The rise of angiosperms strengthened fire feedbacks and improved the regulation of atmospheric oxygen
1.
Bond, W. J., Woodward, F. I. & Midgley, G. F. The global distribution of ecosystems in a world without fire. N. Phytol. 165, 525–538 (2005).
CAS Article Google Scholar
2.
Krawchuk, M. A., Moritz, M. A., Parisien, M.-A., Van Dorn, J. & Hayhoe, K. Global pyrogeography: the current and future distribution of wildfire. PLoS ONE https://doi.org/10.1371/journal.pone.0005102 (2009).
3.
Pausas, J. G. & Keeley, J. E. A burning story: the role of fire in the history of life. Bio. Sci. 59, 593–601 (2009).
Google Scholar
4.
Pausas, J. G. & Ribeiro, E. The global fire-productivity relationship. Glob. Ecol. Biogeog. 22, 728–736 (2013).
Article Google Scholar
5.
Archibald, S. et al. Biological and geophysical feedbacks with fire in the Earth system. Environ. Res. Lett. 13, 033003 (2018).
ADS Article Google Scholar
6.
Pausas, J. G., Bradstock, R. A., Keith, D. A. & Keeley, J. E. Plant functional traits in relation to fire in crown-fire ecosystems. Ecology 85, 1085–1100 (2004).
Article Google Scholar
7.
Lenton, T. M. in Fire Phenomena and the Earth System: An Interdisciplinary Guide to Fire Science (ed Belcher, C. M.) 289–309 (John Wiley and Sons, Chichester, UK, 2013).
8.
van der Werf, G. R. et al. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires 1997−2009. Atmos. Chem. Phys. Discuss. 10, 11707–11735 (2010).
ADS Article CAS Google Scholar
9.
Santín, C. et al. Towards a global assessment of pyrogenic carbon from vegetation fires Glob. Chang. Biol. 22, 76–91 (2016).
Article Google Scholar
10.
Bond, W. J. & Keeley, J. E. Fire as a global herbivore: the ecology and evolution of flammable ecosystems. Trends Ecol. Evol. 20, 387–394 (2005).
PubMed Article Google Scholar
11.
Belcher, C. M., Collinson, M. E. & Scott, A. C. in C. M. Belcher (ed) Fire Phenomena and the Earth System: an Interdisciplinary Guide to Fire Science 229–249 (Wiley, Oxford, 2016).
12.
Keeley, J. E., Pausas, J. G., Rundel, P. W., Bond, W. J. & Bradstock, R. A. Fire as an evolutionary pressure shaping plant traits. Trends Plant Sci. 16, 406–411 (2011).
CAS PubMed Article Google Scholar
13.
He, T., Pausas, J. G., Belcher, C. M., Schwilk, D. W. & Lamont, B. B. Fire-adapted traits of Pinus arose in the fiery Cretaceous. N. Phytol. 194, 751–759 (2012).
Article Google Scholar
14.
Belcher, C. M. & Hudspith, V. A. Changes to cretaceous surface fire behaviour influenced the spread of the early angiosperms. N. Phytol. 213, 1521–1532 (2016).
Article CAS Google Scholar
15.
Bond, W. J. & Scott, A. C. Fire and the spread of flowering plants in the Cretaceous. N. Phytol. 188, 1137–1150 (2010).
Article Google Scholar
16.
Keeley, J. E. & Rundel, P. W. Fire and the Miocene expansion of C4 grasslands. Ecol. Lett. 8, 683–690 (2005).
Article Google Scholar
17.
Belcher, C. M. & McElwain, J. C. Limits for combustion in low O2 redefine paleoatmospheric predictions for the Mesozoic. Science 321, 1197–1200 (2008).
ADS CAS PubMed Article Google Scholar
18.
Belcher, C. M., Yearsley, J. M., Hadden, R. M., McElwain, J. C. & Rein, G. Baseline intrinsic flammability of Earth’s ecosystems estimated from paleoatmospheric oxygen over the past 350 million years. Proc. Natl Acad. Sci. USA 107, 22448–22453 (2010).
ADS CAS PubMed Article Google Scholar
19.
Holland, H. D. The oxygenation of the atmosphere and oceans. Philos. Trans. Roy. Soc. B 361, 903–915 (2006).
CAS Article Google Scholar
20.
Goldblatt, C., Lenton, T. M. & Watson, A. J. Bistability of atmospheric oxygen and the Great Oxidation. Nature 443, 683–686 (2006).
ADS CAS PubMed Article PubMed Central Google Scholar
21.
Alcott, L. J., Mills, B. J. W. & Poulton, S. W. Stepwise Earth oxygenation is an inherent property of global biogeochemical cycling. Science 366, 1333–1337 (2019).
ADS CAS PubMed Article Google Scholar
22.
Lenton, T. M. & Watson, A. J. Biotic enhancement of weathering, atmospheric oxygen and carbon dioxide in the Neoproterozoic. Geophys. Res. Lett. 31, L05202 (2004).
ADS Article CAS Google Scholar
23.
Lenton, T. M. et al. Earliest land plants created modern levels of atmospheric oxygen. Proc. Natl Acad. Sci. USA 113, 9704–9709 (2016).
ADS CAS PubMed Article Google Scholar
24.
Lenton, T. M. & Watson, A. J. Redfield revisited 2. What regulates the oxygen content of the atmosphere? Glob. Biogeochem. Cycles, B 14, 249–268 (2000).
ADS CAS Article Google Scholar
25.
Watson, A. J. Consequences for the biosphere of forest and grassland fires. PhD thesis (University of Reading, Reading, UK, 1978).
26.
Kump, L. R. Terrestrial feedback in atmospheric oxygen regulation by fire and phosphorus. Nature 335, 152–154 (1988).
ADS CAS Article Google Scholar
27.
Burdige, D. J. Burial of terrestrial organic matter in marine sediments: a reassessment. Glob. Biogeochem. Cyc. 19, (2005).
28.
Van Cappellen, P. & Ingall, E. D. Redox stabilisation of the atmosphere and oceans by phosphorus-limited marine productivity. Science 271, 493–496 (1996).
ADS PubMed Article Google Scholar
29.
Kump, L. R. & Mackenzie, F. T. Regulation of atmospheric O2: feedback in the microbial feedbag. Science 271, 459–460 (1996).
ADS CAS Article Google Scholar
30.
Canfield, D. E. Sulfur isotopes in coal constrain the evolution of the Phaneroiz sulphur cycle. Proc. Natl Acad. Sci. USA 110, 8443–8446 (2013).
ADS CAS PubMed Article Google Scholar
31.
Walker, J. C. G. Stability of atmospheric oxygen. Am. J. Sci. 274, 193–214 (1974).
ADS CAS Article Google Scholar
32.
Lasaga, A. C. & Ohmoto, H. The oxygen geochemical cycle: dynamics and stability. Geochim. Cosmochim. Acta 66, 361–381 (2002).
ADS CAS Article Google Scholar
33.
Holland, H. D. The Chemical Evolution of the Atmosphere and Oceans: Princeton Series in Geochemistry (Princeton University Press, Princeton, 1984).
34.
Berner, R. A. Atmospheric oxygen over Phanerozoic time. Proc. Natl Acad. Sci. USA 96, 10955–10957 (1999).
ADS CAS PubMed Article Google Scholar
35.
Lovelock, J. Gaia: a new look at life on Earth (Oxford University Press, New York, 1979).
36.
Mahowald, N. M. et al. Impact of biomass burning emissions and land use change on Amazonian atmospheric cycling and deposition of phosphorus. Glob. Biogeochem. Cycles 19, 1–15 (2005).
Google Scholar
37.
Bergman, N. M., Lenton, T. M. & Watson, A. J. COPSE: a new model of biogeochemical cycling over Phanerozoic time. Am. J. Sci. 304, 397–437 (2004).
ADS CAS Article Google Scholar
38.
Robinson, J. M. Phanerozoic O2 variation, fire, and terrestrial ecology. Palaeogeogr. Palaeoclimatol. Palaeoecol. 75, 223–240 (1989).
Article Google Scholar
39.
Midgley, J. J. & Bond, W. J. in Fire Phenomena and the Earth System: An Interdisciplinary Guide to Fire Science (ed Belcher C. M.) 125–134 (Chichester, UK: John Wiley and Sons, 2013).
40.
Lenton, T. M., Daines, S. J. & Mills, B. J. W. COPSE reloaded: an improved model of biogeochemical cycling over Phanerozoic time. Earth Sci. Rev. 178, 1–28 (2018).
ADS CAS Article Google Scholar
41.
Mills, B. J. W. et al. Modeliing the long-term carbon cycle, atmospheric CO2, and Earth surface temperature from late Neoproterozoic to present day. Gond. Res. 67, 172–186 (2019).
ADS CAS Article Google Scholar
42.
Berner, R. A. Biogeochemical cycles of carbon and sulphur and their effect on atmospheric oxygen over Phanerozoic time. Glob. Planet. Chang. 75, 97–122 (1989).
ADS Article Google Scholar
43.
Berner, R. A. Modeling atmospheric O2 over Phaneroic time. Geochim. Cosmochim. Acta 65, 685–694 (2001).
ADS CAS Article Google Scholar
44.
Lenton, T. M. The role of land plants, phosphorus weathering and fire in the rise and regulation of atmospheric oxygen. Glob., Chang. Biol. 7, 613–629 (2001).
ADS Article Google Scholar
45.
Berner, R. A. Phanerozoic atmospheric oxygen: new results using the GEOCARBSULF model. Am. J. Sci. 289, 333–361 (2009).
ADS Article Google Scholar
46.
Berner, R. A. & Canfield, D. E. A new model for atmospheric oxygen over Phanerozoic time. Am. J. Sci. 289, 333–361 (1989).
ADS CAS PubMed Article Google Scholar
47.
Glasspool, I. J. & Scott, A. C. Phanerozoic concentrations of atmospheric oxygen reconstructed from sedimentary charcoal. Nat. Geosci. 3, 627–630 (2010).
ADS CAS Article Google Scholar
48.
Mills, B. J. W., Belcher, C. M., Lenton, T. M. & Newton, R. J. A modeling case for high atmospheric oxygen concentrations during the Mesozoic and Cenozoic. Geology 44, 1023–1026 (2016).
ADS CAS Article Google Scholar
49.
Crane, P. R. & lidgard, S. Angiosperm diversification and paleolatitudinal gradients in Cretaceous floristic diversity. Science 246, 675–678 (1989).
ADS CAS PubMed Article Google Scholar
50.
Lidgard, S. & Crane, P. R. Angiosperm diversification and Cretaceous floristic trends – a comparison of palynofloras and leaf floras. Paleobiology 16, 77–93 (1990).
Article Google Scholar
51.
Friis, E. M., Crane, P. R. & Pederson, J. R. Early Flowers and Angiosperm Evolution (Cambridge University Press, New York, 2011).
52.
Bond, W. J. The tortoise and the hare: ecology of angiosperm dominance and gymnosperm persistence. Biol. J. Linn. Soc. 36, 227–249 (1989).
Article Google Scholar
53.
Brodribb, T. J., Feild, T. S. & Jordan, G. J. Leaf maximum photosynthetic rate and venation are linked by hydraulics. Plant Physiol. 144, 1890–1898 (2007).
CAS PubMed PubMed Central Article Google Scholar
54.
Field, T. S. et al. Fossil evidence for Cretaceous escalation un angiosperm leaf vein evolution. Proc. Natl Acad. Sci. USA 108, 863–8366 (2011).
Google Scholar
55.
Field, T. S., Arens, N. C., Doyle, J. A. & Dawson, T. E. Dark and disturbed: a new image of early angiosperm ecology. Paleobiology 30, 82–107 (2004).
Article Google Scholar
56.
Mills, B. et al. Changing tectonic controls on the long-term carbon cycle from Mesozoic to present. Geochem. Geophys. Geosyst. 15, 4866–4884 (2014).
ADS CAS Article Google Scholar
57.
Schneider, H. et al. Ferns diversified in the shadow of angiosperms. Nature 428, 553–557 (2004).
ADS CAS PubMed Article Google Scholar
58.
Brodribb, T. J. & Field, T. S. Leaf hydraulic evolution led a surge in leaf photosynthetic capacity during early angiosperm diversification. Ecol. Lett. 13, 175–183 (2010).
PubMed Article Google Scholar
59.
Royer, D. L., Miller, I. M., Peppe, D. J. & Hickey, L. J. Leaf economic traits from fossils support a weedy habit for early angiosperms. Am. J. Bot. 97, 438–445 (2010).
PubMed Article Google Scholar
60.
Stevens P. F. Angiosperm phylogeny website. Version 12, [Online]. http://www.mobot.org/MOBOT/research/APweb/ (2012).
61.
Schwilk, D. W. & Ackerly, D. D. Flammability and serotiny as strategies: correlated evolution in pines. Oikos 94, 326–336 (2001).
Article Google Scholar
62.
Lamont, B. B. & Downes, K. S. Fire-stimulated flowering among resprouters and geophytes in Australia and South Africa. Pl Ecol. 212, 2111–2125 (2011).
Article Google Scholar
63.
Janssen, T. & Bremer, K. The age of major monocot groups inferred from 800+rbcL sequences. Bot. J. Linn. Soc. 146, 385–398 (2004).
Article Google Scholar
64.
Krassilov, V. & Voynets, Y. Weedy Albian angiosperms. Acta Palaeobot. 48, 151–169 (2008).
Google Scholar
65.
Lamont, B. B. & He, T. Fire adapted Gondanan angiosperm floras evolved in the Cretaceous. Bmc. Evol. Biol. 12, 223 (2012).
PubMed PubMed Central Article Google Scholar
66.
Bowman, D. M. J. S., French, B. J. & Prior, L. D. Have plants evolved to self-immolate? Front. Plant. Sci. https://doi.org/10.3389/fpls.2014.00590 (2014).
67.
Crisp, M. D., Burrows, G. E., Cook, l. G., Thornhill, A. H. & Bowman, D. M. J. S. Flammable biomes dominated by eucalypts originated at the Cretaceous-Palaeogene boundary. Nat. Commun 2, 1–8 (2011).
Article CAS Google Scholar
68.
He, T., Lamont, B. B. & Downes, K. S. Banksia born to burn. N. Phyt. 191, 184–196 (2011).
Article Google Scholar
69.
Watson, A. J. & Lovelock, J. E. in Fire Phenomena and the Earth System: An Interdisciplinary Guide to Fire Science (ed Belcher C. M.) 273–287 (John Wiley and Sons, Chichester, UK, 2013).
70.
Tiffney, B. H. Seed size, dispersal syndromes, and the rise of the angiosperms: evidence and hypothesis. Ann. Miss. Bot. Gard. 71, 551–576 (1984).
Article Google Scholar
71.
Wheeler, E. A. & Baas, P. A survey of the fossil record for dicotlydonous wood and its significant for evolutionary and ecological wood anatomy. Int. Assoc. Wood. Anatom. Bull. 12, 271–332 (1991).
Google Scholar
72.
Wing, S. L. & Boucher, L. Ecological aspects of the Cretaceous flowering plant radiation. Ann. Rev. Earth Plan. Sci. 26, 379–421 (1998).
ADS CAS Article Google Scholar
73.
Johnson, K. R. & Ellis, B. A tropical rainforest in Colorado, 1.4 million years after the Cretaceous-Tertiary boundary. Science 296, 2379–2383 (2002).
ADS CAS PubMed Article Google Scholar
74.
Spicer, R. A., McA, Rees, P. & Chapman, J. L. Cretaceous phytogeography and climate signals. Roy. Soc. Proc. B 341, 277–286 (1993).
Google Scholar
75.
Beerling, D. J. & Woodward, F. I. Vegetation and the Terrestrial Carbon Cycle: Modelling the First 400 Million Years. (Cambridge, Cambridge and New York, 2001).
76.
Bond, W. J. & Midgley, J. J. Fire and the angiosperm revolutions. Int. J. Plant Sci. 173, 1–16 (2012).
Article Google Scholar
77.
Wing, S. L. et al. Late Paleocene fossils from the Cerrejón formation, Colombia, are the earliest record of Neotropical rainforest. Proc. Natl Acad. Sci. USA 106, 18627–18632.
78.
Boyce, C. K., Brodribb, T., Feild, T. S. & Zweiniecki, M. J. Angiosperm leaf vein evolution was physiologically and environmentally transformative. Proc. Roy. Soc. B 276, 1771–1776 (2009).
Article Google Scholar
79.
Balch, J. K. and five others. Human-started wildfires expand the fire niche across the United States. Proc. Natl Acad. Sci. USA 114, 2946–2951 (2017).
ADS CAS PubMed Article Google Scholar
80.
Donovan, G. H. & Brown, T. C. Be careful what you wish for: The legacy of Smokey Bear. Front. Ecol. Environ. 5, 73–79 (2007).
Article Google Scholar More