J, Liu H, et al. Sulfide production and oxidation by heterotrophic bacteria under aerobic conditions. ISME J. 2017;11:2754–66.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    112.Landgraf P, Antileo ER, Schuman EM, Dieterich DC. BONCAT: metabolic labeling, click chemistry, and affinity purification of newly synthesized proteomes. Methods Mol Biol. 2015;1266:199–215.CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Larval cryopreservation as new management tool for threatened clam fisheries

    1.Food and Agriculture Organization of the United Nations (FAO) (Fisheries and Aquaculture Department). Ruditapes decussatus (2021). http://www.fao.org/fishery/culturedspecies/Ruditapes_decussatus/es. Accessed 10 Feb 2020.2.Food and Agriculture Organization of the United Nations (FAO) (Fisheries and Aquaculture Department). Ruditapes philippinarum (2021). http://www.fao.org/fishery/species/3543/en. Accessed 10 Feb 2021.3.Food and Agriculture Organization of the United Nations (FAO) (Fisheries and Aquaculture Department). Venerupis corrugata (2021). http://www.fao.org/fishery/culturedspecies/Venerupis_pullastra/es. Accessed 10 Feb 2021.4.Trigo, J.E., Díaz, G.J., García, O.L., Guerra, Á. Moreira, Pérez, J.J., Roldán, E., Troncoso, J., & Urgorri, V. Guide to the Marine Mollusks of Galicia (Servizo de Publicacións da Universidade de Vigo, 2018).5.Pérez-García, C., Hurtado, N. S., Morán, P. & Pasantes, J. J. Evolutionary dynamics of rDNA clusters in chromosomes of five clam species belonging to the family Veneridae (Mollusca, Bivalvia). Biomed. Res. Int. https://doi.org/10.1155/2014/754012 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Bidegain, G. Ecological Dynamics of a Native and a Nonindigenous Clam Species: Implications for Conservation and Shellfishery Management (University of Cantabria, 2013).
    Google Scholar 
    7.Chung, E.-Y., Hur, S. B., Hur, Y.-B. & Lee, J. S. Gonadal maturation and artificial spawning of the Manila clam Ruditapes philippinarum (Bivalvia: Veneridae), in Komso Bay. Korea. J. Fish. Sci. Tech. 4, 208–218 (2001).
    Google Scholar 
    8.Global Biodiversity Information Facility (GBIF). Ruditapes decussatus (2021). https://www.gbif.org/species/4372687. Accessed 10 Feb 2021.9.Global Biodiversity Information Facility (GBIF). Ruditapes philippinarum (2021). https://www.gbif.org/species/4372686. Accessed 10 Feb 2021.10.Global Biodiversity Information Facility (GBIF). Venerupis corrugata (2021). https://www.gbif.org/species/4372735. Accessed 10 Feb 2021.11.Matías, D., Joaquim, S., Leitão, A. & Massapina, C. Effect of geographic origin, temperature and timing of broodstock collection on conditioning, spawning success and larval viability of Ruditapes decussatus (Linné, 1758). Aquacult. Int. 17(3), 257–271 (2009).Article 

    Google Scholar 
    12.Park, K. L. & Choi, K. S. Application of enzyme-linked immunosorbent assay for studying of reproduction in the Manila clam Ruditapes philippinarum (Mollusca: Bivalvia): I. Quantifying eggs. Aquaculture 241(1–4), 667–687 (2004).
    Google Scholar 
    13.Ruiz, M., Tarifeño, E., Llanos-Rivera, A., Padget, C. & Campos, B. Efecto de la temperatura en el desarrollo embrionario y larval del mejillón, Mytilus galloprovincialis (Lamarck, 1819). Rev. Biol. Mar. Oceanogr. 43(1), 51–61 (2008).Article 

    Google Scholar 
    14.Yap, W. G. Population biology of the Japanese little-neck clam, Tapes philippinarum, in Kaneohe Bay, Oahu, Hawaiian Islands. Pac. Sci. 31(3), 223–244 (1977).
    Google Scholar 
    15.Ojea, J. et al. Seasonal variation in weight and biochemical composition of the tissues of Ruditapes decussatus in relation to the gametogenic cycle. Aquaculture 238, 451–468 (2004).CAS 
    Article 

    Google Scholar 
    16.Asociación Empresarial de Acuicultura de España (APROMAR). La Acuicultura en España 2020. (Ministerio de Agricultura y Pesca, Alimentación y Medioambiente, 2020).17.Guerra, A. Clam production and cultivation in Galicia (NW Spain): The role of hatcheries. in Clam Fisheries and Aquaculture (eds. da Costa, F.) 255–289 (Nova Science Publishers, Inc., 2012).18.Borrel, Y. J. et al. Microsatellites and multiplex PCRs for assessing aquaculture practices of the grooved carpet shell Ruditapes decussatus in Spain. Aquaculture 426–427, 49–59. https://doi.org/10.1016/j.aquaculture.2014.01.010 (2014).CAS 
    Article 

    Google Scholar 
    19.da Costa, F., Aranda-Burgos, J.A., Cerviño-Otero, A., Fernández-Pardo, A., Louzán, A., Novoa, S., Ojea, J., & Martínez-Patiño, D. Clam hatchery and nursery culture. in Clam Fisheries and Aquaculture (eds. da Costa, F.) 217–253 (Nova Science Publishers, Inc., 2012).20.Frangoudes K., Marugán-Pintos B., & Pascual-Fernandez J.J. Gender in galician shell-fisheries: Transforming for governability. in Governability of Fisheries and Aquaculture (eds. Bavinck, M., Chuenpagdee, R., Jentoft, S., Kooiman, J.) Vol. 7. https://doi.org/10.1007/978-94-007-6107-0_13 (MARE Publication Series, Springer, 2013).21.Robert, R. et al. A glimpse on the mollusc industry in Europe. Aquacult. Eur. 38(1), 5–11 (2013).
    Google Scholar 
    22.da Costa, F., Cerviño-Otero, A., Iglesias, Ó., Cruz, A. & Guévélou, E. Hatchery culture of European clam species (family Veneridae). Aquacult. Int. 28, 1675–1708. https://doi.org/10.1007/s10499-020-00552-x (2020).Article 

    Google Scholar 
    23.Adams, S. L. et al. Towards cryopreservation of Greenshell mussel (Perna canaliculus) oocytes. Cryobiology 58, 69–74 (2009).CAS 
    Article 

    Google Scholar 
    24.Comizzoli, P. Biobanking and fertility preservation for rare and endangered species. Anim. Reprod. 14(1), 30–33. https://doi.org/10.21451/1984-3143-AR889 (2017).25.Liu, Y., Li, X., Robinson, N. & Qin, J. Sperm cryopreservation in marine mollusk: A review. Aquacult. Int. 23, 1505–1524. https://doi.org/10.1007/s10499-015-9900-0 (2015).CAS 
    Article 

    Google Scholar 
    26.Paredes, E. Exploring the evolution of marine invertebrate cryopreservation—Landmarks, state of the art and future lines of research. Cryobiology 71(2), 198–209. https://doi.org/10.1016/j.cryobiol.2015.08.011 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    27.Paredes, E., Heres, P., Anjos, C., & Cabrita, E. Cryopreservation of marine invertebrates: From sperm to complex larval stages. in Cryopreservation and Freeze-Drying Protocol, Methods in Molecular Biology (eds Wolkers, W., Oldenhof, H.) 2180. https://doi.org/10.1007/978-1-0716-0783-1_18 (Humana, 2021).28.Adams, S.L., Smith, J.F., Tervit, H.R., McGowan, L.T., Roberts, R.D., Achim, R.J., King, N.G., Gale, S.L., & Webb S.C. Cryopreservation of molluscan sperm: oyster (Crassostrea gigas, Thunberg), mussel (Perna canaliculus) and abalone (Haliotis iris). in Cryopreservation in Aquatic Species (eds Tiersch, T.R., Green C.C.), 2nd edn 562–573 (Louisiana World Aquaculture Society, 2011).29.Adams, S.L., Tervit, H.R., Salinas-Flores, L., Smith, J.F., McGowan, L.T., Roberts, R.D., Janke, A., King, N., Webb, S.C., & Gale, S.L. Cryopreservation of Pacific oyster oocytes. in Cryopreservation in Aquatic Species (eds. Tiersch, T.R., Green C.C.), 2nd edn. 616–623 (World Aquaculture Society, 2011).30.Liu, Y., Li, X., Xu, T., Robinson, N. & Qin, J. Greenlip abalone (Haliotis laevigata Donovan, 1808) sperm cryopreservation using a programmable freezing technique and testing the addition of amino acid and vitamin. Aquac. Res. 47, 1499–1510. https://doi.org/10.1111/are.12609 (2016).CAS 
    Article 

    Google Scholar 
    31.Paredes, E. et al. Cryopreservation of GreenshellTM mussel (Perna canaliculus) trochophore larvae. Cryobiology 65(3), 256–262 (2012).CAS 
    Article 

    Google Scholar 
    32.Paredes, E., Bellas, J. & Adams, S. L. Comparative cryopreservation study of trochophore larvae from two species of bivalves: Pacific oyster (Crassostrea gigas) and Blue mussel (Mytilus galloprovincialis). Cryobiology 67(3), 274–279 (2013).CAS 
    Article 

    Google Scholar 
    33.Renard, P. Cooling and freezing tolerances in embryos of the Pacific oyster, Crassostrea gigas: Methanol and sucrose effects. Aquaculture 92, 43–57 (1991).Article 

    Google Scholar 
    34.Campos, S., Troncoso, J. & Paredes, E. Major challenges in cryopreservation of sea urchin eggs. Cryobiology 98, 1–4. https://doi.org/10.1016/j.cryobiol.2020.11.008 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    35.Labbé, C. et al. Cryopreservation of Pacific oyster (Crassostrea gigas) larvae: Revisiting the practical limitations and scaling up the procedure for application to hatchery. Aquaculture 488, 227–234 (2018).Article 

    Google Scholar 
    36.Zhang, T. T. Cryopreservation of gametes and embryos of aquatic species. In Life in the Frozen State (eds Fuller, B. J. et al.) 415–435 (CRC Press, 2004).Chapter 

    Google Scholar 
    37.Heres, P., Rodríguez-Riveiro, R., Troncoso, J. & Paredes, E. Toxicity tests of cryoprotecting agents for Mytilus galloprovincialis (Lamark, 1819) early developmental stages. Criobiology. 86, 40–46. https://doi.org/10.1016/j.cryobiol.2019.01.001 (2019).CAS 
    Article 

    Google Scholar 
    38.Rodríguez-Riveiro, R., Heres, P., Troncoso, J. & Paredes, E. Long term survival of cryopreserved mussel larvae (Mytilus galloprovinciallis). Aquaculture 512, 734326. https://doi.org/10.1016/j.aquaculture.2019.734326 (2019).CAS 
    Article 

    Google Scholar 
    39.Adams, S. L. et al. Application of sperm cryopreservation in selective breeding of the Pacific oyster, Crassostrea gigas (Thunberg). Aquac. Res. 39(13), 1434–1442 (2008).Article 

    Google Scholar 
    40.Liu, Y. et al. Development of a programmable freezing technique on larval cryopreservation in Mytilus galloprovincialis. Aquaculture 516, 734554. https://doi.org/10.1016/j.aquaculture.2019.734554 (2020).CAS 
    Article 

    Google Scholar 
    41.Liu, Y. & Li, X. Successful oocyte cryopreservation in the blue mussel Mytilus galloprovincialis. Aquaculture 438, 55–58. https://doi.org/10.1016/j.aquaculture.2015.01.002 (2015).CAS 
    Article 

    Google Scholar 
    42.Toledo, J.D., Kurokura, H., & Kasahara, S. Preliminary studies on the cryopreservation of the blue mussel embryos. Nippon Suisan Gakkaishi 1661 (1989).43.Wang, H., Li, X., Wang, M., Clarke, S. & Gluis, M. The development of oocyte cryopreservation techniques in blue mussels Mytilus galloprovincialis. Fish Sci. 80, 1257–1267. https://doi.org/10.1007/s12562-014-0796-9 (2014).CAS 
    Article 

    Google Scholar 
    44.Heres, P. et al. Development of a method to cryopreserve Greenshell musselTM (Perna canaliculus) veliger larvae. Cryobiology 96, 37–44 (2020).CAS 
    Article 

    Google Scholar 
    45.Leibo, S. P. & Songsasen, N. Cryopreservation of gametes and embryos of non-domestic species. Theriogenology 57(1), 303–326. https://doi.org/10.1016/S0093-691X(01)00673-2 (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    46.Godoy, L. et al. Combining biotechnology and environmental education for coral reef conservation—The Reefbank project. Cryobiology 91, 170. https://doi.org/10.1016/j.cryobiol.2019.10.099 (2019).Article 

    Google Scholar 
    47.Hagerdorn, M., Varga, Z, Walter, R.B., & Tiersch, T.R. Workshop report: Cryopreservation of aquatic biomedical models 86, 120–129. https://doi.org/10.1016/j.cryobiol.2018.10.264 (2019).48.Tiersch, T. R., Figiel, C. R. Jr. & Wayman, W. R. Cryopreservation of sperm of the endangered Razorback Sucker. Trans. Am. Fish. Soc. 127, 95–104 (1998).Article 

    Google Scholar 
    49.Tiersch, T. R. & Green, C. C. Cryopreservation in Aquatic Species, 2nd Edn (World Aquaculture Society, 2011).
    Google Scholar 
    50.Suneja, S. et al. Multi-technique approach to characterise the effects of cryopreservation on larval development of the Pacific oyster (Crassostrea gigas). NZJ. Mar. Freshwat. Res. 48(3), 335–349 (2014).CAS 
    Article 

    Google Scholar 
    51.Suquet, M. et al. Survival, growth and reproduction of cryopreserved larvae from a marine invertebrate, the pacific oyster (Crassostrea gigas). PLoS ONE 9(4), e93486. https://doi.org/10.1371/journal.pone.0093486 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Suquet, M. et al. Setting tools for the early assessment of the quality of thawed Pacific oyster (Crassostrea gigas) D-larvae. Theriogenology 78, 462–467 (2012).CAS 
    Article 

    Google Scholar 
    53.Redfearn, P., Chanley, P. & Chanley, M. Larval shell development of four species of New Zealand mussels: (Bivalvia, Mytilacea). N. Z. J. Mar. Freshw. Res. 20(2), 157–172. https://doi.org/10.1080/00288330.1986.9516140 (1986).Article 

    Google Scholar 
    54.Rusk, A. B. Larval Development, Larval Development of the New Zealand Mussel Perna canaliculus and Effects of Cryopreservation 16–90 (Auckland University of Technology, 2012).
    Google Scholar 
    55.Kostetsky, E. Y., Boroda, A. V. & Odintsova, N. A. Changes in the lipid composition of mussel (Mytilus trossulus) embryo cells during cryopreservation. Biophysics 53(4), 299–303 (2008).Article 

    Google Scholar 
    56.Renard, P., & Cochard J.C. Effect of various cryoprotectants on Pacific oyster Crassostrea gigas Thunberg, Manila clam Ruditapes philippinarum Reeve and king scallop Pecten maximus (L.) embryos: Influence of the biochemical and osmotic effects. Cryo-Letters 10, 169–180 (1989).57.Leung, L. K. P. Principles of biological cryopreservation. In Fish Evolution and Systematics: Evidence from Spermatozoa (ed. Jamieson, B. G. M.) 231–244 (Cambridge University Press, 1991).
    Google Scholar 
    58.Pagán, O. R., Rowlands, A. L. & Urban, K. R. Toxicity and behavioural effects of dimethylsulfoxide in planaria. Neurosci. Lett. 407, 274–278 (2006).Article 

    Google Scholar 
    59.Santos, N. C., Figueira-Coelho, J., Saldanha, C. & Martins-Silva, J. Biochemical, biophysical and haemorheological effects of dimethylsulphoxide on human erythrocyte calcium loading. Cell Calcium 31, 183–188 (2002).CAS 
    Article 

    Google Scholar 
    60.Anchordoguy, T. J., Rudolph, A. S., Carpenter, J. F. & Crowe, J. H. Modes of interaction of cryoprotectants with membrane phospholipids during freezing. Cryobiology 24, 324–331 (1987).CAS 
    Article 

    Google Scholar 
    61.Hassan, Md., Qin, J. G. & Li, X. Sperm cryopreservation in oysters: A review of its current status and potential for future in aquaculture. Aquaculture 438, 24–32 (2015).CAS 
    Article 

    Google Scholar 
    62.Paredes, E. & Bellas, J. Cryopreservation of sea urchin embryos (Paracentrotus lividus) applied to marine ecotoxicological studies. Cryobiology 59, 344–350 (2009).CAS 
    Article 

    Google Scholar 
    63.Rudolph, A. S. & Crowe, J. H. Membrane stabilization during freezing: The role of two natural cryoprotectants, trehalose and proline. Cryobiology 22(4), 367–377 (1985).CAS 
    Article 

    Google Scholar 
    64.Solidoro, C., Pastres, R., Melaku-Canu, D., Pellizzato, M. & Rossi, R. Modelling the growth of Tapes philippinarum in Northern adriatic lagoons. Mar. Ecol. Prog. Ser. 199, 137–148 (2000).ADS 
    Article 

    Google Scholar 
    65.Spencer, B.E., Edwards, D.B., & Millican, P.F. Cultivation of Manila Clam. 1–29 (Lab. Leafl., MAFF Direct. Fish. Res., 1991).66.Usero, J., Gonzales-Regalado, E. & Gracia, I. Trace metals in bivalve molluscs Ruditapes decussatus and Ruditapes philippinarum from the Atlantic Coast of southern Spain. Environ. Int. 23, 291–298 (1997).CAS 
    Article 

    Google Scholar 
    67.Bayne, B. L., Holland, D. L., Moore, M. N. & Lowe, D. M. Further studies on the effects of stress in the adult on the eggs of Mytilus edulis. J. Mar. Biol. Assoc. U. K. 58, 825–841 (1978).Article 

    Google Scholar 
    68.Gosling, E. Reproduction, settlement and recruitment. in Bivalve Molluscs: Biology, Ecology and Culture (ed Gosling, E.). https://doi.org/10.1002/9780470995532.ch5 (Blackwell Publishing Ltd, 2003).69.Zardus, J.D., Etter, R.J., Chase, M.R., Rex, M.A., & Boyle, E.E. Bathymetric and geographic population structure in the pan-Atlantic deep-sea bivalve Deminucula atacellana (Schenck, 1939). Mol. Ecol. 15, 639–651. https://doi.org/10.1111/j.1365-294X.2005.02832 (2006).70.Rusk, A. B., Alfaro, A. C., Young, T., Watts, E. & Adams, S. L. Development stage of cryopreserved mussel (Perna canaliculus) larvae influences post-thaw impact on shell formation, organogenesis, neurogenesis, feeding ability and survival. Cryobiology 93, 121–132. https://doi.org/10.1016/j.cryobiol.2020.01.021 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    71.Cirino, L. et al. Supplementation of exogenous lipids via liposomes improves coral larvae settlement post-cryopreservation and nano-laser warming. Cryobiology 98, 80–86. https://doi.org/10.1016/j.cryobiol.2020.12.004 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    72.Odintsova, N. A., Ageenko, N. V., Kiselev, K. V. & Sanina, N. M. K. Analysis of marine hydrobiont lipid extracts as possible cryoprotective agents. Int. J. Refrig. 29, 387–395 (2006).CAS 
    Article 

    Google Scholar 
    73.Katkov, I.I. Current frontiers in cryobiology. IntechOpen (2012).74.Mazur, P. & Schneider, U. Osmotic responses of preimplantation mouse and bovine embryos and their cryobiological implications. Cell Biophys. 8, 259–285. https://doi.org/10.1007/BF02788516 (1986).CAS 
    Article 
    PubMed 

    Google Scholar 
    75.Pedro, P.B., Yokoyama, E., Zhu, S.E., Yoshida, N., Valdez, D.M,Jr., Tanaka, M., Edashige, K., & Kasai, M. Permeability of mouse oocytes and embryos at various developmental stages to five cryoprotectants. J. Reprod. Dev. 51, 235–246. https://doi.org/10.1262/jrd.16079. (2005).76.Daly, J. et al. Successful cryopreservation of coral larvae using vitrification and laser warming. Sci. Rep. 8, 15714. https://doi.org/10.1038/s41598-018-34035-0 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    77.Acker, J.P. Biopreservation of cells and engineered tissues. in Tissue Engineering II. Basics of Tissue Engineering and Tissue Applications (eds. Lee, K., Kaplan, D.) Vol. 103, 157–187. https://doi.org/10.1007/b137204 (Adv Biochem Eng/Biotechnol, Springer, 2006).78.Erdag, G., Eroglu, A., Morgan, J. R. & Toner, M. Cryopreservation of fetal skin is improved by extracellular trehalose. Cryobiology 44, 218–228 (2002).CAS 
    Article 

    Google Scholar 
    79.Karlsson, J.O.M., & Toner, M. Cryopreservation. in Principles of Tissue Engineering (eds. Lanza, R.P., Langer, R., Vacanti, J.P.) 2nd edn. 293–307. https://doi.org/10.1016/B978-012436630-5/50028-3 (Academic Press, 2000).80.Karlsson, J. O. M. & Toner, M. Long-term storage of tissues by cryopreservation: Critical issues. Biomaterials 17(3), 243–256. https://doi.org/10.1016/0142-9612(96)85562-1 (1996).CAS 
    Article 

    Google Scholar 
    81.Lautner, L., Himmat, S., Acker, J. P. & Nagendran, J. The efficacy of ice recrystallization inhibitors in rat lung cryopreservation using a low-cost technique for ex vivo subnormothermic lung perfusion. Cryobiology 97, 93–100. https://doi.org/10.1016/j.cryobiol.2020.10.001 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    82.Marques, L. S. et al. Slow freezing versus vitrification for the cryopreservation of zebrafish (Danio rerio) ovarian tissue. Nat. Sci. Rep. 9, 15353 (2019).ADS 
    Article 

    Google Scholar 
    83.Mazur, P. Freezing of living cells: Mechanisms and implications. Am. J. Physiol. 247(3 Pt 1), C125–C142. https://doi.org/10.1152/ajpcell.1984.247.3.C125 (1984).CAS 
    Article 
    PubMed 

    Google Scholar 
    84.Mazur, P. Principles of cryobiology. in Life in the Frozen State (eds. Fuller, B.J., Lane, N., Benson E.E.) 3–66 (CRC Press, 2004).85.Klöckner, K., Rosenthal, H., & Willführ, J. Invertebrate bioassays with North Sea water samples. I. Structural effects on embryos and larvae of serpulids, oysters and sea urchins. Helgoländer Meeresunters 39, 1–19 (1985).86.Stebbing, A. R. D. et al. The role of bioassays in marine pollution monitoring, bioassay panel report. Rapports Process-verbaux Reunions Conseil Permanent Int. Pour I’Explor. Mer. 179, 322–332 (1980).
    Google Scholar 
    87.His, E., Seaman, M.N., & Beiras, R. A simplification the bivalve embryogenesis and larval development bioassay method for water quality assessment. Water Res. 31 (1997).88.Ventura, A., Sculz, S. & Dupont, S. Maintained larval growth in mussel larvae exposed to acidified under-saturated seawater. Sci. Rep. 6, 23728 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    89.IBM SPSS 15.0 Version Statistical Software. https://www.ibm.com/es-es/products/spss-statistics.90.Newman, M.C. Quantitative Methods in Aquatic Ecotoxicology. Advances in Trace Substances Research. (Lewis Publishers, 1995).91.Sokal, R.R., Rohlf, F.J. Biometry. The Principles and Practice of Statistics in Biological Research, 3rd edn. (Freeman, 1995).92.Hayes Jr, W.J. Dosage and other factors influencing toxicity. in Handbook of Pesticide Toxicology (eds. Hayes Jr, W.J., Laws Jr. E.R.) Vol. 1, 39–105 (Academic Press, 1991).93.Chen, J., Li, Q., Kong, L. & Zheng, X. Molecular phylogeny of venus clams (Mollusca, Bivalvia, Veneridae) with emphasis on the systematic position of taxa along the coast of mainland China. Zool. Scr. 40(3), 260–271 (2011).Article 

    Google Scholar  More

  • in

    Adaptive ecological niche migration does not negate extinction susceptibility

    1.Ceballos, G. et al. Accelerated modern human-induced species losses: Entering the sixth mass extinction. Sci. Adv. https://doi.org/10.1126/sciadv.1400253 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Edie, S. M., Huang, S., Collins, K. S., Roy, K. & Jablonski, D. Loss of biodiversity dimensions through shifting climates and ancient mass extinctions. Integr. Comp. Biol. 58, 1179–1190. https://doi.org/10.1093/icb/icy111 (2018).Article 
    PubMed 

    Google Scholar 
    3.Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L. & Sunday, J. M. Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature 569, 108–111. https://doi.org/10.1038/S51586-019-1132-4 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    4.Ezard, T. H. G., Aze, T., Pearson, P. N. & Purvis, A. Interplay between changing climate and species’ ecology drives macroevolutionary dynamics. Science 332, 349–351. https://doi.org/10.1126/science.1203060 (2011).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    5.Smits, P. & Finnegan, S. How predictable is extinction? Forecasting species survival at million-year timescales. Philos. Trans. R. Soc. B Biol. Sci. 374, 1. https://doi.org/10.1098/rstb.2019.0392 (2019).Article 

    Google Scholar 
    6.Aze, T. et al. A phylogeny of Cenozoic macroperforate planktonic foraminifera from fossil data. Biol. Rev. 86, 900–927. https://doi.org/10.1111/j.1469-185X.2011.00178.x (2011).Article 
    PubMed 

    Google Scholar 
    7.Edgar, K. M., Hull, P. M. & Ezard, T. H. G. Evolutionary history biases inferences of ecology and environment from δ13C but not δ18O values. Nat. Commun. 8, 1106. https://doi.org/10.1038/s41467-017-01154-7 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Knappertsbusch, M. Morphological variability of Globorotalia menardii (planktonic foraminifera) in two DSDP cores from the Caribbean Sea and the Eastern Equatorial Pacific. Carnets de Géologie/Notebooks Geol. CG2007 1–34. https://doi.org/10.4267/2042/8455 (2007).9.Wade, B. S., Al-Sabouni, N., Hemleben, C. & Kroon, D. Symbiont bleaching in fossil planktonic foraminifera. Evol. Ecol. 22, 253–265. https://doi.org/10.1007/s10682-007-9176-6 (2008).Article 

    Google Scholar 
    10.Wade, B. S. & Olsson, R. K. Investigation of pre-extinction dwarfing in Cenozoic planktonic foraminifera. Palaeogeogr. Palaeoclimatol. Palaeoecol. 284, 39–46. https://doi.org/10.1016/j.palaeo.2009.08.026 (2009).Article 

    Google Scholar 
    11.Edgar, K. M. et al. Symbiont ‘bleaching’ in planktic foraminifera during the Middle Eocene climatic optimum. Geology 41, 15–18. https://doi.org/10.1130/G33388.1 (2013).ADS 
    Article 

    Google Scholar 
    12.Pearson, P. N. & Ezard, T. H. G. Evolution and speciation in the Eocene planktonic foraminifer Turborotalia. Paleobiology 40, 130–143. https://doi.org/10.1666/13004 (2014).Article 

    Google Scholar 
    13.Wade, B. S., Poole, C. R. & Boyd, J. L. Giantism in Oligocene planktonic foraminifera Paragloborotalia opima: Morphometric constraints from the equatorial Pacific Ocean. Newsl. Stratigr. 49, 421–444. https://doi.org/10.1127/nos/2016/0270 (2016).Article 

    Google Scholar 
    14.Brombacher, A., Wilson, P. A., Bailey, I. & Ezard, T. H. G. The breakdown of static and evolutionary allometries during climatic upheaval. Am. Nat. https://doi.org/10.5061/dryad.8jf2k (2017).15.Weinkauf, M. F. G., Moller, T., Koch, M. C. & Kučera, M. Disruptive selection and bet-hedging in planktonic Foraminifera: Shell morphology as predictor of extinctions. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2014.00064 (2014).Article 

    Google Scholar 
    16.Weinkauf, M. F. G., Bonitz, F. G. W., Martini, R. & Kučera, M. An extinction event in planktonic Foraminifera preceded by stabilizing selection. PLoS ONE 14, 1–21. https://doi.org/10.1371/journal.pone.0223490 (2019).CAS 
    Article 

    Google Scholar 
    17.Falzioni, F., Petrizzo, M. R. & Valagussa, M. A morphometric methodology to assess planktonic foraminiferal response to environmental perturbations: The case study of Oceanic Anoxic Event 2, Late Cretaceous. Bollettino della Società Paleontologica Italiana 57, 103–124. https://doi.org/10.4435/BSPI.2018.07 (2018).Article 

    Google Scholar 
    18.Si, W. & Aubry, M. P. Vital effects and ecologic adaptation of photosymbiont-bearing planktonic foraminifera during the Paleocene-Eocene thermal maximum, implications for paleoclimate. Paleoceanogr. Paleoclimatol. 33, 112–125. https://doi.org/10.1002/2017PA003219 (2018).ADS 
    Article 

    Google Scholar 
    19.Fox, L. R., Stukins, S., Hill, T. & Miller, G. Quantifying the effect of anthropogenic climate change on calcifying plankton. Sci. Rep. 10, 1620. https://doi.org/10.1038/s41598-020-58501-w (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Todd, C. L., Schmidt, D. N., Robinson, M. M. & De Schepper, S. Planktonic foraminiferal test size and weight response to the late Pliocene environment. Paleoceanogr. Paleoclimatol. https://doi.org/10.1029/2019PA003738 (2020).Article 

    Google Scholar 
    21.Shaw, J. O. et al. Photosymbiosis in planktonic foraminifera across the Paleocene-Eocene thermal maximum. Paleobiology https://doi.org/10.1017/pab.2021.7 (2021).Article 

    Google Scholar 
    22.Schmidt, D. N., Thierstein, H. R. & Bollmann, J. The evolutionary history of size variation of planktic foraminiferal assemblages in the Cenozoic. Palaeogeogr. Palaeoclimatol. Palaeoecol. 212, 159–180. https://doi.org/10.1016/j.palaeo.2004.06.002 (2004).Article 

    Google Scholar 
    23.Brierley, C. M. & Fedorov, A. V. Relative importance of meridional and zonal sea surface temperature gradients for the onset of the ice ages and Pliocene–Pleistocene climate evolution. Paleoceanogr. Paleoclimatol. 25, 1–16. https://doi.org/10.1029/2009PA001809 (2010).Article 

    Google Scholar 
    24.Birch, H., Coxall, H. K., Pearson, P. N., Kroon, D. & O’Regan, M. Planktonic foraminifera stable isotopes and water column structure: Disentangling ecological signals. Mar. Micropaleontol. 101, 127–145. https://doi.org/10.1016/j.marmicro.2013.02.002 (2013).ADS 
    Article 

    Google Scholar 
    25.
    Grubbs, F. Procedures for detecting outlying observations in samples. Technometrics 11, 1–21. https://doi.org/10.1080/00401706.1969.10490657 (1969).Article 

    Google Scholar 
    26.Mann, H. B. & Whitney, D. R. On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 18, 50–60. https://doi.org/10.1214/aoms/1177730491 (1947).MathSciNet 
    Article 
    MATH 

    Google Scholar 
    27.Schiebel, R. & Hemleben, C. Planktic Foraminifers in the Modern Ocean 1–350 (Springer, 2017). https://doi.org/10.1007/978-3-66250297-6.Book 

    Google Scholar 
    28.Schmidt, D. N., Thierstein, H. R., Bollmann, J. & Schiebel, R. Abiotic forcing of plankton evolution in the Cenozoic. Science 303, 207–210. https://doi.org/10.1126/science.1090592 (2004).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    29.Rillo, M., Miller, G., Kučera, M. & Ezard, T. Predictability of intraspecific size variation in extant planktonic foraminifera. BioRxiv https://doi.org/10.1101/468165 (2018).Article 

    Google Scholar 
    30.Schmalhausen, I. I. Factors of Evolution: The Theory of Stabilizing Selection 327 (Blakiston Company, 1949).
    Google Scholar 
    31.Bull, J. J. Evolution of phenotypic variance. Evolution 41, 303–315. https://doi.org/10.1111/j.1558-5646.1987.tb05799.x (1987).CAS 
    Article 
    PubMed 

    Google Scholar 
    32.Williams, G. C. Natural Selection. Domains Levels and Challenges 53–103 ( Oxford University Press, 1992).
    Google Scholar 
    33.West-Eberhard, M. J. Developmental Plasticity and Evolution 794 (Oxford University Press, 2003).Book 

    Google Scholar 
    34.Slatkin, M. Hedging one’s evolutionary bets. Nature 250, 704705. https://doi.org/10.1038/250704b0 (1974).Article 

    Google Scholar 
    35.Philippi, T. & Seger, J. Hedging one’s evolutionary bets, revisited. Trends Ecol. Evol. 4, 41–44. https://doi.org/10.1016/0169-5347(89)90138-9 (1989).CAS 
    Article 
    PubMed 

    Google Scholar 
    36.Grafen, A. Formal Darwinism, the individual-as-maximising-agent analogy, and bet-hedging. Proc. R. Soc. Lond. Ser. B Biol. Sci. 266, 799–803. https://doi.org/10.1098/rspb.1999.0708 (1999).Article 

    Google Scholar 
    37.Wade, B. S. & Twitchett, R. J. Extinction, dwarfing and the Lilliput effect: Extinction, dwarfing and the Lilliput effect. Palaeogeogr. Palaeoclimatol. Palaeoecol. 284, 1–3. https://doi.org/10.1016/j.palaeo.2009.08.019 (2009).Article 

    Google Scholar 
    38.Wade, B. S. et al. Taxonomy, biostratigraphy, and phylogeny of Oligocene and lower Miocene Dentoglobigerina and Globoquadrina. In Atlas of Oligocene Planktonic Foraminifera (eds Wade, B. S. et al.) Lawrence, KS, Cushman Foundation for Foraminiferal Research, Special Publication No. 46 (2018) 331–384.39.Harvey, P. H. & Pagel, M. D. The Comparative Method in Evolutionary Biology 35–49 (Oxford University Press, 1991).
    Google Scholar 
    40.O’Brien, C. L. et al. The enigma of Oligocene climate and global surface temperature evolution. Proc. Natl. Acad. Sci. 117, 25302–25309. https://doi.org/10.1073/pnas.2003914117 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Stoecker, D. K., Johnson, M. D., De Vargas, C. & Not, F. Acquired phototrophy in aquatic protists. Aquat. Microb. Ecol. 57, 279–310. https://doi.org/10.3354/ame01340 (2009).Article 

    Google Scholar 
    42.Takagi, H. et al. Characterizing photosymbiosis in modern planktonic foraminifera. Biogeosciences 16, 3377–3396. https://doi.org/10.5194/bg-16-3377-2019 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    43.Luciani, V., D’Onofrio, R., Dickens, G. R. & Wade, B. S. Did photosymbiont bleaching lead to the Demise planktic foraminifer Morozovella at the Early Eocene climatic optimum. Paleoceanography 32, 1115–1136. https://doi.org/10.1002/2017PA003138 (2017).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Lutz, B. P. Low-latitude northern hemisphere oceanographic and climatic responses to early shoaling of the Central American Seaway. Stratigraphy 7, 151–176 (2010).
    Google Scholar 
    45.Norris, R. D. Recognition and macroevolutionary significance of photosymbiosis in molluscs, corals, and foraminifera. Paleontol. Soc. Pap. 4, 68–100. https://doi.org/10.1017/S1089332600000401 (1998).Article 

    Google Scholar 
    46.Ezard, T. H. G., Edgar, K. M. & Hull, P. M. Environmental and biological controls on size-specific δ13C and δ18O in recent planktonic foraminifera. Paleoceanography 30, 151–173. https://doi.org/10.1002/2014PA002735 (2015).ADS 
    Article 

    Google Scholar 
    47.Hughes, T. P. et al. Global warming transforms coral reef assemblages Nature 556, 492–496. https://doi.org/10.1038/s41586-018-0041-2 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    48.Schmidt, C., Heinz, P., Kucera, M. & Uthicke, S. Temperature-induced stress leads to bleaching in larger benthic foraminifera hosting endosymbiotic diatoms. Limnol. Oceanogr. 56, 1587–1602. https://doi.org/10.4319/lo.2011.56.5.1587 (2011).ADS 
    Article 

    Google Scholar 
    49.Spezzaferri, S., El Kateb, A., Pisapia, C. & Hallock, P. In situ observations of foraminiferal bleaching in the Maldives, Indian Ocean. J. Foraminifer. Res. 48, 75–84. https://doi.org/10.2113/gsjfr.48.1.75 (2018).Article 

    Google Scholar 
    50.Heron, S. F., Maynard, J. A., van Hooidonk, R. & Eakin, M. Warming trends and bleaching stress of the World’s Coral Reefs 1985–2012. Sci. Rep. 6, 38402. https://doi.org/10.1038/srep38402 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Sully, S., Burkepile, D. E., Donovan, M. K., Hodgson, G. & van Woesik, R. A global analysis of coral bleaching over the past two decades. Nat. Commun. 10, 1264. https://doi.org/10.1038/s41467-019-09238-2 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Brown, B. E. Coral bleaching: Causes and consequences. Coral Reefs 16, 129–138. https://doi.org/10.1007/s003380050249 (1997).Article 

    Google Scholar 
    53.Saravanan, R., Ranjith, L., Jasmine, S. & Joshi, K. K. Coral bleaching: Causes, consequences and mitigation. Mar. Fish. Inf. Serv. Tech. Extens. Ser. 231, 3–9 (2017).
    Google Scholar 
    54.Kucera, M. & Darling, K. F. Cryptic species of planktonic foraminifera: Their effect on palaeoceanographic reconstructions . Proc. R. Soc Lond. Ser. A Math. Phys. Eng. Sci. 360, 695–718. https://doi.org/10.1098/rsta.2001.0962 (2002).ADS 
    Article 

    Google Scholar 
    55.Weiner, A., Aurahs, R., Kurasawa, A., Kitazato, H. & Kucera, M. Vertical niche partitioning between cryptic sibling species of a cosmopolitan marine planktonic protist. Mol. Ecol. 21, 4063–4073. https://doi.org/10.1111/j.1365-294X.2012.05686 (2012).Article 
    PubMed 

    Google Scholar 
    56.Matsui, H. et al. Changes in the depth habitat of the Oligocene planktic foraminifera (Dentoglobigerina venezuelana) induced by thermocline deepening in the eastern equatorial Pacific. Paleoceanography 31, 715–731. https://doi.org/10.1002/2016PA002950 (2016).ADS 
    Article 

    Google Scholar 
    57.Morard, R., Reinelt, M., Chiessi, C. M., Groeneveld, J. & Kucera, M. Tracing shifts in oceanic fronts using the cryptic diversity of the planktonic foraminifera Globorotalia inflata. Paleoceanography 31, 1193–1205. https://doi.org/10.1002/2016PA002977 (2016).ADS 
    Article 

    Google Scholar 
    58.Morard, R. et al. Genetic and morphological divergence in the warm-water planktonic foraminifera genus Globigerinoides. PLoS ONE 14, 1–30. https://doi.org/10.1371/journal.pone.0225246 (2019).CAS 
    Article 

    Google Scholar 
    59.Prasanna, K., Ghosh, P., Bhattacharya, S. K., Mohan, K. & Anilkumar, N. Isotopic disequilibrium in Globigerina bulloides and carbon isotope response to productivity increase in Southern Ocean. Sci. Rep. 6, 21533. https://doi.org/10.1038/srep21533 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    60.Waterson, A. M., Edgar, K. M., Schmidt, D. N. & Valdes, P. J. Quantifying the stability of planktic foraminiferal physical niches between the Holocene and Last Glacial Maximum. Paleoceanography 32, 74–89. https://doi.org/10.1002/2016PA002964 (2017).ADS 
    Article 

    Google Scholar 
    61.Andre, A. et al. Disconnection between genetic and morphological diversity in the planktonic foraminifer Neogloboquadrina pachyderma from the Indian sector of the Southern Ocean. Mar. Micropaleontol. 144, 1424. https://doi.org/10.1016/j.marmicro.2018.10.001 (2018).Article 

    Google Scholar 
    62.Schiebel, R. et al. Advances in planktonic foraminifer research: New perspectives for paleoceanography. Rev. Micropaléontol. 61, 113–138. https://doi.org/10.1016/j.revmic.2018.10.001 (2018).Article 

    Google Scholar 
    63.Boscolo-Galazzo, F. et al. Temperature controls carbon cycling and biological evolution in the ocean twilight zone. Science 371, 1148–1152. https://doi.org/10.1126/science.abb6643 (2021).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    64.Pälike, H. et al. Site 1338. Proceedings of the Integrated Ocean Drilling Program, vol 320/321. https://doi.org/10.2204/iodp.proc.320321.101.2010 (2010).65.Drury, A. J., Lee, G. P., Pennock, G. M. & John, C. M. Data report: Late Miocene to early Pliocene coccolithophore and
    foraminiferal preservation at Site U1338 from scanning electron microscopy. In Proceedings of the Integrated Ocean Drilling Program, 320/321 (eds Pälike, H. et al.) https://doi.org/10.2204/iodp.proc.320321.218.2014 (Integrated Ocean Drilling Program Management International, Inc., Tokyo, 2014).66.Fox, L. R. & Wade, B. S. Systematic taxonomy of early-middle Miocene planktonic foraminifera from the Equatorial Pacific Ocean: Integrated Ocean Drilling Program, Site U1338. J. Foraminifer. Res. 43, 374–405. https://doi.org/10.2113/gsjfr.43.4.374 (2015).Article 

    Google Scholar 
    67.Wade, B. S., Pearson, P. N., Berggren, W. A. & Pälike, H. Review and revision of Cenozoic tropical planktonic foraminiferal biostratigraphy and calibration to the geomagnetic polarity and astronomical time scale. Earth Sci. Rev. 104, 111–142. https://doi.org/10.1016/j.earscirev.2010.09.003 (2011).ADS 
    Article 

    Google Scholar 
    68.Kennett, J. P. & Srinivasan, M. S. Neogene Planktonic Foraminifera: A Phylogenetic Atlas 1–265 (Hutchinson Ross Publishing Co., 1983).
    Google Scholar 
    69.Lyle, M., Joy Drury, A., Tian, J., Wilkens, R. & Westerhold, T. Late Miocene to Holocene high-resolution eastern equatorial pacific carbonate records: Stratigraphy linked by dissolution and paleoproductivity. Clim. Past 15, 1715–1739. https://doi.org/10.5194/cp-15-1715-2019 (2019).Article 

    Google Scholar 
    70.Kotov, S. & Pälike, H. QAnalySeries—A cross-platform time series tuning and analysis tool. AGU https://doi.org/10.1002/essoar.10500226.1 (2018).Article 

    Google Scholar 
    71.Brombacher, A., Wilson, P. A. & Ezard, T. H. G. Calibration of the repeatability of foraminiferal test size and shape measures with recommendations for future use. Mar. Micropaleontol. 133, 21–27. https://doi.org/10.1016/j.marmicro.2017.05.003 (2017).ADS 
    Article 

    Google Scholar 
    72.Brombacher, A., Elder, L. E., Hull, P. M., Wilson, P. A. & Ezard, T. H. G. Calibration of test diameter and area as proxies for body size in the planktonic foraminifer Globoconella puncticulata. J. Foraminifer. Res. 48, 241–245. https://doi.org/10.2113/gsjfr.48.3.241 (2018).Article 

    Google Scholar 
    73.Silverman, B. W. Density Estimation for Statistics and Data Analysis 176 (Chapman & Hall/CRC, 1986).Book 

    Google Scholar 
    74.R Core Team. R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria http://www.R-project.org (2020).75.Cohen, J. Statistical Power Analysis for the Behavioural Sciences (Lawrence Earlbaum Associates, 1988).MATH 

    Google Scholar 
    76.Champely, S. pwr: Basic Functions for Power Analysis. R package version 1.3–0 (2020) https://CRAN.R-project.org/package=pwr.77.Edgar, K. M., Pälike, H. & Wilson, P. A. Testing the impact of diagenesis on the δ18O and δ13C of benthic foraminiferal calcite from a sediment burial depth transect in the equatorial Pacific. Paleoceanography 28, 468–480. https://doi.org/10.1002/palo.20045 (2013).ADS 
    Article 

    Google Scholar 
    78.Cramer, B. S., Toggweiler, J. R., Wright, J. D., Katz, M. E. & Miller, K. G. Ocean overturning since the Late Cretaceous: Inferences from a new benthic foraminiferal isotope compilation. Paleoceanography https://doi.org/10.1029/2008PA001683 (2009).Article 

    Google Scholar 
    79.Rasmussen, T. L. & Thomsen, E. Holocene temperature and salinity variability of the Atlantic Water inflow to the Nordic seas. Holocene 20, 1223–1234. https://doi.org/10.1177/0959683610371996 (2010).ADS 
    Article 

    Google Scholar 
    80.Shapiro, S. S. & Wilk, M. B. An analysis of variance test for normality (complete samples). Biometrika 52, 591–611. https://doi.org/10.1093/biomet/52.3-4.591 (1965).MathSciNet 
    Article 
    MATH 

    Google Scholar 
    81.Komsta, L. outliers: Tests for outliers. R package version 0.14. https://CRAN.R-project.org/package=outliers (2011).82.Fay, M. P. asht: Applied Statistical Hypothesis Tests. R package version 0.9.6. https://CRAN.R-project.org/package=asht (2020).83.Arnholt, A. T. & Evans, B. BSDA: Basic Statistics and Data Analysis. R package version 1.2.0. https://CRAN.R-project.org/package=BSDA (2017). More

  • in

    Equatorial pliosaurid from Venezuela marks the youngest South American occurrence of the clade

    1.Madzia, D. & Cau, A. Estimating the evolutionary rates in mosasauroids and plesiosaurs: Discussion of niche occupation in Late Cretaceous seas. PeerJ 8, e8941 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Benson, R. B. et al. A giant pliosaurid skull from the Late Jurassic of England. PLoS ONE 8, e65989. https://doi.org/10.1371/journal.pone.0065989 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Schumacher, B. A., Carpenter, K. & Everhart, M. J. A new Cretaceous pliosaurid (Reptilia, Plesiosauria) from the Carlile Shale (middle Turonian) of Russell County, Kansas. J. Vertebrate Paleontol. 33, 613–628 (2013).Article 

    Google Scholar 
    4.Madzia, D. A reappraisal of Polyptychodon (Plesiosauria) from the Cretaceous of England. PeerJ 4, e1998 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    5.Zverkov, N. G., Fischer, V., Madzia, D. & Benson, R. B. J. Increased pliosaurid dental disparity across the Jurassic–Cretaceous transition. Palaeontology 61, 825–846 (2018).Article 

    Google Scholar 
    6.Madzia, D., Sachs, S. & Lindgren, J. Morphological and phylogenetic aspects of the dentition of Megacephalosaurus eulerti, a pliosaurid from the Turonian of Kansas, USA, with remarks on the cranial anatomy of the taxon. Geol. Mag. 156, 1201–1216 (2019).Article 

    Google Scholar 
    7.Tarlo, L. B. A review of the Upper Jurassic pliosaurs. Bull. Br. Museum (Nat. Hist.) Geol. Lond. 4(5), 145–189 (1960).
    Google Scholar 
    8.Noè, L. F. A taxonomic and functional study of the Callovian (Middle Jurassic) Pliosauroidea (Reptilia, Sauropterygia), PhD thesis, University of Derby, 616 pp (2001).9.Ketchum, H. F. & Benson, R. B. J. The cranial anatomy and taxonomy of Peloneustes philarchus (Sauropterygia, Pliosauridae) from the Peterborough member (Callovian, Middle Jurassic) of the United Kingdom. Palaeontology 54(3), 639–665 (2011).Article 

    Google Scholar 
    10.Knutsen, E. M. A taxonomic revision of the genus Pliosaurus (Owen, 1841a) Owen, 1841b. Norw. J. Geol. 92, 259–276 (2012).
    Google Scholar 
    11.Knutsen, E. M., Druckenmiller, P. S. & Hurum, J. H. A new species of Pliosaurus (Sauropterygia: Plesiosauria) from the Middle Volgian of central Spitsbergen, Norway. Norw. J. Geol. 92, 235–258 (2012).
    Google Scholar 
    12.Williston, S. W. North American plesiosaurs. Field Columbian Museum, Pub. 73, Geological Series 2, 1–79 (1903).
    13.Williston, S. W. The skull of Brachauchenius, with special observations on the relationships of the plesiosaurs. US Natl. Museum Proc. 32, 477–489 (1907).Article 

    Google Scholar 
    14.Welles, S. P. & Slaughter, B. H. The first record of the plesiosaurian genus Polyptychodon (Pliosauridae) from the New World. J. Paleontol. 37, 131–133 (1963).
    Google Scholar 
    15.Hampe, O. Ein großwüchsiger Pliosauride (Reptilia: Plesiosauria) aus der Unterkreide (oberes Aptium) von Kolumbien. Courier Forschungs-Institut Senckenberg 145, 1–32 (1992).
    Google Scholar 
    16.Carpenter, K. A review of short-necked plesiosaurs from the Cretaceous of the Western Interior, North America. Neues Jb. Geol. Paläontol. Abh. 201, 259–287 (1996).Article 

    Google Scholar 
    17.VonLoh, J. P. & Bell, G. L. Jr. Fossil Reptiles from the Late Cretaceous Greenhorn Formation (Late Cenomanian-Middle Turonian) of the Black Hills Region, South Dakota. Dakoterra 5, 28–38 (1998).
    Google Scholar 
    18.Kear, B. P. Cretaceous marine reptiles of Australia: A review of taxonomy and distribution. Cretac. Res. 24, 277–303 (2003).Article 

    Google Scholar 
    19.Hampe, O. Considerations on a Brachauchenius skeleton (Pliosauroidea) from the lower Paja Formation (late Barremian) of Villa de Leyva area (Colombia). Fossil Record 8, 37–51 (2005).Article 

    Google Scholar 
    20.Liggett, G. A., Shimada, K., Bennett, S. C. & Schumacher, B. A. Cenomanian (Late Cretaceous) reptiles from northwestern Russell County, Kansas. PaleoBios 25, 9–17 (2005).
    Google Scholar 
    21.Schumacher, B. A. & Everhart, M. J. A stratigraphic and taxonomic review of plesiosaurs from the old “Fort Benton Group” of central Kansas: A new assessment of old records. Paludicola 5, 33–54 (2005).
    Google Scholar 
    22.Albright, B. L., Gillette, D. D. & Titus, A. L. Plesiosaurs from the Upper Cretaceous (Cenomanian-Turonian) tropic shale of southern Utah. Part 1: New records of the pliosaur Brachauchenius lucasi. J. Vertebrate Paleontol. 27, 41–58 (2007).Article 

    Google Scholar 
    23.Ketchum, H. F. & Benson, R. B. J. Global interrelationships of Plesiosauria (Reptilia, Sauropterygia) and the pivotal role of taxon sampling in determining the outcome of phylogenetic analyses. Biol. Rev. 85, 361–392 (2010).PubMed 
    Article 

    Google Scholar 
    24.Páramo-Fonseca, M. E., Gómez-Pérez, M., Noè, L. F. & Etayo-Serna, F. Stenorhynchosaurus munozi, gen. et sp. nov. a new pliosaurid from the Upper Barremian (Lower Cretaceous) of Villa de Leiva, Colombia, South America. Revista de la Academia Colombiana de Ciencias Exactas Físicas y Naturales 40, 84–103 (2016).Article 

    Google Scholar 
    25.Gómez-Pérez, M. & Noè, L. F. Cranial anatomy of a new pliosaurid Acostasaurus pavachoquensis from the Lower Cretaceous of Colombia, South America. Palaeontogr. Abt. A 310, 5–42 (2017).Article 

    Google Scholar 
    26.Páramo-Fonseca, M. E., Benavides-Cabra, C. D. & Gutiérrez, I. E. A new large pliosaurid from the Barremian (Lower Cretaceous) of Sáchica, Boyacá, Colombia. Earth Sci. Res. J. 22, 223–238 (2018).Article 

    Google Scholar 
    27.Fischer, V. et al. Peculiar macrophagous adaptations in a new Cretaceous pliosaurid. R. Soc. Open Sci. 2, 150552 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Fischer, V. et al. Plasticity and convergence in the evolution of short-necked plesiosaurs. Curr. Biol. 27, 1667-1676.e3 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    29.Zverkov, N. G. On a typically Late Jurassic pliosaur from the Lower Cretaceous of Crimea. The International Scientific Conference on the Jurassic/Cretaceous boundary, Samara, Russia, 89–94 (2015).30.Angst, D. & Bardet, N. A new record of the pliosaur Brachauchenius lucasi [Williston, 1903] (Reptilia: Sauropterygia) of Turonian (Late Cretaceous) age, Morocco. Geol. Mag. 153, 449–459 (2016).CAS 
    Article 

    Google Scholar 
    31.Madzia, D. & Machalski, M. Isolated pliosaurid teeth from the Albian-Cenomanian (Cretaceous) of Annopol, Poland. Acta Geol. Pol. 67, 393–403 (2017).CAS 
    Article 

    Google Scholar 
    32.Lukeneder, A. & Zverkov, N. G. First evidence of a conical-toothed pliosaurid (Reptilia, Sauropterygia) in the Hauterivian of the Northern Calcareous Alps, Austria. Cretaceous Res. 106, 104248 (2020).Article 

    Google Scholar 
    33.Zverkov, N. G. & Pervushov, E. M. A gigantic pliosaurid from the Cenomanian (Upper Cretaceous) of the Volga Region, Russia. Cretaceous Res. 110, 104419 (2020).Article 

    Google Scholar 
    34.Kear, B. P., Ekrt, B., Prokop, J. & Georgalis, G. L. Turonian marine amniotes from the Bohemian Cretaceous Basin, Czech Republic. Geol. Mag. 151, 183–198 (2014).Article 

    Google Scholar 
    35.Benson, R. B. J. & Druckenmiller, P. S. Faunal turnover of marine tetrapods during the Jurassic–Cretaceous transition. Biol. Rev. 89, 1–23 (2014).PubMed 
    Article 

    Google Scholar 
    36.Páramo-Fonseca, M. E., Benavides-Cabra, C. D. & Gutiérrez, I. E. A new specimen of Stenorhynchosaurus munozi (Páramo-Fonseca et al., 2016) (Plesiosauria, Pliosauridae), from the Barremian of Colombia: new morphological features and ontogenetic implications. J. Vertebrate Paleontol. 39, e1663426 (2019).Article 

    Google Scholar 
    37.Albino, A. M., Carrillo-Briceño, J. D. & Neenan, J. M. An enigmatic snake from the Cenomanian of Northern South America. PeerJ 4, e2027. https://doi.org/10.7717/peerj.2027 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.de Juana, C. G., de Arocena, J. I. & Picard, X. Geologia de Venezuela y de sus Cuencas Petroliferas Vol. 103, 1 (Foninves, 1980).
    Google Scholar 
    39.Renz, O. Estratigrafía del Cretáceo en Venezuela occidental. Boletín de Geología 5(10), 3–48 (1959).
    Google Scholar 
    40.Guinot, G. & Carrillo-Briceño, J. D. Lamniform sharks from the Cenomanian (Upper Cretaceous) of Venezuela. Cretac. Res. 82, 1–20 (2018).Article 

    Google Scholar 
    41.Colbert, E. A new Cretaceous plesiosaur from Venezuela. Am. Mus. Novit. 1420, 1–22 (1949).
    Google Scholar 
    42.Bengston, P. & Kakabadze, M. V. Ammonites and the mid-Cretaceous saga. Cretac. Res. 88, 90–99 (2018).Article 

    Google Scholar 
    43.Páramo-Fonseca, M. E., O’Gorman, J. P., Gasparini, Z., Padilla, S. & Parra-Ruge, M. L. A new late Aptian elasmosaurid from the Paja Formation, Villa de Leiva, Colombia. Cretaceous Res. 99, 30–40 (2019).Article 

    Google Scholar 
    44.Welles, S. P. A new species of elasmosaur from the Aptian of Colombia, and a review of the Cretaceous plesiosaurs. Univ. California Publ. Geol. Sci. 44, 1–96 (1962).
    Google Scholar 
    45.Carpenter, K. Revision of North American elasmosaurs from the Cretaceous of the Western Interior. Paludicola 2, 148–173 (1999).
    Google Scholar 
    46.Jaimes, J. J. & Parra, E. N. Callawayasaurus colombiensis (Welles) Carpenter 1999 el plesiosaurio de Villa de Leyva (Boyacá, Colombia). ¿Un nuevo espécimen?. Boletín de Geología 23(38), 9–19 (2001).
    Google Scholar 
    47.Goñi, R. & Gasparini, Z. B. Nuevos restos de “Alzadasaurus colombiensis” (Reptilia, Plesiosauria) del Cretácico temprano de Colombia. Geologia Norandina 7, S.49–54 (1983).
    Google Scholar 
    48.Meza-Velez, I. & O’Gorman, J. E. registro fósil de plesiosaurios (Diapsida, Sauropterygia) en el Perú. Rev. Peru. Biol. 28(2), 1–8 (2021).Article 

    Google Scholar 
    49.Jaillard, E., Cordova, A., Mazin, J.-M. & Mourier, T. La transgression du Cénomanien supérieur-Turonien inférieur dans le région de Jaén (Nord du Pérou): donnés sédimentologique et stratigraphiques: Découverte du premier saurien marin du Pérou, Série II. C. R. Acad. Sc. Paris 301(20), 1429–1432 (1985).
    Google Scholar 
    50.Carvalho, I., Velas Bôas, I. & Bergqvist, L. Plesiossauros da regiao equatorial Brasileira Bacia de Sao Luís (Cretáceo Superior) Brazil. Acta Geologica Leopoldensia 23(51), S33–S41 (2000).
    Google Scholar 
    51.Velas Bôas, I. & Carvalho, I. Répteis Marinhos (Mosasauria e Plesiosauria) do Cretáceo Superior da Bacia de São Luís (Maranhão, Brasil). O Cretáceo na Bacia de São Luís-Grajaú, 223–233 (2001).52.O’Gorman, J. P. & Varela, A. N. The oldest lower Upper Cretaceous plesiosaurs (Reptilia, Sauropterygia) from southern Patagonia, Argentina. Ameghiniana 47, 447–459 (2010).Article 

    Google Scholar 
    53.Ameghino, F. Sobre la presencia de vertebrados de aspecto mesozoico en la formación Santacruceña de la Patagonia austral. Revista del Jardín Zoológico de Buenos Aires 1, 76–84 (1893).
    Google Scholar 
    54.Zumberge, J. E. Source rocks of the La Luna Formation (Upper Cretaceous) in the Middle Magdalena Valley, Colombia. Petroleum geochemistry and source rock potential of carbonate rocks. AAPG Stud. Geol. 18, 127133 (1984).
    Google Scholar 
    55.Tribovillard, N. P. et al. Cretaceous black shales of Venezuelan Andes: Preliminary results on stratigraphy and paleoenvironmental interpretations. Palaeogeogr. Palaeoclimatol. Palaeoecol. 81, 313–321 (1991).Article 

    Google Scholar 
    56.Bralower, T. J. & Lorente, M. A. Paleogeography and stratigraphy of the La Luna Formation and related Cretaceous anoxic depositional systems. Palaios 18(4–5), 301–304 (2003).Article 

    Google Scholar 
    57.Zapata, E. et al. Biostratigraphic, sedimentologic, and chemostratigraphic study of the La Luna Formation (Late Turonian-Campanian) in the San Miguel and Las Hernández sections, western Venezuela. Palaios 18, 367–377. https://doi.org/10.1669/0883-1351(2003)018%3c0367:BSACSO%3e2.0.CO;2 (2003).Article 

    Google Scholar 
    58.MINISTERIO DE ENERGIA Y MINAS. Lexico Estratigraifico de Venezuela, 3’d ed. Boletin de Geologia 12, 1–828 (1997).
    Google Scholar 
    59.Carrillo Briceño, J. D., Alvarado-Ortega, J. & Patiño Torres, C. Primer registro de Xiphactinus Leidy, 1870 (Teleostei, Ichthyodectiformes) en el Cretácico Superior de América del Sur (Formación La Luna, Venezuela). Revista Brasileira de Paleontologia. 15(3), 327–335 (2012).Article 

    Google Scholar 
    60.Albino, A. M., Rothschild, B., Carrillo-Briceño, J. D. & Neenan, J. M. Spondyloarthropathy in vertebrae of the aquatic Cretaceous snake Lunaophis aquaticus, and its first recognition in modern snakes. Sci. Nat. 105(9), 51 (2018).Article 
    CAS 

    Google Scholar 
    61.Renz, O. Die Ammonoidea im Stratotyp des Vraconien bei Sainte Croix (Kanton Waadt). Schweizerische palaontologische Abhandlungen 87, 1–97 (1968).
    Google Scholar 
    62.Erlich, R. N., Macsotay, O., Nederbragt, A. J. & Lorente, M. A. Palaeoceanography, palaeoecology, and depositional environments of Upper Cretaceous rocks of western Venezuela. Palaeogeogr. Palaeoclimatol. Palaeoecol. 153, 203–238 (1999).Article 

    Google Scholar 
    63.Renz, O. The Cretaceous Ammonites of Venezuela (Birkhäuser Verlag, 1982).
    Google Scholar 
    64.Moody, J. M. & Maisey, J. G. New Cretaceous marine vertebrate assemblages from North-Western Venezuela and their significance. J. Vertebr. Paleontol. 14(1), 1–8 (1994).Article 

    Google Scholar 
    65.Macsotay, O., Erlich, R. N. & Peraza, T. Sedimentary structures of the La Luna, Navay and Querecual Formations, Upper Cretaceous of Venezuela. Palaios 18(4–5), 334–348 (2003).Article 

    Google Scholar 
    66.Davis, C., Pratt, L. & Sliter, W. Factors influencing organic carbon and trace metal accumulation in the Upper Cretaceous La Luna Formation of the western Maracaibo Basin, Venezuela. In Evolution of the Cretaceous Ocean-Climate System Vol. 332 (eds Barrera, E. & Johnson, C. C.) 203–231 (Geological Society of America Special Paper Geological Society of America, 1999).
    Google Scholar 
    67.Martinez, J. I. & Hernandez, R. Evolution and drowning of the Late Cretaceous Venezuelan carbonate platform. J. S. Am. Earth Sci. 5(2), 197–210 (1992).Article 

    Google Scholar 
    68.Ford, A. B., & Houbolt, J. J. H. C. The microfacies of the Cretaceous of western Venezuela: International Sedimentary Petrographical Series 6. EJ Brill, Publisher, Leiden, Germany, 1–109 (1963).69.Caron, M. & Spezzaferri, S. Scanning electron microscope documentation of the lost holotypes of Mornod, 1949: Thalmanninella reicheli and Rotalipora montsalvensis. J. Foraminiferal Res. 36(4), 374–378 (2006).Article 

    Google Scholar 
    70.Veigal, R. & Dzelalija, F. A Regional Overview of the La Luna Formation and the Villeta Groups as Shale Gas/Shale Oil in the Catatumbo Magdalena Valley and Eastern Cordillera Regions, Colombia, Article #10565 21 (American Association of Petroleum Geologists, Search and Discovery, 2014).
    Google Scholar 
    71.Spickert, A. Petroleum System Analysis: Middle Magdalena Valley Basin, Colombia, South America. MSC Report 1–48 (University of Washington, 2014).
    Google Scholar 
    72.De Romero, L. M. et al. An integrated calcareous microfossil biostratigraphic and carbon-isotope stratigraphic framework for the La Luna Formation, western Venezuela. Palaios 18(4–5), 349–366 (2003).Article 

    Google Scholar 
    73.Mendez, C. E. La Formacion La Luna. Caracteristica de una cuenca anoxica en una plataforma de aguas someras. Proceedings of the 7th Congreso Geologico Venezolano, 852–866 (1981).74.Weiler, W. Fischreste aus der Umgebung von San Cristobal, SW. Venezuela. Zentralblatt für Mineralogie Geologie und Paläontologie (B). 1949, 240–255 (1940).
    Google Scholar 
    75.Sánchez-Villagra, M. R., Brinkmann, W. & Lozsán, R. The Paleozoic and Mesozoic vertebrate record of Venezuela: An overview, summary of previous discoveries and report of a mosasaur from the La Luna Formation (Cretaceous). Paläontol. Z. 82(2), 113–124 (2008).Article 

    Google Scholar 
    76.Gower, J. C. A general coefficient of similarity and some of its properties. Biometrics 27(4), 857–871 (1971).Article 

    Google Scholar 
    77.RStudio Team. RStudio: Integrated Development for R. RStudio, Inc., Boston, MA. http://www.rstudio.com/ (2019).78.Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    79.Smith, J. B. & Dodson, P. A proposal for a standard terminology of anatomical notation and orientation in fossil vertebrate dentitions. J. Vertebr. Paleontol. 23, 1–12 (2003).Article 

    Google Scholar 
    80.de Blainville, H. D. Description de quelques espècesde reptiles de la Californie, précédé de l’analyse d’unsystème général d’Erpétologie et d’Amphibiologie. Nouvelles Annales du Museum National d’Histoire Naturelle Paris 4, 233–296 (1835).
    Google Scholar 
    81.Seeley, H. G. Note on some of the generic modifications of the plesiosaurian pectoral arch. Q. J. Geol. Soc. Lond. 30, 436–449 (1874).Article 

    Google Scholar 
    82.McHenry, C. R. Devourer of gods: The palaeoecology of the Cretaceous pliosaur Kronosaurus queenslandicus. Doctoral dissertation, University of Newcastle (2009).83.Sato, T., Hasegawa, Y. & Manabe, M. A new elasmosaurid plesiosaur from the Upper Cretaceous of Fukushima, Japan. Palaeontology 49, 467–484 (2006).Article 

    Google Scholar 
    84.Sachs, S. Redescription of Elasmosaurus platyurus Cope 1868 (Plesiosauria: Elasmosauridae) from the Upper Cretaceous (lower Campanian) of Kansas, USA. Paludicola 5, 92–106 (2005).
    Google Scholar 
    85.Welles, S. P. Elasmosaurid plesiosaurs with a description of new material from California and Colorado. Univ. California Publ. Geol. Sci. 13, 125–215 (1943).
    Google Scholar 
    86.Welles, S. P. A new elasmosaur from the Eagle Ford Shale of Texas. Part I. Systematic description. Fondren Sci. Series 1, 1–28 (1949).
    Google Scholar 
    87.Sachs, S. Remarks on the pectoral girdle of Hydrotherosaurus alexandrae (Plesiosauria: Elasmosauridae). PalArch Vertebr. Palaeontol. 4(1), 1–6 (2005).
    Google Scholar 
    88.O’Gorman, J. P. Elasmosaurid phylogeny and paleobiogeography, with a reappraisal of Aphrosaurus furlongi from the Maastrichtian of the Moreno Formation. J. Vertebr. Paleontol. 39(5), e1692025 (2020).Article 

    Google Scholar 
    89.Sachs, S., Kear, B.P. & Lindgren, J. Re-description of Thalassomedon haningtoni—An elasmosaurid from the Cenomanian of North America. 5th Triennial Mosasaur Meeting—A Global Perspective on Mesozoic Marine Amniotes. Abstracts and Program (Sachs, S., Kear, B.P. & Lindgren, eds.), 38–40 (2016).90.Sachs, S. & Kear, B. P. Postcranium of the paradigm elasmosaurid plesiosaurian Libonectes morgani (Welles, 1949). Geol. Mag. 152, 694–710 (2015).Article 

    Google Scholar 
    91.Sachs, S. & Kear, B. P. Redescription of the elasmosaurid plesiosaurian Libonectes atlasense from the Upper Cretaceous of Morocco. Cretac. Res. 74, 205–222 (2017).Article 

    Google Scholar 
    92.Sachs, S., Lindgren, J., Madzia, D. & Kear, B. P. Cranial osteology of the mid-Cretaceous elasmosaurid Thalassomedon haningtoni from the Western Interior Seaway of North America. Cretaceous Res. 123,104769 (2021).93.McKean, R. S. A new species of polycotylid plesiosaur (Reptilia: Sauropterygia) from the Lower Turonian of Utah: Extending the stratigraphic range of Dolichorhynchops. Cretac. Res. 34, 184–199 (2012).Article 

    Google Scholar 
    94.Sachs, S., Madzia, D., Püttmann, T. & Kear, B. P. Enigmatic plesiosaur vertebral remains from the middle Turonian of Germany. Cretaceous Res. 110, 104406 (2020).Article 

    Google Scholar  More

  • in

    Effects of different returning method combined with decomposer on decomposition of organic components of straw and soil fertility

    Site descriptionThe experimental was conducted in Gengzhuang Town, Haicheng(40° 48′ N, 122° 37′ E), Liaoning Province from 2019 to 2020. This area is belonged to the continental monsoon climate zone of warm temperate zone, the annual average temperature is above 10 °C, the annual accumulated temperature is 3000–3100 °C, the frost-free period is about 170 days, and the annual rainfall is 600–800 mm. The soil at the experimental site is classified as brown earth29. Before the experiment, this test field had been in rotary tillage mode each year, with no straw return. The concentration of soil organic carbon, total nitrogen, available nitrogen, available phosphorus, available potassium, and soil bulk density in 0–20 cm surface layer were 12.50 g kg−1, 0.89 g kg−1, 129.6 mg kg−1, 25.96 mg kg−1, 117.94 mg kg−1, and 1.53 g cm−3, respectively. The components and nutrient contents of corn straw were shown in Table 1, The average temperature and precipitation from May 2019 to May 2020 are shown in Fig. 1.Table 1 Initial component content of corn straw.Full size tableFigure 1Daily precipitation and mean air temperature during the straw decomposition period from May 2019 to May 2020.Full size imageExperimental design and managementWe adopted a split plot design, with the main plot as the cultivation method, and with three cultivation options: no-tillage, deep loosening + deep rotary tillage and rotary tillage. Then, when adding straw as a decomposer, two methods were used: adding straw decomposer and not adding it. Our experimental approach included six treatments: No-tillage and straw mulching to the field + straw decomposer (NT + S); no-tillage and straw mulching to the field + no straw decomposer (NT); rotary tillage and straw mixed into the soil + straw decomposer (RT + S); rotary tillage and straw mixed into the soil + no straw decomposer (RT); deep loosening + deep rotary tillage and straw return to the field + straw decomposer (PT + S); and deep loosening + deep rotary tillage and straw return to the field + no straw decomposer (PT). Each treatment was replicated 3 times, located in random blocks, with a total plot area of 68.4 m2. At the same time as the previous year’s corn harvest, straw was returned to the field, crushed to about 10 cm long, spread evenly on the ground. No-tillage mulching and straw return to the field is the direct no-tillage maize sowing operation in spring; In the deep loosening + deep rotary tillage treatment, the soil is turned using a subsoiler to a depth of 35 cm, and then the straw is mixed into the soil through deep rotary tillage (a depth of 30 cm); and rotary tillage involves mixing straw into the soil with a rotary tiller to a depth of 20 cm and then raking it flat.Using the nylon net bag method (mesh bags were 5 cm × 6 cm, small; 15 cm × 20 cm, medium; and large, 25 cm × 35 cm; each size with an aperture of 100 mesh), we simulated three return modes. Soil added to the net bags was taken from the top 0–20 cm prior to sowing in 2019, in the corresponding plots of each treatment. Corn stalks were added at a ratio of 5:4 per stem and leaf (dry weight of stem and leaf of corn stalks in mature stage), and crushed to 2 cm long. In no-tillage treatment, 10 g straw was added to the medium mesh bag, in the rotary tillage and deep loosening + deep rotary tillage treatment, 10 g straw was evenly divided into five parts and put into five small net bags, then the five small net bags were evenly mixed into the soil of the outer large net bag and sealed, the weight of soil added to each large net bag is 2 kg, and the compactness between the inner net bag and the soil in the outer net bag was adjusted.Net bag layout was determined according to different treatment tillage patterns, and bags were placed in the field on seeding day in 2019. Deep loosening + deep rotary tillage was achieved by ploughing furrows 30 cm long, 15 cm wide, and 35 cm deep between corn rows in corresponding plots, large net bags were buried vertically in the furrows, filled with soil and compacted, so that return depth and straw distribution were basically the same as deep loosening + deep rotary tillage in the field. Rotary tillage mode was achieved by ploughing furrows 30 cm long, 15 cm wide, and 20 cm deep between corn rows in the corresponding treatment plot, the packed net bags were tilted in the furrows, filled with soil and moderately compacted, the top end of the net bags was level with the ground surface, which is basically consistent with the return depth of rotary tillage and straw distribution in actual field production. No-tillage mulching treatments involved laying the net bags containing straw on the ground and covering the four corners with soil to prevent the net bag from being blown away by the wind. The decomposer addition treatments involved evenly spraying c. 6.5 ml straw decomposer on the straw surface before bagging, in the treatment without decomposer, 6.5 ml water was sprayed on the surface of straw to maintain the same water content.In all treatments we applied the same amount of N, P and K (N 240 kg hm−2, P2O5 74 kg hm−2 and K2O 89 kg hm−2). The nitrogen fertilizer was urea, the phosphate fertilizer superphosphate, and the potassium fertilizer, potassium chloride. The brand of straw decomposing agent is Gainby and the model number is d-68 (created by NORDOX company and produced by Beijing Shifang Biotechnology Co., Ltd.). Straw decomposer dosage was 1.5 kg hm−2, diluted with water 100 times, and the effective viable bacteria number was ≥ 50 million g−1. The effective bacteria in the decomposer include: Bacillus licheniformis, Aspergillus niger and Saccharomyces cerevisiae and so on.Sampling and analysis methodsOn the 15th, 35th, 55th, 75th, 95th, 145th and 365th day after the nylon net bags were placed in the field plots, 3 bags were randomly sampled from each plot. For each net bag, we first washed the surface soil off with tap water, then washed the sample with distilled water 3 times, dried it at 60 °C, weighed it and then ground it to deter-mine the decomposition rate of straw and its components. At the same time, in the no-tillage treatments, 200 g soil was taken from 0 to 5 cm below the straw net bag, in rotary tillage and deep loosening + deep rotary tillage treatments, 200 g soil from net bag was taken for the determination of soil SOC, MBC and DOC. Content of cellulose, hemicellulose and lignin in straw were determined following Van’s method30, using a SLQ-6A semi-automatic crude fiber analyzer (Shanghai Fiber Testing Instrument Co., Ltd.).The following formula was used to calculate decomposition rate of straw and its components. M0 is the initial straw or cellulose (hemicellulose, lignin) mass, g, and Mt is the straw or cellulose (hemicellulose, lignin) mass at time t, g.$$mathrm{Decomposition ; proportion }left({%}right)= frac{{M}_{ 0}-{ M}_{ t}}{{M , }_{0}}times 100.$$
    (1)
    The following formula was used to calculate the straw carbon release proportion. C0 is the initial straw carbon content, g, Ct is the straw carbon content at time t, g.$$mathrm{Straw ; carbon ; release ; proportion }left({%}right)= frac{{C}_{ 0} -{ C }_{t}}{{C }_{0}}times 100.$$
    (2)
    The following formula was used to calculate the straw and its components decomposition rate. M365 is the quality of straw or cellulose (hemicellulose, lignin) mass on the 365th day, mg day−1.$$mathrm{Decomposition ; rate }left(mathrm{mg }{mathrm{day}}^{-1}right)= frac{{M}_{ 0 }- {M}_{365}}{365}.$$
    (3)
    The relationship of the straw decomposition proportion (%) changes over time was fitted as follows:$${y}_{t} = a+btimes exp left(-ktright),$$
    (4)
    where yt is the proportion of the straw decomposition proportion at time t, %; t is the decomposition time of straw; k is the decomposition rate constant calculated using the least-squares method; a and b are constants.SOC concentrations (g kg−1) was determined using the K2Cr2O7–H2SO4 digestion method31. Soil MBC content was determined using the Chloroform fumigation extraction method32. Two fresh soil samples were weighed, and then one of them was placed in a vacuum dryer with chloroform added, and pumped until the chloroform boiled violently, and after a period of time, the dryer cover was opened, the container containing chloroform removed, and the lid replaced. Another portion of soil was placed in a vacuum dryer without chloroform as a control. Then, 20 g each of fumigated and unfumigated soil samples were weighed, 50 mL 0.5 mg L−1 K2SO4 was added, extracted by vibration for 0.5 h, filtrate was pumped by 0.45 μm organic filter membrane, and then the filtrate was directly analyzed and detected using a TOC organic carbon analyzer. Based on the difference of organic C content between fumigated and unfumigated soil extracts, the microbial biomass carbon was obtained by multiplying the coefficient by 2.64. For the determination of soil DOC content, we used a slightly modified method of Jones33 and Hu Haiqing34. We made a leaching solution with 0.5 mol L K2SO4, weighed 10 g over 2 mm sieve of air dried soil, added the soil to the leaching solution to create a soil mass ratio of 2.5:1, and then applied a shock temperature for 1 h (220 r min−1). Then, after filtering, the filtrate was centrifuged for 20 min (3800 r min−1), filtered with a 0.45 μm organic membrane, and the filtrate subjected to TOC organic carbon analysis meter tests.Data analysisIn this experiment, Excel 2016 (Microsoft Corporation, New Mexico, USA) software was used to collate and analyze the data, and SPSS 19.0 (SPSS Inc., Chicago, Illinois, USA) statistical software was used to conduct variance analysis, LSD multiple analysis comparison and nonlinear regression analysis on the data. Duncan’s multiple range test was used to compare the treatment means at a 95% confidence level. Graphs were drawn using Origin 9.0 (Originlab, Northampton, USA). More