More stories

  • in

    Trajectory of body mass index and height changes from childhood to adolescence: a nationwide birth cohort in Japan

    ParticipantsThe Ministry of Health, Labour, and Welfare of Japan has been conducting The Longitudinal Survey of Newborns in the 21st Century since 2001 to establish strategies to counter the declining birthrate in Japan. The survey targeted all babies born in Japan between January 10 and 17 or between July 10 and 17 of 2001. Baseline questionnaires were sent to a total of 53,575 families when eligible babies reached the age of 6 months and 47,015 families initially completed the baseline questionnaire (88% response rate). These respondents were mailed follow-up questionnaires to investigate medical conditions and behaviors when children reached the ages of 1.5, 2.5, 3.5, 4.5, 5.5, 7, 8, 9, 10, 11, 12, 13, 14, and 15 years20,21,22,23. Birth record data from Vital Statistics of Japan are also linked for each child participating in the study. The current study included data for children/families who responded both to the baseline questionnaire and the fifteenth questionnaire at age 15 years.The baseline survey at age 6 months included questions regarding children’s perinatal status as well as household and socioeconomic factors such as parental academic attainment, parental smoking status, and daycare attendance. The subsequent annual surveys starting at age 1.5 years included questions regarding each child’s height, weight and health status. We excluded 2382 children born before 37 weeks of pregnancy and one child with responses only for the baseline survey and the survey at age 15 years. A total of 26,778 children (315,581 data points) were included in the final analysis. A total of 11,141 children (41.61%) had responses to all 15 questionnaires between the ages of 6 months and 15 years, and responses to more than 12 questionnaires were available for the majority (91.94%) of children (Fig. 1, Table S1).Figure 1Flowchart of study participants.Full size imageMeasuresWe calculated BMI based on each participant’s reported annual height and weight. Each participant’s annual BMI was converted to a BMI Z-score using smoothed L, M, and S values for BMI standards from a representative population of Japanese children24. Briefly, the LMS (lambda–mu–sigma) method is a method proposed by Cole et al. to monitor changes in the skewness of the distribution during childhood as a way of constructing normalized growth standards25. Participants were then classified into four BMI categories based on the World Health Organization (WHO) criteria26: underweight (BMI standard deviation [SD] score of − 5 or more but less than − 2), normal weight (BMI SD score of − 2 or more but less than 1), overweight (BMI SD score of 1 or more but less than 2), and obese (BMI SD score of 2 or more but less than 5). The definitions of overweight and obesity were different for children under 5 years of age: a BMI Z-score of 2 SD or more was categorized as overweight and a BMI Z-score of 3 SD or more was categorized as obese. BMI category at age 15 years was the main outcome of interest in the current study.We also calculated annual height growth for each participant by subtracting the height reported at the previous survey from that reported in the current survey. For annual height growth between 5.5 and 7 years of age, this value was multiplied by 2/3 because of the 1.5-year interval between surveys.Statistical analysesWe first compared baseline characteristics among the four BMI categories (underweight, normal weight, overweight and obese) at age 15 years. To evaluate potential selection bias resulting from losses to follow-up, we also compared the baseline characteristics of children included in the analysis and those of children lost to follow-up through to the fifteenth survey (at age 15 years).We retrospectively examined annual aggregate categorical changes in individuals of the four BMI categories (groups) at age 15 years. For each group, the proportion of each BMI category at each survey between the ages of 1.5 and 14 years was calculated. In addition, we prospectively calculated the proportion of children in each BMI category at each survey between the ages of 1.5 and 14 years who eventually became underweight, normal weight, overweight, or obese at age 15 years. Note that these analyses were based on aggregate data and do not describe individual BMI changes and were performed using only the data obtained without imputation of missing values.Under the assumption that missing data were missing at random, mixed effect models with natural cubic regression splines were applied to calculate the trajectories of BMI Z-scores and annual BMI Z-score changes through age 15 years for participants of each BMI category at age 15 years. Knots at seven locations were placed in percentiles of age to yield a sufficient number of measurements between each consecutive knot (age 1.5, 3.5, 5.5, 8.5, 11, 13 and 15 years), as recommended by Harrell27. The mixed effect model is useful for describing population average growth trajectories and individual growth trajectories even when data are not available for all children at all ages28,29,30,31. Briefly, the population average growth trajectory was modeled with fixed effects, while the individual variability is represented as random effects.After fitting individual BMI trajectories using a mixed-effects model with natural cubic spline function, we estimated individual adiposity rebound timing as the age where the first derivative of the trajectory reached its minimum and the second derivative was positive32. Children were then classified into five categories (1.5–2.5 years, 3.5–4.5 years, 5.5–7 years, 8–10 years, and 11 years or older) for analysis of adiposity rebound timing33,34. The distribution of adiposity rebound timing was calculated for individuals of each BMI status at age 15 years overall and by gender.Finally, we modelled annual height change and its associations with BMI status at age 15 years separately for each gender using mixed-effects models with natural cubic regression splines.All statistical analyses were performed using Stata version 16 (StataCorp LLC, College Station, TX, USA). This study was approved by the Institutional Review Board at Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences (No.1506-073) and was conducted in accordance with the 1964 Helsinki Declaration and Ethical Guidelines for Medical and Health Research Involving Human Subjects. Informed consent was obtained by the opt-out method on the university’s website. More

  • in

    Environmental optima for an ecosystem engineer: a multidisciplinary trait-based approach

    1.Rivadeneira, M. M. et al. Testing the abundant-centre hypothesis using intertidal porcelain crabs along the Chilean coast: Linking abundance and life-history variation. J. Biogeogr. 37, 486–498 (2010).
    Google Scholar 
    2.Hutchins, L. W. The bases for temperature zonation in geographical distribution. Ecol. Monogr. 17, 325–335 (1947).
    Google Scholar 
    3.Lewis, J. R. Latitudinal trends in reproduction, recruitment and population characteristics of some rocky littoral molluscs and cirripedes. Hydrobiologia 142, 1–13 (1986).
    Google Scholar 
    4.Bernardo, J. The particular maternal effect of propagule size, especially egg size: Patterns, models, quality of evidence and interpretations. Am. Zool. 36, 216–236 (1996).
    Google Scholar 
    5.Thorson, G. Reproductive and larval ecology of marine bottom invertebrates. Biol. Rev. 25, 1–45 (1950).CAS 
    PubMed 

    Google Scholar 
    6.Marshall, D. J., Pettersen, A. K. & Cameron, H. A global synthesis of offspring size variation, its eco-evolutionary causes and consequences. Funct. Ecol. 32, 1436–1446 (2018).
    Google Scholar 
    7.Des Roches, S. et al. The ecological importance of intraspecific variation. Nat. Ecol. Evol. 2, 57–64 (2018).PubMed 

    Google Scholar 
    8.Violle, C. et al. Let the concept of trait be functional!. Oikos 116, 882–892 (2007).
    Google Scholar 
    9.Sides, C. B. et al. Revisiting Darwin’s hypothesis: Does greater intraspecific variability increase species’ ecological breadth?. Am. J. Bot. 101, 56–62 (2014).PubMed 

    Google Scholar 
    10.Moran, E. V., Hartig, F. & Bell, D. M. Intraspecific trait variation across scales: Implications for understanding global change responses. Glob. Change Biol. 22, 137–150 (2016).ADS 

    Google Scholar 
    11.Violle, C. et al. The return of the variance: Intraspecific variability in community ecology. Trends Ecol. Evol. 27, 244–252 (2012).PubMed 

    Google Scholar 
    12.Stark, J., Lehman, R., Crawford, L., Enquist, B. J. & Blonder, B. Does environmental heterogeneity drive functional trait variation? A test in montane and alpine meadows. Oikos 126, 1650–1659 (2017).
    Google Scholar 
    13.Stearns, S. C. The Evolution of Life Histories. xii, 249p. No. 575 S81 (Oxford, Oxford University, 1992).14.Vance, R. R. On reproductive strategies in marine benthic invertebrates. Am. Nat. 107, 339–352 (1973).
    Google Scholar 
    15.Levitan, D. R. Gamete traits influence the variance in reproductive success, the intensity of sexual selection, and the outcome of sexual conflict among congeneric sea urchins. Evolution 62, 1305–1316 (2008).PubMed 

    Google Scholar 
    16.Lavorel, S. & Garnier, E. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct. Ecol. 16, 545–556 (2002).
    Google Scholar 
    17.Pineda, M. C. et al. Tough adults, frail babies: An analysis of stress sensitivity across early life-history stages of widely introduced marine invertebrates. PLoS ONE 7, e46672 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Harley, C. D. G. et al. The impacts of climate change in coastal marine systems: Climate change in coastal marine systems. Ecol. Lett. 9, 228–241 (2006).ADS 
    PubMed 

    Google Scholar 
    19.Stein, A., Gerstner, K. & Kreft, H. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol. Lett. 17, 866–880 (2014).PubMed 

    Google Scholar 
    20.Foo, S. A. & Byrne, M. Marine gametes in a changing ocean: Impacts of climate change stressors on fecundity and the egg. Mar. Environ. Res. 128, 12–24 (2017).CAS 
    PubMed 

    Google Scholar 
    21.Dahlhoff, E. P. Biochemical indicators of stress and metabolism: Applications for marine ecological studies. Annu. Rev. Physiol. 66, 183–207 (2004).CAS 
    PubMed 

    Google Scholar 
    22.Soudant, P. et al. Comparison of the lipid class and fatty acid composition between a reproductive cycle in nature and a standard hatchery conditioning of the Pacific Oyster Crassostrea gigas. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 123, 209–222 (1999).
    Google Scholar 
    23.Lester, S. E., Gaines, S. D. & Kinlan, B. P. Reproduction on the edge: Large-scale patterns of individual performance in a marine invertebrate. Ecology 88, 2229–2239 (2007).PubMed 

    Google Scholar 
    24.Helmuth, B., Mieszkowska, N., Moore, P. & Hawkins, S. J. Living on the edge of two changing worlds: Forecasting the responses of rocky intertidal ecosystems to climate change. Annu. Rev. Ecol. Evol. Syst. 37, 373–404 (2006).
    Google Scholar 
    25.Sagarin, R. D., Barry, J. P., Gilman, S. E. & Baxter, C. H. Climate-related change in an intertidal community over short and long time scales. Ecol. Monogr. 69, 465–490 (1999).
    Google Scholar 
    26.Dubois, S., Retière, C. & Olivier, F. Biodiversity associated with Sabellaria alveolata (Polychaeta: Sabellariidae) reefs: Effects of human disturbances. J. Mar. Biol. Assoc. UK 82, 817–826 (2002).
    Google Scholar 
    27.Jones, A. G., Dubois, S. F., Desroy, N. & Fournier, J. Interplay between abiotic factors and species assemblages mediated by the ecosystem engineer Sabellaria alveolata (Annelida: Polychaeta). Estuar. Coast. Shelf Sci. 200, 1–18 (2018).ADS 

    Google Scholar 
    28.Bonifazi, A. et al. Macrofaunal biodiversity associated with different developmental phases of a threatened Mediterranean Sabellaria alveolata (Linnaeus, 1767) reef. Mar. Environ. Res. 145, 97–111 (2019).CAS 
    PubMed 

    Google Scholar 
    29.Holt, T. J., Biogenic Reefs. An Overview of Dynamic and Sensitivity Characteristics for Conservation Management of Marine SACs. UK Marine SACs Project (1998).30.Crisp, D. The effects of the severe winter of 1962–1963 on marine life in Britain. J. Anim. Ecol. 33, 165–210 (1964).
    Google Scholar 
    31.Firth, L. B. et al. Historical comparisons reveal multiple drivers of decadal change of an ecosystem engineer at the range edge. Ecol. Evol. 5, 3210–3222 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    32.Firth, L. B. et al. Specific niche requirements underpin multidecadal range edge stability, but may introduce barriers for climate change adaptation. Divers. Distrib. 27, 668–683 (2021).
    Google Scholar 
    33.Wethey, D. S. et al. Response of intertidal populations to climate: Effects of extreme events versus long term change. J. Exp. Mar. Biol. Ecol. 400, 132–144 (2011).
    Google Scholar 
    34.Sagarin, R. D. & Gaines, S. D. Geographical abundance distributions of coastal invertebrates: Using one-dimensional ranges to test biogeographic hypotheses. J. Biogeogr. 29, 985–997 (2002).
    Google Scholar 
    35.Rahman, M. A., Henderson, S., Miller-Ezzy, P., Li, X. X. & Qin, J. G. Immune response to temperature stress in three bivalve species: Pacific oyster Crassostrea gigas, Mediterranean mussel Mytilus galloprovincialis and mud cockle Katelysia rhytiphora. Fish Shellfish Immunol. 86, 868–874 (2019).CAS 
    PubMed 

    Google Scholar 
    36.Osada, M., Nishikawa, M. & Nomura, T. Involvement of prostaglandins in the spawning of the scallop, Patinopecten yessoensis. Comp. Biochem. Physiol. C 94, 595–601 (1989).
    Google Scholar 
    37.Stanley, D. W. & Howard, R. W. The biology of prostaglandins and related eicosanoids in invertebrates: Cellular, organismal and ecological actions. Am. Zool. 38, 369–381 (1998).CAS 

    Google Scholar 
    38.Pernet, F., Tremblay, R., Comeau, L. & Guderley, H. Temperature adaptation in two bivalve species from different thermal habitats: Energetics and remodelling of membrane lipids. J. Exp. Biol. 210, 2999–3014 (2007).PubMed 

    Google Scholar 
    39.Muir, A. P., Nunes, F. L. D., Dubois, S. F. & Pernet, F. Lipid remodelling in the reef-building honeycomb worm, Sabellaria alveolata, reflects acclimation and local adaptation to temperature. Sci. Rep. 6, 35669 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    40.Hulbert, A. & Else, P. L. Membranes as possible pacemakers of metabolism. J. Theor. Biol. 199, 257–274 (1999).ADS 
    CAS 
    PubMed 

    Google Scholar 
    41.Brokordt, K. B., Himmelman, J. H., Nusetti, O. A. & Guderley, H. E. Reproductive investment reduces recuperation from exhaustive escape activity in the tropical scallop Euvola zizac. Mar. Biol. 137, 857–865 (2000).CAS 

    Google Scholar 
    42.Levitan, D. R. & Roitberg, B. D. Optimal egg size in marine invertebrates: Theory and phylogenetic analysis of the critical relationship between egg size and development time in echinoids. Am. Nat. 156, 175–192 (2000).PubMed 

    Google Scholar 
    43.Moran, A. L. & McAlister, J. S. Egg size as a life history character of marine invertebrates: Is it all it’s cracked up to be?. Biol. Bull. 216, 226–242 (2009).PubMed 

    Google Scholar 
    44.Marshall, D. J. & Burgess, S. C. Deconstructing environmental predictability: Seasonality, environmental colour and the biogeography of marine life histories. Ecol. Lett. 18, 174–181 (2015).PubMed 

    Google Scholar 
    45.Racault, M.-F., Le Quéré, C., Buitenhuis, E., Sathyendranath, S. & Platt, T. Phytoplankton phenology in the global ocean. Ecol. Indic. 14, 152–163 (2012).
    Google Scholar 
    46.Henson, S., Cole, H., Beaulieu, C. & Yool, A. The impact of global warming on seasonality of ocean primary production. Biogeosciences 10, 4357–4369 (2013).ADS 

    Google Scholar 
    47.Morim, J. et al. Robustness and uncertainties in global multivariate wind-wave climate projections. Nat. Clim. Change 9, 711–718 (2019).ADS 

    Google Scholar 
    48.Stillman, J. H. Heat waves, the new normal: Summertime temperature extremes will impact animals, ecosystems, and human communities. Physiology 34, 86–100 (2019).CAS 
    PubMed 

    Google Scholar 
    49.McCarthy, D., Young, C. & Emson, R. Influence of wave-induced disturbance on seasonal spawning patterns in the sabellariid polychaete Phragmatopoma lapidosa. Mar. Ecol. Prog. Ser. 256, 123–133 (2003).ADS 

    Google Scholar 
    50.Aviz, D., Pinto, A. J. A., Ferreira, M. A. P., Rocha, R. M. & Rosa Filho, J. S. Reproductive biology of Sabellaria wilsoni (Sabellariidae: Polychaeta), an important ecosystem engineer on the Amazon coast. J. Mar. Biol. Assoc. UK https://doi.org/10.1017/S0025315416001776 (2016).Article 

    Google Scholar 
    51.Bowman, R. S. & Lewis, J. Annual fluctuations in the recruitment of Patella vulgata L. J. Mar. Biol. Assoc. U. K. 57, 793–815 (1977).
    Google Scholar 
    52.Sagarin, R. D. & Somero, G. N. Complex patterns of expression of heat-shock protein 70 across the southern biogeographical ranges of the intertidal mussel Mytilus californianus and snail Nucella ostrina. J. Biogeogr. 33, 622–630 (2006).
    Google Scholar 
    53.Wernberg, T. et al. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat. Clim. Change 3, 78–82 (2013).ADS 

    Google Scholar 
    54.Firth, L. B., Knights, A. M. & Bell, S. S. Air temperature and winter mortality: Implications for the persistence of the invasive mussel, Perna viridis in the intertidal zone of the south-eastern United States. J. Exp. Mar. Biol. Ecol. 400, 250–256 (2011).
    Google Scholar 
    55.Seabra, R., Wethey, D. S., Santos, A. M. & Lima, F. P. Side matters: Microhabitat influence on intertidal heat stress over a large geographical scale. J. Exp. Mar. Biol. Ecol. 400, 200–208 (2011).
    Google Scholar 
    56.Meneghesso, C. et al. Remotely-sensed L4 SST underestimates the thermal fingerprint of coastal upwelling. Remote Sens. Environ. 237, 111588 (2020).ADS 

    Google Scholar 
    57.Marshall, D. J. & Keough, M. J. The evolutionary ecology of offspring size in marine invertebrates. in Advances in Marine Biology, 1–60. https://doi.org/10.1016/S0065-2881(07)53001-4 (Elsevier, 2007).58.Albert, C. H. et al. A multi-trait approach reveals the structure and the relative importance of intra- vs. interspecific variability in plant traits: Intra- vs. interspecific variability in plant traits. Funct. Ecol. 24, 1192–1201 (2010).
    Google Scholar 
    59.Olofsson, H., Ripa, J. & Jonzén, N. Bet-hedging as an evolutionary game: The trade-off between egg size and number. Proc. R. Soc. B Biol. Sci. 276, 2963–2969 (2009).
    Google Scholar 
    60.Osovitz, C. J. & Hofmann, G. E. Marine macrophysiology: Studying physiological variation across large spatial scales in marine systems. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 147, 821–827 (2007).PubMed 

    Google Scholar 
    61.Clarke, A. Reproduction in the cold: Thorson revisited. Invertebr. Reprod. Dev. 22, 175–183 (1992).
    Google Scholar 
    62.Hawkins, S. J. et al. Distinguishing globally-driven changes from regional- and local-scale impacts: The case for long-term and broad-scale studies of recovery from pollution. Mar. Pollut. Bull. 124, 573–586 (2017).CAS 
    PubMed 

    Google Scholar 
    63.Dahlhoff, E. P., Stillman, J. H. & Menge, B. A. Physiological community ecology: Variation in metabolic activity of ecologically important rocky intertidal invertebrates along environmental gradients. Integr. Comp. Biol. 42, 862–871 (2002).PubMed 

    Google Scholar 
    64.Nunes, F. L. D., Rigal, F., Dubois, S. F. & Viard, F. Looking for diversity in all the right places? Genetic diversity is highest in peripheral populations of the reef-building polychaete Sabellaria alveolata. Mar. Biol. 168, 63 (2021).
    Google Scholar 
    65.Bush, L. E. Stability and Variability of the Ecosystem Engineer Sabellaria alveolata on Differing Temporal and Spatial Scales (Bangor University, 2016).
    Google Scholar 
    66.Lourenço, C. R., Nicastro, K. R., McQuaid, C. D., Krug, L. A. & Zardi, G. I. Strong upwelling conditions drive differences in species abundance and community composition along the Atlantic coasts of Morocco and Western Sahara. Mar. Biodivers. 50, 15 (2020).
    Google Scholar 
    67.Ritchie, H. & Marshall, D. J. Fertilisation is not a new beginning: Sperm environment affects offspring developmental success. J. Exp. Biol. 216, 3104–3109 (2013).PubMed 

    Google Scholar 
    68.Dubois, S., Comtet, T., Retière, C. & Thiébaut, E. Distribution and retention of Sabellaria alveolata larvae (Polychaeta: Sabellariidae) in the Bay of Mont-Saint-Michel, France. Mar. Ecol. Prog. Ser. 346, 243–254 (2007).ADS 
    CAS 

    Google Scholar 
    69.Costello, D. P., Henley, C., & Marine Biological Laboratory (Woods Hole, Mass.). Methods for obtaining and handling marine eggs and embryos [by] Donald P. Costello and Catherine Henley. ([s.n.], 1971). https://doi.org/10.5962/bhl.title.1020.70.Gruet, Y. Aspects morphologiques et dynamiques de constructions de l’Annélide polychete Sabellaria alveolata (Linne). Rev. Trav. Inst. Pêch. Marit. 36, 131–161 (1972).
    Google Scholar 
    71.Saulquin, B., Gohin, F. & Garrello, R. Regional objective analysis for merging high-resolution MERIS, MODIS/Aqua, and SeaWiFS Chlorophyll-a data from 1998 to 2008 on the European Atlantic Shelf. IEEE Trans. Geosci. Remote Sens. 49, 143–154 (2011).ADS 

    Google Scholar 
    72.Gohin, F. Annual cycles of chlorophyll-a, non-algal suspended particulate matter, and turbidity observed from space and in-situ in coastal waters. Ocean Sci. 7, 705–732 (2011).ADS 
    CAS 

    Google Scholar 
    73.Seabra, R., Wethey, D. S., Santos, A. M. & Lima, F. P. Understanding complex biogeographic responses to climate change. Sci. Rep. 5, 12930 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    74.Schlegel, R. W., Darmaraki, S., Benthuysen, J. A., Filbee-Dexter, K. & Oliver, E. C. J. Marine cold-spells. Progress Oceanogr. 198, 102684 (2021).
    Google Scholar 
    75.Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238 (2016).ADS 

    Google Scholar 
    76.Schlegel, R. W., Oliver, E. C., Hobday, A. J. & Smit, A. J. Detecting marine heatwaves with sub-optimal data. Front. Mar. Sci. 6, 737 (2019).
    Google Scholar 
    77.Egbert, G. D., Erofeeva, S. Y. & Ray, R. D. Assimilation of altimetry data for nonlinear shallow-water tides: Quarter-diurnal tides of the Northwest European Shelf. Cont. Shelf Res. 30, 668–679 (2010).ADS 

    Google Scholar 
    78.Burrows, M., Harvey, R. & Robb, L. Wave exposure indices from digital coastlines and the prediction of rocky shore community structure. Mar. Ecol. Prog. Ser. 353, 1–12 (2008).ADS 

    Google Scholar 
    79.Wessel, P. & Smith, W. H. F. A global, self-consistent, hierarchical, high-resolution shoreline database. J. Geophys. Res. Solid Earth 101, 8741–8743 (1996).
    Google Scholar 
    80.Seers, B. fetchR: Calculate Wind Fetch. R Package Version 2-1 (2017).81.Guillaume, A. S., Monro, K. & Marshall, D. J. Transgenerational plasticity and environmental stress: Do paternal effects act as a conduit or a buffer?. Funct. Ecol. 30, 1175–1184 (2016).
    Google Scholar 
    82.Curd, A. et al. Connecting organic to mineral: How the physiological state of an ecosystem-engineer is linked to its habitat structure. Ecol. Indic. 98, 49–60 (2019).CAS 

    Google Scholar 
    83.Gruet, Y. & Lassus, P. Contribution a l’etude de la biologie reproductive d’une population naturelle de l’Annelide Polychete, Sabellaria alveolata (Linnaeus). Ann. Inst. Oceanogr. Monaco 59, 127–140 (1983).
    Google Scholar 
    84.Hazel, J. The role of alterations in membrane lipid composition in enabling physiological adaptation of organisms to their physical environment. Prog. Lipid Res. 29, 167–227 (1990).CAS 
    PubMed 

    Google Scholar 
    85.Hochachka, P. W. & Somero, G. N. Biochemical Adaptation: Mechanism and Process in Physiological Evolution (Oxford University Press, 2002).
    Google Scholar 
    86.Abele, D. & Puntarulo, S. Formation of reactive species and induction of antioxidant defence systems in polar and temperate marine invertebrates and fish. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 138, 405–415 (2004).PubMed 

    Google Scholar 
    87.Folch, J., Lees, M. & Stanley, G. H. S. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226, 497–509. http://www.jbc.org/content/226/1/497 (1957).CAS 
    PubMed 

    Google Scholar 
    88.Sieracki, C., Sieracki, M. & Yentsch, C. An imaging-in-flow system for automated analysis of marine microplankton. Mar. Ecol. Prog. Ser. 168, 285–296 (1998).ADS 

    Google Scholar 
    89.Pasteels, J. J. Etude au microscope électronique de la réaction corticale. II. La réaction corticale de l’oeuf vierge de Sabellaria alveolata. J. Embryol. Exp. Morphol. 13, 327–339 (1965).CAS 
    PubMed 

    Google Scholar 
    90.Doledec, S. & Chessel, D. Co-inertia analysis: An alternative method for studying species-environment relationships. Freshw. Biol. 31, 277–294 (1994).
    Google Scholar 
    91.Robert, P. & Escoufier, Y. A unifying tool for linear multivariate statistical methods: The RV-coefficient. J. R. Stat. Soc. Ser. C Appl. Stat. 25, 257–265 (1976).MathSciNet 

    Google Scholar 
    92.Legendre, P. & Legendre, L. Ecological resemblance. in Developments in Environmental Modelling Chapter 7, Vol. 24, 265–335 (Elsevier, 2012).93.Borcard, D., Legendre, P. & Drapeau, P. Partialling out the spatial component of ecological variation. Ecology 73, 1045–1055 (1992).
    Google Scholar 
    94.Peres-Neto, P. R., Legendre, P., Dray, S. & Borcard, D. Variation partitioning of species data matrices: Estimation and comparison of fractions. Ecology 87, 2614–2625 (2006).PubMed 

    Google Scholar 
    95.Dormann, C. F. et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).
    Google Scholar 
    96.Messier, J., McGill, B. J. & Lechowicz, M. J. How do traits vary across ecological scales? A case for trait-based ecology: How do traits vary across ecological scales?. Ecol. Lett. 13, 838–848 (2010).PubMed 

    Google Scholar 
    97.Rao, C. R. The use and interpretation of principal component analysis in applied research. Sankhyā Indian J. Stat. Ser. A (1961-2002) 26, 329–358 (1964).98.R Core Team: A language and environment for statistical computing. Available from: https://www.R-project.org/ (2018).99.Oksanen, J. et al. Package ‘vegan’. Commun. Ecol. Package Version 2, 1–295 (2013).
    Google Scholar  More

  • in

    A database of global coastal conditions

    1.Horning, N., Robinson, J. A., Sterling, E. J., Turner, W. & Spector, S. Remote sensing for ecology and conservation. Techniques in Ecology & Conservation Series (Oxford University Press, 2010).2.Li, J. et al. A review of remote sensing for environmental monitoring in China. Remote Sens. 12, 1130 (2020).ADS 

    Google Scholar 
    3.Carter, W. D. & Paulson, R. W. Introduction to monitoring dynamic environmental phenomena of the world using satellite data collection systems. (U.S. Geological Survey, 1979).4.Nurdin, S., Mustapha, M. A. & Lihan, T. The relationship between sea surface temperature and chlorophyll-a concentration in fisheries aggregation area in the archipelagic waters of spermonde using satellite images. AIP Conf. Proc. 1571, 466–472 (2013).ADS 

    Google Scholar 
    5.Ward, D., Phinn, S. R. & Murray, A. T. Monitoring growth in rapidly urbanizing areas using remotely sensed data. Prof. Geogr. 52, 371–386 (2000).
    Google Scholar 
    6.Singh, A. Review article: Digital change detection techniques using remotely-sensed data. Int. J. Remote Sens. 10, 989–1003 (1989).
    Google Scholar 
    7.Dewan, A. M. & Yamaguchi, Y. Land use and land cover change in Greater Dhaka, Bangladesh: Using remote sensing to promote sustainable urbanization. Appl. Geogr. 29, 390–401 (2009).
    Google Scholar 
    8.Green, K., Kempka, D. & Lackey, L. Using remote sensing to detect and monitor land-cover and land-use change. Photogramm. Eng. Remote Sens. 60, 331–337 (1994).
    Google Scholar 
    9.Nagendra, H. Using remote sensing to assess biodiversity. Int. J. Remote Sens. 22, 2377–2400 (2001).
    Google Scholar 
    10.Rosenqvist, Å., Milne, A., Lucas, R., Imhoff, M. & Dobson, C. A review of remote sensing technology in support of the Kyoto Protocol. Environ. Sci. Policy 6, 441–455 (2003).
    Google Scholar 
    11.Liu, J. A process-based boreal ecosystem productivity simulator using remote sensing inputs. Remote Sens. Environ. 62, 158–175 (1997).ADS 

    Google Scholar 
    12.Colwell, R. R. Global climate and infectious disease: The cholera paradigm. Science 274, 2025–2031 (1996).ADS 
    PubMed 
    CAS 

    Google Scholar 
    13.Escobar, L. E. et al. A global map of suitability for coastal Vibrio cholerae under current and future climate conditions. Acta Trop. 149, 202–211 (2015).PubMed 

    Google Scholar 
    14.Watts, N. et al. The 2019 report of The Lancet Countdown on health and climate change: Ensuring that the health of a child born today is not defined by a changing climate. Lancet 394, 1836–1878 (2019).PubMed 

    Google Scholar 
    15.Alesheikh, A. A., Ghorbanali, A. & Nouri, N. Coastline change detection using remote sensing. Int. J. Environ. Sci. Technol. 4, 61–66 (2007).
    Google Scholar 
    16.Specter, C. & Gayle, D. Managing technology transfer for coastal zone development: Caribbean experts identify major issues. Int. J. Remote Sens. 11, 1729–1740 (1990).
    Google Scholar 
    17.Green, E. P., Mumby, P. J., Edwards, A. J. & Clark, C. D. A review of remote sensing for the assessment and management of tropical coastal resources. Coast. Manag. 24, 1–40 (1996).
    Google Scholar 
    18.NASA. MODIS (Moderate Resolution Imaging Spectroradiometer). https://modis.gsfc.nasa.gov/about/ (2021).19.Kilpatrick, K. A. et al. A decade of sea surface temperature from MODIS. Remote Sens. Environ. 165, 27–41 (2015).ADS 

    Google Scholar 
    20.Esaias, W. E. et al. An overview of MODIS capabilities for ocean science observations. IEEE Trans. Geosci. Remote Sens. 36, 1250–1265 (1998).ADS 

    Google Scholar 
    21.Donlon, C. J. et al. Toward improved validation of satellite SST measurements for climate research. J. Clim. 15, 353–369 (2002).ADS 

    Google Scholar 
    22.Minnett, P. J. Satellite infrared scanning radiometers — AVHRR and ATSR/M. in Microwave Remote Sensing for Oceanographic and Marine Weather-Forecast Models 141–163 (Springer Netherlands, 1990).23.Hillger, D. et al. First-Light Imagery from Suomi NPP VIIRS. Bull. Am. Meteorol. Soc. 94, 1019–1029 (2013).ADS 

    Google Scholar 
    24.O’Brien, J. From MODIS to VIIRS – Making the Switch for Air Quality Professionals. NASA Earth Science/Applied Science https://appliedsciences.nasa.gov/our-impact/news/modis-viirs-making-switch-air-quality-professionals (2020).25.Minnett, P. J., Evans, R. H., Podestá, G. P. & Kilpatrick, K. A. Sea-surface temperature from Suomi-NPP VIIRS: Algorithm development and uncertainty estimation. in SPIE 9111, Ocean Sensing and Monitoring VI (eds. Hou, W. W. & Arnone, R. A.) 91110C (2014).26.Drusch, M. et al. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sens. Environ. 120, 25–36 (2012).ADS 

    Google Scholar 
    27.Donlon, C. et al. The global ocean data assimilation experiment high-resolution sea surface temperature pilot project. Bull. Am. Meteorol. Soc. 88, 1197–1214 (2007).ADS 

    Google Scholar 
    28.NOAA. Ocean Facts: Why do scientists measure sea surface temperature? https://oceanservice.noaa.gov/facts/sea-surface-temperature.html (2020).29.Wei, G. F., Tang, D. L. & Wang, S. Distribution of chlorophyll and harmful algal blooms (HABs): A review on space based studies in the coastal environments of Chinese marginal seas. Adv. Sp. Res. 41, 12–19 (2008).ADS 
    CAS 

    Google Scholar 
    30.O’Reilly, J. E. et al. Ocean color chlorophyll algorithms for SeaWiFS. J. Geophys. Res. Ocean. 103, 24937–24953 (1998).ADS 

    Google Scholar 
    31.Hu, C., Lee, Z. & Franz, B. Chlorophyll a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference. J. Geophys. Res. Ocean. 117, C01011 (2012).ADS 

    Google Scholar 
    32.Vezzulli, L. et al. Climate influence on Vibrio and associated human diseases during the past half-century in the coastal North Atlantic. Proc. Natl. Acad. Sci. 113, E5062–E5071 (2016).PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    33.Lipp, E. K., Huq, A. & Colwell, R. R. Effects of global climate on infectious disease: The Cholera model. Clin. Microbiol. Rev. 15, 757–770 (2002).PubMed 
    PubMed Central 

    Google Scholar 
    34.Grimes, J. D. et al. Viewing marine bacteria, their activity and response to environmental drivers from orbit: Satellite remote sensing of bacteria. Microb. Ecol. 67, 489–500 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    35.Shen, L., Xu, H. & Guo, X. Satellite remote sensing of harmful algal blooms (HABs) and a potential synthesized framework. Sensors 12, 7778–803 (2012).36.Hayashi, M., Jin, F. & Stuecker, M. F. Dynamics for El Niño-La Niña asymmetry constrain equatorial-Pacific warming pattern. Nat. Commun. 11, 1–10 (2020).
    Google Scholar 
    37.Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).38.Minnett, P. J. et al. Sea-surface temperature measurements from the moderate-resolution imaging spectroradiometer (MODIS) on Aqua and Terra. in IEEE International Geoscience and Remote Sensing Symposium Proceedings. 2004 7, 4576–4579 (2004).39.Minnett, P. J. The validation of sea surface temperature retrievals from spaceborne infrared radiometers. in Oceanography from Space (Springer Netherlands, 2010).40.Minnett, P. J. & Corlett, G. K. A pathway to generating climate data records of sea-surface temperature from satellite measurements. Deep Sea Res. Part II Top. Stud. Oceanogr. 77–80, 44–51 (2012).ADS 

    Google Scholar 
    41.Castaneda-Guzman, M., Mantilla-Saltos, G., Murray, K. A., Settlage, R. & Escobar, L. E. A database of global coastal conditions. Figshare https://doi.org/10.6084/m9.figshare.c.5660263.v1 (2021).42.R Core Team. R: A Language and Environment for Statistical Computing. (2020).43.NOAA. National Oceanic and Atmospheric Administration (NOAA) Coastal Watch. https://coastwatch.pfeg.noaa.gov/erddapinfo/ (2021).44.Castaneda-Guzman, M., Mantilla-Saltos, G., Murray, K. A., Settlage, R. & Escobar, L. E. Methods and code. Figshare https://doi.org/10.6084/m9.figshare.13708642.v4 (2021).45.Stanford. Best practices for file formats. https://library.stanford.edu/research/data-management-services/data-best-practices/best-practices-file-formats (2021).46.UCAR Community Programs. Network Common Data Form (NetCDF). https://www.unidata.ucar.edu/software/netcdf/ (2021).47.Michna, P. & Woods, M. RNetCDF: Interface to ‘NetCDF’ Datasets. (2019).48.Hijmans, R. J. raster: Geographic Data Analysis and Modeling. (2020).49.ArcGIS. What is a raster data? https://desktop.arcgis.com/en/arcmap/10.3/manage-data/raster-and-images/what-is-raster-data.htm (2021).50.United Nations. United Nations Convention on the Law of the Sea. 1833 U.N.T.S. 397 (1982).51.Tilstone, G. H. et al. Assessment of MODIS-Aqua chlorophyll-a algorithms in coastal and shelf waters of the eastern Arabian Sea. Cont. Shelf Res. 65, 14–26 (2013).ADS 

    Google Scholar 
    52.Hoge, F. E. et al. Validation of Terra-MODIS phytoplankton chlorophyll fluorescence line height. I. Initial airborne Lidar results. Appl. Opt. 42, 2767-2771 (2003).ADS 
    PubMed 

    Google Scholar 
    53.Remer, L. A. Validation of MODIS aerosol retrieval over ocean. Geophys. Res. Lett. 29, 8008 (2002).ADS 

    Google Scholar 
    54.Gentemann, C. L. Three way validation of MODIS and AMSR-E sea surface temperatures. J. Geophys. Res. Ocean. 119, 2583–2598 (2014).ADS 

    Google Scholar 
    55.Fang, H., Wei, S. & Liang, S. Validation of MODIS and CYCLOPES LAI products using global field measurement data. Remote Sens. Environ. 119, 43–54 (2012).ADS 

    Google Scholar 
    56.Hosoda, K., Murakami, H., Sakaida, F. & Kawamura, H. Algorithm and validation of sea surface temperature observation using MODIS sensors aboard terra and aqua in the western North Pacific. J. Oceanogr. 63, 267–280 (2007).
    Google Scholar 
    57.Hao, Y. et al. Validation of MODIS sea surface temperature product in the coastal waters of the Yellow Sea. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 10, 1667–1680 (2017).ADS 

    Google Scholar 
    58.Sims, D. A. et al. On the use of MODIS EVI to assess gross primary productivity of North American ecosystems. J. Geophys. Res. Biogeosciences 111 (2006).59.Miles, T. N. & He, R. Temporal and spatial variability of Chl-a and SST on the South Atlantic Bight: Revisiting with cloud-free reconstructions of MODIS satellite imagery. Cont. Shelf Res. 30, 1951–1962 (2010).ADS 

    Google Scholar 
    60.Ma, S., Zhang, X., Ding, C., Han, W. & Lu, Y. Comparison of the spatiotemporal variation of Chl-a in the East China Sea and Bohai Sea based on long time series satellite data. in 2021 9th International Conference on Agro-Geoinformatics (Agro-Geoinformatics) 1–6 (2021).61.Watts, N. et al. The 2020 report of The Lancet Countdown on health and climate change: Responding to converging crises. Lancet 6736 (2020).62.Moradi, M. & Kabiri, K. Spatio-temporal variability of SST and Chlorophyll-a from MODIS data in the Persian Gulf. Mar. Pollut. Bull. 98, 14–25 (2015).PubMed 
    CAS 

    Google Scholar 
    63.Golder, M. R. et al. Chlorophyll-a, SST and particulate organic carbon in response to the cyclone Amphan in the Bay of Bengal. J. Earth Syst. Sci. 130, 157 (2021).ADS 
    CAS 

    Google Scholar 
    64.Minnett, P. J., Evans, R. H., Kearns, E. J. & Brown, O. B. Sea-surface temperature measured by the Moderate Resolution Imaging Spectroradiometer (MODIS). in IEEE International Geoscience and Remote Sensing Symposium vol. 2, 1177–1179 (IEEE, 2002).65.Qin, H., Chen, G., Wang, W., Wang, D. & Zeng, L. Validation and application of MODIS-derived SST in the South China Sea. Int. J. Remote Sens. 35, 4315–4328 (2014).
    Google Scholar 
    66.Saulquin, B., Gohin, F. & Garrello, R. Regional Objective Analysis for Merging High-Resolution MERIS, MODIS/Aqua, and SeaWiFS Chlorophyll-a Data From 1998 to 2008 on the European Atlantic Shelf. IEEE Trans. Geosci. Remote Sens. 49, 143–154 (2011).ADS 

    Google Scholar 
    67.Chen, J. & Quan, W. An improved algorithm for retrieving chlorophyll-a from the Yellow River Estuary using MODIS imagery. Environ. Monit. Assess. 185, 2243–2255 (2013).PubMed 

    Google Scholar 
    68.Hanafin, J. A. & Minnett, P. J. Thermal profiling of the sea surface skin layer using FTIR measurements. in Gas Transfer at Water Surfaces 161–166 (Blackwell Publishing, 2002).69.Wong, E. W. & Minnett, P. J. The response of the ocean thermal skin layer to variations in incident infrared radiation. J. Geophys. Res. Ocean. 123, 2475–2493 (2018).ADS 

    Google Scholar 
    70.Ward, B. Near-surface ocean temperature. J. Geophys. Res. 111, C02004 (2006).ADS 

    Google Scholar 
    71.Kilpatrick, K. A., Podestá, G. P. & Evans, R. Overview of the NOAA/NASA advanced very high resolution radiometer Pathfinder algorithm for sea surface temperature and associated matchup database. J. Geophys. Res. Ocean. 106, 9179–9197 (2001).ADS 

    Google Scholar 
    72.Hollstein, A., Segl, K., Guanter, L., Brell, M. & Enesco, M. Ready-to-use methods for the detection of clouds, cirrus, snow, shadow, water and clear sky pixels in Sentinel-2 MSI images. Remote Sens. 8, 666 (2016).ADS 

    Google Scholar 
    73.Luo, B., Minnett, P. J., Gentemann, C. & Szczodrak, G. Improving satellite retrieved night-time infrared sea surface temperatures in aerosol contaminated regions. Remote Sens. Environ. 223, 8–20 (2019).ADS 

    Google Scholar 
    74.Moore, T. S., Campbell, J. W. & Dowell, M. D. A class-based approach to characterizing and mapping the uncertainty of the MODIS ocean chlorophyll product. Remote Sens. Environ. 113, 2424–2430 (2009).ADS 

    Google Scholar 
    75.Pieri, M. et al. Assessment of three algorithms for the operational estimation of [CHL] from MODIS data in the Western Mediterranean Sea. Eur. J. Remote Sens. 48, 383–401 (2015).
    Google Scholar 
    76.Tilstone, G. H. et al. Performance of Ocean Colour Chlorophyll-a algorithms for Sentinel-3 OLCI, MODIS-Aqua and Suomi-VIIRS in open-ocean waters of the Atlantic. Remote Sens. Environ. 260, 112444 (2021).ADS 

    Google Scholar  More

  • in

    First tracking of the oceanic spawning migrations of Australasian short-finned eels (Anguilla australis)

    1.Dudgeon, D. et al. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol. Rev. Camb. Philos. Soc. 81, 163–182 (2006).PubMed 

    Google Scholar 
    2.Arthington, A. H., Dulvy, N. K., Gladstone, W. & Winfield, I. J. Fish conservation in freshwater and marine realms: Status, threats and management. Aquat. Conserv. 26, 838–857 (2016).
    Google Scholar 
    3.Deinet, S. et al. The Living Planet Index (LPI) for Migratory Freshwater Fish—Technical Report. (World Fish Migration Foundation, 2020).4.Limburg, K. E. & Waldman, J. R. Dramatic declines in North Atlantic diadromous fishes. Bioscience 59, 955–965 (2009).
    Google Scholar 
    5.Lennox, R. J. et al. One hundred pressing questions on the future of global fish migration science, conservation, and policy. Front. Ecol. Evol. 7, 286 (2019).ADS 

    Google Scholar 
    6.Jellyman, D.J. An enigma: how can freshwater eels (Anguilla spp.) be such a successful genus yet be universally
    threatened? Rev. Fish Biol. Fish. https://doi.org/10.1007/s11160-021-09658-8 (2021). 7.Gross, M. R., Coleman, R. M. & McDowall, R. M. Aquatic productivity and the evolution of diadromous fish migration. Science 239, 1291–1293 (1988).ADS 
    CAS 
    PubMed 

    Google Scholar 
    8.Aarestrup, K. et al. Oceanic spawning migration of the European eel (Anguilla anguilla). Science 325, 1660–1660 (2009).ADS 
    CAS 
    PubMed 

    Google Scholar 
    9.Righton, D. et al. Empirical observations of the spawning migration of European eels: The long and dangerous road to the Sargasso Sea. Sci. Adv. 2, e1501694 (2016).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Chow, S. et al. Light-sensitive vertical migration of the Japanese eel Anguilla japonica revealed by real-time tracking and its utilization for geolocation. PLoS ONE 10, e0121801 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    11.Béguer-Pon, M. et al. Tracking anguillid eels: Five decades of telemetry-based research. Mar. Freshw. Res. 69, 199–219 (2018).
    Google Scholar 
    12.Jellyman, D. & Tsukamoto, K. First use of archival transmitters to track migrating freshwater eels Anguilla dieffenbachii at sea. Mar. Ecol. Prog. Ser. 233, 207–215 (2002).ADS 

    Google Scholar 
    13.Watanabe, S. et al. Reexamination of the spawning migration of Anguilla dieffenbachii in relation to water temperature and the lunar cycle. N. Z. J. Mar. Freshw. Res. 54, 131–147 (2020).
    Google Scholar 
    14.McNiven, I. et al. Phased redevelopment of an ancient Gunditjmara fish trap over the past 800 years: Muldoons Trap Complex, Lake Condah, southwestern Victoria. Aust. Archaeol. 81, 44–58 (2015).
    Google Scholar 
    15.Rose, D., Bell, D. & Crook, D. A. Restoring habitat and cultural practice in Australia’s oldest and largest traditional aquaculture system. Rev. Fish Biol. Fish. 26, 589–600 (2016).
    Google Scholar 
    16.Pike, C., Crook, V. & Gollock, M. Anguilla australis (errata version published in 2019). The IUCN Red List of Threatened Species 2019: e.T195502A154801652 (2019). https://doi.org/10.2305/IUCN.UK.2019-2.RLTS.T195502A154801652.en. Downloaded on 14 January 2020.17.Miller, M. J. et al. Review of Ocean-Atmospheric Factors in the Atlantic and Pacific Oceans Influencing Spawning and Recruitment of Anguillid Eels. 231–249 (American Fisheries Society Symposium, 2009).18.Jacoby, D. M. P. et al. Synergistic patterns of threat and the challenges facing global anguillid eel conservation. Glob. Ecol. Conserv. 4, 321–333 (2015).
    Google Scholar 
    19.Schmidt, J. The freshwater eels of Australia with some remarks on the shortfin species of Anguilla. Rec. Aust. Mus. 16, 179–210 (1928).
    Google Scholar 
    20.Jespersen, P. Indo-Pacific leptocephaids of the genus Anguilla. Systematic and biological studies. Dana-Rep. Carlsberg Found. 22, 1–128 (1942).
    Google Scholar 
    21.Castle, P. H. J. Anguillid leptocephali in the southwest Pacific. Zool. Pubs Vic. Univ. Wellingt. 33, 1–14 (1963).
    Google Scholar 
    22.Aoyama, J. et al. Distribution and dispersal of anguillid leptocephali in the western Pacific Ocean revealed by molecular analysis. Mar. Ecol. Prog. Ser. 188, 193–200 (1999).ADS 

    Google Scholar 
    23.Kuroki, M. et al. Distribution of anguillid leptocephali and possible spawning areas in the South Pacific Ocean. Progr. Oceanogr. 180, 102234 (2020).
    Google Scholar 
    24.Todd, P. R. Size and age of migrating New Zealand freshwater eels (Anguilla spp.). N. Z. J. Mar. Freshw. Res. 14, 283–293 (1980).
    Google Scholar 
    25.Sloane, R. Preliminary observations of migrating adult freshwater eels (Anguilla australis australis Richardson) in Tasmania. Mar. Freshw. Res. 35, 471–476 (1984).ADS 

    Google Scholar 
    26.Økland, F., Thorstad, E. B., Westerberg, H., Aarestrup, K. & Metcalfe, J. D. Development and testing of attachment methods for pop-up satellite archival transmitters in European eel. Anim. Biotelemetry 1, 1–13 (2013).
    Google Scholar 
    27.Kuroki, M. et al. Distribution and early life-history characteristics of anguillid leptocephali in the western South Pacific. Mar. Freshw. Res. 59, 1035–1047 (2008).
    Google Scholar 
    28.Righton, D. et al. The Anguilla spp. migration problem: 40 million years of evolution and two millennia of speculation. J. Fish Biol. 81, 365–386 (2012).CAS 
    PubMed 

    Google Scholar 
    29.Westerberg, H. Marine migratory behavior of the European silver eel. In Physiology and Ecology of Fish Migration (eds H. Ueda, H. & Tsukamoto, K.) 80–103 (CRC Press, 2013).30.Chang, Y.-L.K., Olmo, G. D. & Schabetsberger, R. Tracking the marine migration routes of South Pacific silver eels. Mar. Ecol. Prog. Ser. 646, 1–12 (2020).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Westerberg, H., Sjöberg, N., Lagenfelt, I., Aarestrup, K. & Righton, D. Behaviour of stocked and naturally recruited European eels during migration. Mar. Ecol. Prog. Ser. 496, 145–157 (2014).ADS 

    Google Scholar 
    32.Ridgway, K. & Godfrey, J. Seasonal cycle of the East Australian current. J. Geophys. Res. Oceans 102, 22921–22936 (1997).ADS 

    Google Scholar 
    33.Ridgway, K. & Dunn, J. Mesoscale structure of the mean East Australian Current System and its relationship with topography. Prog. Oceanogr. 56, 189–222 (2003).ADS 

    Google Scholar 
    34.Westin, L. Migration failure in stocked eels Anguilla anguilla. Mar. Ecol. Prog. Ser. 254, 307–311 (2003).ADS 

    Google Scholar 
    35.Nordeng, H. A pheromone hypothesis for homeward migration in anadromous salmonids. Oikos 28, 155–159 (1977).CAS 

    Google Scholar 
    36.Hays, G. C., Cerritelli, G., Esteban, N., Rattray, A. & Luschi, P. Open ocean reorientation and challenges of island finding by sea turtles during long-distance migration. Curr. Biol. 30, 3236-3242 e3233 (2020).CAS 
    PubMed 

    Google Scholar 
    37.Béguer-Pon, M. et al. Shark predation on migrating adult American eels (Anguilla rostrata) in the Gulf of St. Lawrence. PLoS One 7, e46830 (2012).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Wahlberg, M. et al. Evidence of marine mammal predation of the European eel (Anguilla anguilla L.) on its marine migration. Deep Sea Res. A 86, 32–38 (2014).
    Google Scholar 
    39.Béguer-Pon, M. et al. Large-scale migration patterns of silver American eels from the St. Lawrence River to the Gulf of St. Lawrence using acoustic telemetry. Can. J. Fish. Aquat. Sci. 71, 1579–1592 (2014).
    Google Scholar 
    40.Strøm, J. F. et al. Ocean predation and mortality of adult Atlantic salmon. Sci. Rep. 9, 1–11 (2019).ADS 

    Google Scholar 
    41.Hays, G. C. Tracking animals to their death. J. Anim. Ecol. 83, 5–6 (2014).PubMed 

    Google Scholar 
    42.Amilhat, E. et al. First evidence of European eels exiting the Mediterranean Sea during their spawning migration. Sci. Rep. 6, 21817 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Schabetsberger, R. et al. Oceanic migration behaviour of tropical Pacific eels from Vanuatu. Mar. Ecol. Prog. Ser. 475, 177–190 (2013).ADS 

    Google Scholar 
    44.Schabetsberger, R. et al. Oceanic migration behaviour of Pacific eels from Samoa. Fish. Manag. Ecol. 26, 53–56 (2018).
    Google Scholar 
    45.Béguer-Pon, M., Shan, S., Castonguay, M. & Dodson, J. J. Behavioural variability in the vertical and horizontal oceanic migrations of silver American eels. Mar. Ecol. Prog. Ser. 585, 123–142 (2017).ADS 

    Google Scholar 
    46.Wu, K. et al. Illumination-dependent diel-vertical migration behavior in the genus Anguilla. J. Fish. Soc. Taiwan 45, 225–232 (2018).
    Google Scholar 
    47.Tesch, F. & Rohlf, N. Migration from continental waters to the spawning grounds. In Eel Biology (eds. Aida, K., Tsukamoto, K., Yamauchi, K.) 223–234. (Springer, 2003).48.Sébert, P., Scaion, D. & Belhomme, M. High hydrostatic pressure improves the swimming efficiency of European migrating silver eel. Respir. Physiol. Neurobiol. 165, 112–114 (2009).PubMed 

    Google Scholar 
    49.Jellyman, D. & Tsukamoto, K. Vertical migrations may control maturation in migrating female Anguilla dieffenbachii. Mar. Ecol. Prog. Ser. 404, 241–247 (2010).ADS 

    Google Scholar 
    50.Benoit-Bird, K. J., Dahood, A. D. & Würsig, B. Using active acoustics to compare lunar effects on predator–prey behavior in two marine mammal species. Mar. Ecol. Prog. Ser. 395, 119–135 (2009).ADS 

    Google Scholar 
    51.Owen, K., Andrews, R. D., Baird, R. W., Schorr, G. S. & Webster, D. L. Lunar cycles influence the diving behavior and habitat use of short-finned pilot whales around the main Hawaiian Islands. Mar. Ecol. Prog. Ser. 629, 193–206 (2019).ADS 

    Google Scholar 
    52.Crook, D. A. et al. Environmental cues and extended estuarine residence in seaward migrating eels (Anguilla australis). Freshw. Biol. 59, 1710–1720 (2014).
    Google Scholar 
    53.Musyl, M. K. et al. Performance of pop-up satellite archival tags. Mar. Ecol. Prog. Ser. 433, 1–28 (2011).ADS 

    Google Scholar 
    54.Weng, K. C. et al. Migration and habitat of white sharks (Carcharodon carcharias) in the eastern Pacific Ocean. Mar. Biol. 152, 877–894 (2007).
    Google Scholar 
    55.Gill, A., Bartlett, M. & Thomsen, F. Potential interactions between diadromous fishes of UK conservation importance and the electromagnetic fields and subsea noise from marine renewable energy developments. J. Fish Biol. 81, 664–695 (2012).CAS 
    PubMed 

    Google Scholar 
    56.Aarestrup, K. et al. Survival and progression rates of large European silver eel Anguilla anguilla in late freshwater and early marine phases. Aquat. Biol. 9, 263–270 (2010).
    Google Scholar 
    57.Hays, G. C. et al. Translating marine animal tracking data into conservation policy and management. Trends Ecol. Evol. 34, 459–473 (2019).PubMed 

    Google Scholar 
    58.Westerberg, H. & Wickström, H. Stock assessment of eels in the Baltic: Reconciling survey estimates to achieve quantitative analysis. ICES J. Mar. Sci. 73, 75–83 (2016).
    Google Scholar 
    59.Kaifu, K. Challenges in assessments of Japanese eel stock. Mar. Policy 102, 1–4 (2019).
    Google Scholar  More

  • in

    Climate and land-use changes reduce the benefits of terrestrial protected areas

    1.Watson, J. E. M., Dudley, N., Segan, D. B. & Hockings, M. The performance and potential of protected areas. Nature 515, 67–73 (2014).CAS 

    Google Scholar 
    2.Juffe-Bignoli, D. et al. Protected Planet Report 2014 (UNEP-WCMC, 2014).3.Gray, C. L. et al. Local biodiversity is higher inside than outside terrestrial protected areas worldwide. Nat. Commun. 7, 12306 (2016).4.Xu, W. et al. Strengthening protected areas for biodiversity and ecosystem services in China. Proc. Natl Acad. Sci. USA 114, 1601–1606 (2017).CAS 

    Google Scholar 
    5.Naidoo, R. et al. Evaluating the impacts of protected areas on human well-being across the developing world. Sci. Adv. 5, eaav3006 (2019).CAS 

    Google Scholar 
    6.Geldmann, J. et al. Effectiveness of terrestrial protected areas in reducing habitat loss and population declines. Biol. Conserv. 161, 230–238 (2013).
    Google Scholar 
    7.Cazalis, V. et al. Effectiveness of protected areas in conserving tropical forest birds. Nat. Commun. 11, 4461 (2020).8.Elsen, P. R., Monahan, W. B., Dougherty, E. R. & Merenlender, A. M. Keeping pace with climate change in global terrestrial protected areas. Sci. Adv. 6, eaay0814 (2020).
    Google Scholar 
    9.Hoffmann, S., Irl, S. D. H. & Beierkuhnlein, C. Predicted climate shifts within terrestrial protected areas worldwide. Nat. Commun. 10, 4787 (2019).10.Batllori, E., Parisien, M. A., Parks, S. A., Moritz, M. A. & Miller, C. Potential relocation of climatic environments suggests high rates of climate displacement within the North American protection network. Glob. Change Biol. 23, 3219–3230 (2017).
    Google Scholar 
    11.Ward, M. et al. Just ten percent of the global terrestrial protected area network is structurally connected via intact land. Nat. Commun. 11, 4563 (2020).CAS 

    Google Scholar 
    12.Jones, K. R. et al. One-third of global protected land is under intense human pressure. Science 360, 788–791 (2018).CAS 

    Google Scholar 
    13.Parks, S. A., Carroll, C., Dobrowski, S. Z. & Allred, B. W. Human land uses reduce climate connectivity across North America. Glob. Change Biol. 26, 2944–2955 (2020).
    Google Scholar 
    14.McGuire, J. L., Lawler, J. J., McRae, B. H., Nuñez, T. A. & Theobald, D. M. Achieving climate connectivity in a fragmented landscape. Proc. Natl Acad. Sci. USA 113, 7195–7200 (2016).CAS 

    Google Scholar 
    15.Watson, J. E. M., Iwamura, T. & Butt, N. Mapping vulnerability and conservation adaptation strategies under climate change. Nat. Clim. Change 3, 989–994 (2013).
    Google Scholar 
    16.Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).
    Google Scholar 
    17.Jones, C., Giorgi, F. & Asrar, G. The coordinated regional downscaling experiment: CORDEX–an international downscaling link to CMIP5. CLIVAR Exch. 16, 34–40 (2011).
    Google Scholar 
    18.Hurtt, G. C. et al. Harmonization of global land-use change and management for the period 850-2100 (LUH2) for CMIP6. Geosci. Model Dev. 13, 5425–5464 (2020).CAS 

    Google Scholar 
    19.Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1055 (2009).CAS 

    Google Scholar 
    20.Ordonez, A., Martinuzzi, S., Radeloff, V. C. & Williams, J. W. Combined speeds of climate and land-use change of the conterminous US until 2050. Nat. Clim. Change 4, 811–816 (2014).
    Google Scholar 
    21.UN General Assembly Resolution A/RES/70/1 (UN, 2015).22.Harrop, S. R. ‘Living in harmony with nature’? Outcomes of the 2010 Nagoya conference of the convention on biological diversity. J. Environ. Law 23, 117–128 (2011).
    Google Scholar 
    23.Maxwell, S. L. et al. Area-based conservation in the twenty-first century. Nature 586, 217–227 (2020).CAS 

    Google Scholar 
    24.Schloss, C. A., Nuñez, T. A. & Lawler, J. J. Dispersal will limit ability of mammals to track climate change in the Western Hemisphere. Proc. Natl Acad. Sci. USA 109, 8606–8611 (2012).CAS 

    Google Scholar 
    25.Chen, I. C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).CAS 

    Google Scholar 
    26.Schwalm, C. R., Glendon, S. & Duffy, P. B. RCP8.5 tracks cumulative CO2 emissions. Proc. Natl Acad. Sci. USA 117, 19656–19657 (2020).CAS 

    Google Scholar 
    27.Ando, A. W. & Mallory, M. L. Optimal portfolio design to reduce climate-related conservation uncertainty in the Prairie Pothole Region. Proc. Natl Acad. Sci. USA 109, 6484–6489 (2012).CAS 

    Google Scholar 
    28.Ackerly, D. D. et al. The geography of climate change: implications for conservation biogeography. Divers. Distrib. 16, 476–487 (2010).
    Google Scholar 
    29.Dobrowski, S. Z. & Parks, S. A. Climate change velocity underestimates climate change exposure in mountainous regions. Nat. Commun. 7, 12349 (2016).30.Hoegh-Guldberg, O. et al. in Special Report on Global Warming of 1.5°C (eds Masson-Delmotte, V. et al.) 175–311 (IPCC, WMO, 2018).31.Sandel, B. et al. The influence of late Quaternary climate-change velocity on species endemism. Science 334, 660–664 (2011).CAS 

    Google Scholar 
    32.Ordonez, A., Williams, J. W. & Svenning, J.-C. Mapping climatic mechanisms likely to favour the emergence of novel communities. Nat. Clim. Change 6, 1104–1109 (2016).
    Google Scholar 
    33.Carroll, C. et al. Scale-dependent complementarity of climatic velocity and environmental diversity for identifying priority areas for conservation under climate change. Glob. Change Biol. 23, 4508–4520 (2017).
    Google Scholar 
    34.Alexander, J. M. et al. Lags in the response of mountain plant communities to climate change. Glob. Change Biol. 24, 563–579 (2018).
    Google Scholar 
    35.Lawler, J. J. et al. Projected land-use change impacts on ecosystem services in the United States. Proc. Natl Acad. Sci. USA 111, 7492–7497 (2014).CAS 

    Google Scholar 
    36.Stein, B. A. et al. Preparing for and managing change: climate adaptation for biodiversity and ecosystems. Front. Ecol. Environ. 11, 502–510 (2013).
    Google Scholar 
    37.Elsen, P. R., Monahan, W. B. & Merenlender, A. M. Global patterns of protection of elevational gradients in mountain ranges. Proc. Natl Acad. Sci. USA 115, 6004–6009 (2018).CAS 

    Google Scholar 
    38.Burrows, M. T. et al. The pace of shifting climate in marine and terrestrial ecosystems. Science 334, 652–655 (2011).CAS 

    Google Scholar 
    39.Burrows, M. T. et al. Geographical limits to species-range shifts are suggested by climate velocity. Nature 507, 492–495 (2014).CAS 

    Google Scholar 
    40.Fitzpatrick, M. C., Gove, A. D., Sanders, N. & Dunn, R. R. Climate change, plant migration, and range collapse in a global biodiversity hotspot: the Banksia (Proteaceae) of Western Australia. Glob. Change Biol. 14, 1337–1352 (2008).
    Google Scholar 
    41.Dynesius, M. & Jansson, R. Evolutionary consequences of changes in species’ geographical distributions driven by Milankovitch climate oscillations. Proc. Natl Acad. Sci. USA 97, 9115–9120 (2000).CAS 

    Google Scholar 
    42.Geldmann, J., Manica, A., Burgess, N. D., Coad, L. & Balmford, A. A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. Proc. Natl Acad. Sci. USA 116, 23209–23215 (2019).CAS 

    Google Scholar 
    43.Tittensor, D. P. et al. Integrating climate adaptation and biodiversity conservation in the global ocean. Sci. Adv. 5, eaay9969 (2019).
    Google Scholar 
    44.Osorio, F., Vallejos, R. & Cuevas, F. SpatialPack: Package for Analysis of Spatial Data. R package version 0.2-3 (2014).45.Williams, K. D. et al. The Met Office Global Coupled model 2.0 (GC2) configuration. Geosci. Model Dev. 8, 1509–1524 (2015).
    Google Scholar 
    46.Giorgetta, M. A. et al. Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project Phase 5. J. Adv. Model. Earth Syst. https://doi.org/10.1002/jame.20038 (2013).47.Knudsen, E. M. & Walsh, J. E. Northern Hemisphere storminess in the Norwegian Earth System Model (NorESM1-M). Geosci. Model Dev. 9, 2335–2355 (2016).
    Google Scholar 
    48.Brito-Morales, I. et al. Climate velocity can inform conservation in a warming world. Trends Ecol. Evol. 33, 441–457 (2018).
    Google Scholar 
    49.García Molinos, J., Schoeman, D. S., Brown, C. J. & Burrows, M. T. VoCC: an R package for calculating the velocity of climate change and related climatic metrics. Methods Ecol. Evol. 10, 2195–2202 (2019).
    Google Scholar 
    50.UNEP‐WCMC & IUCN Protected Planet: The World Database on Protected Areas (WDPA, 2018).51.Visconti, P. et al. Protected area targets post-2020. Science 364, eaav6886 (2019).
    Google Scholar 
    52.Farr, T. G. et al. The shuttle radar topography mission. Rev. Geophys. https://doi.org/10.1029/2005RG000183 (2007).53.Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. BioScience 51, 933–938 (2001).54.Ellis, E. C., Antill, E. C. & Kreft, H. All is not loss: plant biodiversity in the anthropocene. PLoS ONE 7, 30535 (2012).55.Asamoah, E. F. Climate Velocity and Land-use Instability 1971–2100 (Figshare, 2021); https://doi.org/10.6084/m9.figshare.14852955.v4 More

  • in

    Trees outside of forests as natural climate solutions

    1.Chao, S. Forest Peoples: Numbers Across the World (Forest Peoples Programme, 2021).2.Zomer, R. J. et al. Sci. Rep. 6, 29987 (2016).CAS 
    Article 

    Google Scholar 
    3.Schnell, S., Altrell, D., Ståhl, G. & Kleinn, C. Environ. Monit. Assess. 187, 4197 (2015).Article 

    Google Scholar 
    4.Brandt, M. et al. Nature 587, 78–82 (2020).Article 

    Google Scholar 
    5.Baccini, A. et al. Nat. Clim. Chang. 2, 182–185 (2012).CAS 
    Article 

    Google Scholar 
    6.Miller, D. C., Muñoz-Mora, J. C. & Christiaensen, L. Forest Policy Econ. 84, 47–61 (2017).Article 

    Google Scholar 
    7.Mbow, C., Smith, P., Skole, D., Duguma, L. & Bustamante, M. Curr. Opin. Environ. Sustain. 6, 8–14 (2014).Article 

    Google Scholar 
    8.Brandt, M. et al. Nat. Geosci. 11, 328–333 (2018).CAS 
    Article 

    Google Scholar 
    9.Mbow, C. et al. in Climate Change and Agriculture (ed. Deryng, D.) Ch. 10 (Burleigh Dodds Science Publishing, 2020).10.Akinyemi, F. O., Ghazaryan, G. & Dubovyk, O. Land Degrad. Dev. 32, 158–172 (2021).Article 

    Google Scholar 
    11.Sitch, S. et al. Biogeosciences 12, 653–679 (2015).Article 

    Google Scholar 
    12.Schnell, S., Kleinn, C. & Ståhl, G. Environ. Monit. Assess. 187, 600 (2015).Article 

    Google Scholar 
    13.Hansen, M. C. et al. Science 342, 850–853 (2013).CAS 
    Article 

    Google Scholar 
    14.Kuyah, S. et al. Agrofor. Syst. 86, 267–277 (2012).Article 

    Google Scholar 
    15.Nationally Determined Contributions Under the Paris Agreement Synthesis Report by the Secretariat FCCC/PA/CMA/2021/2/Add 2 (UNFCCC, 2021); https://unfccc.int/documents/26857316.Lohbeck, M. et al. Sci. Rep. 10, 15038 (2020).CAS 
    Article 

    Google Scholar 
    17.Chomba, S., Sinclair, F., Savadogo, P., Bourne, M. & Lohbeck, M. Front. For. Glob. Chang. 3, 571679 (2020).Article 

    Google Scholar 
    18.Griscom, B. W. et al. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).CAS 
    Article 

    Google Scholar  More

  • in

    Reduced deforestation and degradation in Indigenous Lands pan-tropically

    1.Weisse, M. & Goldman, E. D. We Lost a Football Pitch of Primary Rainforest Every 6 Seconds in 2019 (World Resources Institute, 2020); https://www.wri.org/blog/2020/06/global-tree-cover-loss-data-20192.Gibson, L. et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478, 378–381 (2011).CAS 

    Google Scholar 
    3.Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).CAS 

    Google Scholar 
    4.State of the World’s Indigenous Peoples: Rights to Lands, Territories and Resources (UN, 2021).5.Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).CAS 

    Google Scholar 
    6.Larsen, P. B. et al. Understanding and responding to the environmental human rights defenders crisis: the case for conservation action. Conserv. Lett. 14, e12777 (2020).
    Google Scholar 
    7.Tauli-Corpuz, V., Alcorn, J., Molnar, A., Healy, C. & Barrow, E. Cornered by PAs: adopting rights-based approaches to enable cost-effective conservation and climate action. World Dev. 130, 104923 (2020).
    Google Scholar 
    8.Dinerstein, E. et al. A global deal for nature: guiding principles, milestones, and targets. Sci. Adv. 5, eaaw2869 (2019).CAS 

    Google Scholar 
    9.Dudley, N. et al. The essential role of other effective area-based conservation measures in achieving big bold conservation targets. Glob. Ecol. Conserv. 15, e00424 (2018).
    Google Scholar 
    10.Zero Draft of the Post-2020 Global Biodiversity Framework CBD/WG2020/2/3 (Convention on Biological Diversity, 2020).11.NGO Concerns Over the Proposed 30% Target for Protected Areas and Absence of Safeguards for Indigenous Peoples and Local Communities (Rainforest Foundation UK, 2021).12.Reyes-García, V. et al. Recognizing Indigenous Peoples’ and local communities’ rights and agency in the post-2020 Biodiversity Agenda. Ambio https://doi.org/10.1007/s13280-021-01561-7 (2021).13.Territories of Life: 2021 Report 52 (ICCA Consortium, 2021); https://report.territoriesoflife.org14.Garnett, S. T. et al. A spatial overview of the global importance of Indigenous lands for conservation. Nat. Sustain. 1, 369–374 (2018).
    Google Scholar 
    15.Fa, J. E. et al. Importance of Indigenous Peoples’ lands for the conservation of intact forest landscapes. Front. Ecol. Environ. 18, 135–140 (2020).
    Google Scholar 
    16.Vergara-Asenjo, G. & Potvin, C. Forest protection and tenure status: the key role of indigenous peoples and protected areas in Panama. Glob. Environ. Change 28, 205–215 (2014).
    Google Scholar 
    17.Blackman, A. & Veit, P. Titled Amazon indigenous communities cut forest carbon emissions. Ecol. Econ. 153, 56–67 (2018).
    Google Scholar 
    18.Walker, W. S. et al. The role of forest conversion, degradation, and disturbance in the carbon dynamics of Amazon indigenous territories and protected areas. Proc. Natl Acad. Sci. USA 117, 3015–3025 (2020).CAS 

    Google Scholar 
    19.Nolte, C., Agrawal, A., Silvius, K. M. & Soares-Filho, B. S. Governance regime and location influence avoided deforestation success of protected areas in the Brazilian Amazon. Proc. Natl Acad. Sci. USA 110, 4956–4961 (2013).CAS 

    Google Scholar 
    20.Schleicher, J., Peres, C. A., Amano, T., Llactayo, W. & Leader-Williams, N. Conservation performance of different conservation governance regimes in the Peruvian Amazon. Sci. Rep. 7, 11318 (2017).
    Google Scholar 
    21.Jusys, T. Changing patterns in deforestation avoidance by different protection types in the Brazilian Amazon. PLoS ONE 13, e0195900 (2018).
    Google Scholar 
    22.State of the World’s Indigenous Peoples (UN, 2009).23.Jackson, J. E. & Warren, K. B. Indigenous movements in Latin America, 1992–2004: controversies, ironies, new directions. Annu. Rev. Anthropol. 34, 549–573 (2005).
    Google Scholar 
    24.Vancutsem, C. et al. Long-term (1990–2019) monitoring of forest cover changes in the humid tropics. Sci. Adv. 7, eabe1603 (2021).
    Google Scholar 
    25.Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).CAS 

    Google Scholar 
    26.Stuart, E. A. & Rubin, D. B. in Best Practices in Quantitative Methods (ed. Osborne, J.) 155–176 (SAGE Publications, 2008).27.Pfaff, A., Robalino, J., Lima, E., Sandoval, C. & Herrera, L. D. Governance, location and avoided deforestation from protected areas: greater restrictions can have lower impact, due to differences in location. World Dev. 55, 7–20 (2014).
    Google Scholar 
    28.Leberger, R., Rosa, I. M. D., Guerra, C. A., Wolf, F. & Pereira, H. M. Global patterns of forest loss across IUCN categories of protected areas. Biol. Conserv. 241, 108299 (2020).
    Google Scholar 
    29.Borrini-Feyerabend, G. et al. Governance of Protected Areas: From Understanding to Action (IUCN, 2013).30.Who Owns the World’s Land? A Global Baseline of Formally Recognized Indigenous and Community Land Rights (Rights and Resources Initiative, 2015); https://rightsandresources.org/wp-content/uploads/GlobalBaseline_web.pdf31.Dubertret, F. & Alden Wily, L. Percent of Indigenous and Community Lands (Landmark, 2015).32.Under the Cover of COVID: New Laws in Asia Favor Business at the Cost of Indigenous Peoples’ and Local Communities’ Land and Territorial Rights (Rights and Resources Initiative, 2020).33.Domínguez, L. & Luoma, C. Decolonising conservation policy: how colonial land and conservation ideologies persist and perpetuate indigenous injustices at the expense of the environment. Land 9, 65 (2020).
    Google Scholar 
    34.Pyhälä, A., Orozco, A. O. & Counsell, S. Protected Areas in the Congo Basin: Failing both people and biodiversity? (FAO, 2016).35.Pearson, T. R. H., Brown, S., Murray, L. & Sidman, G. Greenhouse gas emissions from tropical forest degradation: an underestimated source. Carbon Balance Manag. 12, 3 (2017).
    Google Scholar 
    36.Barlow, J. et al. Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature 535, 144–147 (2016).CAS 

    Google Scholar 
    37.Hansen, A. J. et al. A policy-driven framework for conserving the best of Earth’s remaining moist tropical forests. Nat. Ecol. Evol. 4, 1377–1384 (2020).
    Google Scholar 
    38.Milodowski, D. T. et al. The impact of logging on vertical canopy structure across a gradient of tropical forest degradation intensity in Borneo. J. Appl. Ecol. 58, 1764–1775 (2021).
    Google Scholar 
    39.Benítez-López, A., Santini, L., Schipper, A. M., Busana, M. & Huijbregts, M. A. J. Intact but empty forests? Patterns of hunting-induced mammal defaunation in the tropics. PLoS Biol. 17, e3000247 (2019).
    Google Scholar 
    40.Miettinen, J., Stibig, H.-J. & Achard, F. Remote sensing of forest degradation in Southeast Asia—aiming for a regional view through 5–30 m satellite data. Glob. Ecol. Conserv. 2, 24–36 (2014).
    Google Scholar 
    41.Yuliani, E. L. et al. Keeping the land: indigenous communities’ struggle over land use and sustainable forest management in Kalimantan, Indonesia. Ecol. Soc. 23, art49 (2018).
    Google Scholar 
    42.Berkes, F. Sacred Ecology (Routledge, 2017).43.Sheil, D., Boissière, M. & Beaudoin, G. Unseen sentinels: local monitoring and control in conservation’s blind spots. Ecol. Soc. 20, 39 (2015).
    Google Scholar 
    44.Sasaoka, M. & Laumonier, Y. Suitability of local resource management practices based on supernatural enforcement mechanisms in the local social-cultural context. Ecol. Soc. 17, 6 (2012).
    Google Scholar 
    45.Asante, E. A., Ababio, S. & Boadu, K. B. The use of indigenous cultural practices by the Ashantis for the conservation of forests in Ghana. SAGE Open 7, 215824401668761 (2017).
    Google Scholar 
    46.Schwartzman, S. et al. The natural and social history of the indigenous lands and protected areas corridor of the Xingu River basin. Philos. Trans. R. Soc. B 368, 20120164 (2013).
    Google Scholar 
    47.Hayes, T. M. & Murtinho, F. Are indigenous forest reserves sustainable? An analysis of present and future land-use trends in Bosawas, Nicaragua. Int. J. Sustain. Dev. World Ecol. 15, 497–511 (2008).
    Google Scholar 
    48.Tellman, B. et al. Illicit drivers of land use change: narcotrafficking and forest loss in central America. Glob. Environ. Change 63, 102092 (2020).
    Google Scholar 
    49.Bryan, J. For Nicaragua’s indigenous communities, land rights in name only: delineating boundaries among indigenous and black communities in eastern Nicaragua was supposed to guaranteed their land rights. Instead, it did the opposite. NACLA Rep. Am. 51, 55–64 (2019).
    Google Scholar 
    50.Seymour, F., La Vina, T. & Hite, K. Evidence Linking Community-level Tenure and Forest Condition: An Annotated Bibliography (Climate and Land Use Alliance, 2014).51.Tseng, T.-W. J. et al. Influence of land tenure interventions on human well-being and environmental outcomes. Nat. Sustain. 4, 242–251 (2021).
    Google Scholar 
    52.Robinson, B. E. et al. Incorporating land tenure security into conservation: conservation and land tenure security. Conserv. Lett. 11, e12383 (2018).
    Google Scholar 
    53.Smith, D. A., Holland, M. B., Michon, A., Ibáñez, A. & Herrera, F. The hidden layer of indigenous land tenure: informal forest ownership and its implications for forest use and conservation in Panama’s largest collective territory. Int. For. Rev. 19, 478–494 (2017).
    Google Scholar 
    54.Larson, A. M. & Springer, J. Recognition and Respect for Tenure Rights (IUCN, CEESP, CIFOR, 2016).55.Arizona, Y., Wicaksono, M. T. & Vel, J. The role of indigeneity NGOs in the legal recognition of adat communities and customary forests in Indonesia. Asia Pac. J. Anthropol. 20, 487–506 (2019).
    Google Scholar 
    56.Malavasi, M. The map of biodiversity mapping. Biol. Conserv. 252, 108843 (2020).
    Google Scholar 
    57.Witter, R. & Satterfield, T. The ebb and flow of indigenous rights recognitions in conservation policy: indigenous rights recognitions in conservation policy. Dev. Change 50, 1083–1108 (2019).
    Google Scholar 
    58.Dutta, A. et al. Response to a “global safety net” to reverse biodiversity loss and stabilize Earth’s climate. Sci. Adv. 6, eabb2824 (2021).
    Google Scholar 
    59.Herrera, D., Pfaff, A. & Robalino, J. Impacts of protected areas vary with the level of government: comparing avoided deforestation across agencies in the Brazilian Amazon. Proc. Natl Acad. Sci. USA 116, 14916–14925 (2019).CAS 

    Google Scholar 
    60.Bebbington, A. J. et al. Resource extraction and infrastructure threaten forest cover and community rights. Proc. Natl Acad. Sci. USA 115, 13164–13173 (2018).CAS 

    Google Scholar 
    61.Johnson, C. J., Venter, O., Ray, J. C. & Watson, J. E. M. Growth‐inducing infrastructure represents transformative yet ignored keystone environmental decisions. Conserv. Lett. https://doi.org/10.1111/conl.12696 (2020).62.Davis, K. F., Yu, K., Rulli, M. C., Pichdara, L. & D’Odorico, P. Accelerated deforestation driven by large-scale land acquisitions in Cambodia. Nat. Geosci. 8, 772–775 (2015).CAS 

    Google Scholar 
    63.Conigliani, C., Cuffaro, N. & D’Agostino, G. Large-scale land investments and forests in Africa. Land Use Policy 75, 651–660 (2018).
    Google Scholar 
    64.Global Land Analysis & Discovery. Global 2010 Tree Cover (30m) (Department of Geographical Sciences, Univ. Maryland, 2013).65.Global Forest Watch. Tree Cover Loss version 1.6 (World Resources Institute, 2019).66.Hansen, M. C., Stehman, S. V. & Potapov, P. V. Quantification of global gross forest cover loss. Proc. Natl Acad. Sci. USA 107, 8650–8655 (2010).CAS 

    Google Scholar 
    67.Protected Planet: The World Database on Protected Areas (WDPA) (UNEP-WCMC & IUCN, accessed January 2020; www.protectedplanet.net68.Hanson, J. O. wdpar: Interface to the world database on protected areas (CRAN, 2020); https://CRAN.R-project.org/package=wdpar69.Global Forest Watch. Spatial Database of Planted Trees (World Resources Institute, data aaccessed May 2021).70.Transparent World & Global Forest Watch. Tree Plantations (World Resources Institute, date accessed May 2021).71.Nelson, A. & Chomitz, K. M. Effectiveness of strict vs. multiple use protected areas in reducing tropical forest fires: a global analysis using matching methods. PLoS ONE 6, e22722 (2011).CAS 

    Google Scholar 
    72.Joppa, L. N. & Pfaff, A. High and far: biases in the location of protected areas. PLoS ONE 4, e8273 (2009).
    Google Scholar 
    73.Global Forest Watch. Tree Cover 2000 version 1.2 (World Resources Institute, 2015).74.Amatulli, G. et al. A suite of global, cross-scale topographic variables for environmental and biodiversity modeling. Sci. Data 5, 180040 (2018).
    Google Scholar 
    75.Nelson, A. et al. A suite of global accessibility indicators. Sci. Data 6, 266 (2019).
    Google Scholar 
    76.Global Roads Open Access Data Set Version 1 (gROADSv1) (1980–2010) (NASA SEDAC, 2013).77.Lloyd, C. T., Sorichetta, A. & Tatem, A. J. High resolution global gridded data for use in population studies. Sci. Data 4, 170001 (2017).
    Google Scholar 
    78.GADM Database of Global Administrative Areas version 3.6 (FAO, 2018).79.Ho, D., Imai, K., King, G. & Stuart, E. matchIt: Nonparametric preprocessing for parametric causal inference (CRAN, 2018); https://CRAN.R-project.org/package=MatchIt80.Wood, S. mgcv: Mixed GAM computation vehicle with automatic smoothness estimation (CRAN, 2019); https://CRAN.R-project.org/package=mgcv More

  • in

    Observed increases in extreme fire weather driven by atmospheric humidity and temperature

    1.Abatzoglou, J. T., Williams, A. P., Boschetti, L., Zubkova, M. & Kolden, C. A. Global patterns of interannual climate-fire relationships (2018). Glob. Change Biol. 24, 5164–5175 (2018).
    Google Scholar 
    2.Littell, J. S., McKenzie, D., Peterson, D. L. & Westerling, A. L. Climate and wildfire area burned in western US ecoprovinces, 1916-2003. Ecol. Appl. 19, 1003–1021 (2009).
    Google Scholar 
    3.Abatzoglou, J. T. & Kolden, C. A. Relationships between climate and macroscale area burned in the western United States. Int. J. Wildland Fire 22, 1003–1020 (2013).
    Google Scholar 
    4.Wang, X. et al. Projected changes in daily fire spread across Canada over the next century. Environ. Res. Lett. 12, 025005 (2017).
    Google Scholar 
    5.Hanes, C. C. et al. Fire-regime changes in Canada over the last half century. Can. J. Res. 49, 256–269 (2019).
    Google Scholar 
    6.Amiro, B. D. et al. Fire weather index system components of large fires in the Canadian boreal forest. Int. J. Wildland Fire 13, 391–400 (2004).
    Google Scholar 
    7.Flannigan, M. D., Krawchuck, M. A., de Groot, W. J., Wotton, B. M. & Gowman, L. M. Implications of changing climate for global wildland fire. Int. J. Wildland Fire 18, 483–507 (2009).
    Google Scholar 
    8.Bowman, D. M. J. S. et al. Human exposure and sensitivity to globally extreme wildfire events. Nat. Ecol. Evol. 1, 0058 (2017).
    Google Scholar 
    9.Coogan, S. C. P., Robinne, F.-N., Jain, P. & Flannigan, M. D. Scientists’ warning on wildfire—a Canadian perspective. Can. J. Res. 49, 1015–1023 (2019).
    Google Scholar 
    10.Abatzoglou, J. T., Williams, A. P. & Barbero, R. Global emergence of anthropogenic climate change in fire weather indices. Geophys. Res. Lett. 46, 326–336 (2019).
    Google Scholar 
    11.Van Wagner, C. E. et al. Development and Structure of the Canadian Forest Fire Weather Index System (Canadian Forestry Service Headquarters, 1987); https://www.eea.europa.eu/data-and-maps/indicators/forest-fire-danger-3/camia-et-al.-2008-past12.Flannigan, M. D. & Harrington, J. B. A study of the relation of meteorological variables to monthly provincial area burned by wildfire in Canada (1953-80). J. Appl. Meteorol. 27, 441–452 (1988).
    Google Scholar 
    13.Flannigan, M. D. et al. Fuel moisture sensitivity to temperature and precipitation: climate change implications. Clim. Change 134, 59–71 (2016).CAS 

    Google Scholar 
    14.Jolly, W. M. et al. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 6, 7537 (2015).CAS 

    Google Scholar 
    15.Touma, D., Stevenson, S., Lehner, F. & Coats, S. Human-driven greenhouse gas and aerosol emissions cause distinct regional impacts on extreme fire weather. Nat. Commun. 12, 212 (2021).16.Clarke, H. G., Smith, P. L. & Pitman, A. J. Regional signatures of future fire weather over eastern Australia from global climate models. Int. J. Wildland Fire 20, 550–562 (2011).
    Google Scholar 
    17.Bedia, J. et al. Sensitivity of fire weather index to different reanalysis products in the Iberian Peninsula. Nat. Hazards Earth Syst. Sci. 12, 699–708 (2012).
    Google Scholar 
    18.Jain, P., Wang, X. & Flannigan, M. D. Trend analysis of fire season length and extreme fire weather in North America between 1979 and 2015. Int. J. Wildland Fire 26, 1009–1020 (2017).
    Google Scholar 
    19.Dowdy, A. J. Climatological variability of fire weather in Australia. J. Appl. Meteorol. Climatol. 57, 221–234 (2018).
    Google Scholar 
    20.Zhao, F., Liu, Y. & Shu, L. Change in the fire season pattern from bimodal to unimodal under climate change: the case of Daxing’anling in Northeast China. Agric. Meteorol. 291, 108075 (2020).
    Google Scholar 
    21.Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).
    Google Scholar 
    22.Abatzoglou, J. T. & Williams, A. P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl Acad. Sci. USA 113, 11770–11775 (2016).CAS 

    Google Scholar 
    23.Kirchmeier-Young, M. C., Gillet, N. P., Zwiers, F. W., Cannon, A. J. & Anslow, F. S. Attribution of the influence of human-induced climate change on an extreme fire season. Earths Future 7, 2–10 (2019).
    Google Scholar 
    24.Pausas, J. G. & Ribeiro, E. The global-fire productivity relationship. Glob. Ecol. Biogeogr. 22, 728–736 (2013).
    Google Scholar 
    25.Cochrane, M. A. Fire science for rainforests. Nature 421, 913–919 (2003).CAS 

    Google Scholar 
    26.Ziel, R. H. et al. A comparison of fire weather indices with MODIS fire days for the natural regions of Alaska. Forests 11, 516 (2020).
    Google Scholar 
    27.Giannaros, T. M., Kotroni, V. & Lagouvardos, K. Climatology and trend analysis (1987–2016) of fire weather in the Euro-Mediterranean. Int. J. Climatol. 41, E491–E508 (2021).
    Google Scholar 
    28.Harris, S. & Lucas, C. Understanding the variability of Australian fire weather between 1973 and 2017. PLoS ONE 14, e0222328 (2019).CAS 

    Google Scholar 
    29.Climate at a Glance (NOAA, 2021); https://www.ncdc.noaa.gov/cag/30.van Oldenborgh, G. J. et al. Attribution of the Australian bushfire risk to anthropogenic climate change. Nat. Hazards Earth Syst. Sci. 21, 941–960 (2021).
    Google Scholar 
    31.Barbero, R., Abatzoglou, J. T., Pimont, F., Ruffault, J. & Curt, T. Attributing increases in fire weather to anthropogenic climate change over France. Front. Earth Sci. https://doi.org/10.3389/feart.2020.00104 (2020).32.Byrne, M. P. & O’Gorman, P. A. Understanding decreases in land relative humidity with global warming: conceptual model and GCM simulations. J. Clim. 29, 9045–9061 (2016).
    Google Scholar 
    33.Willett, K. M., Jones, P. D., Gillett, N. P. & Thorne, P. W. Recent changes in surface humidity: development of the HadCRUH dataset. J. Clim. 21, 5364–5383 (2008).
    Google Scholar 
    34.Matsoukas, C. et al. Potential evaporation trends over land between 1983-2008: driven by radiative fluxes or vapour-pressure deficit? Atmos. Chem. Phys. 11, 7601–7616 (2011).CAS 

    Google Scholar 
    35.Grotjahn, R. & Huynh, J. Contiguous US summer maximum temperature and heat stress trends in CRU and NOAA climate division data plus comparisons to reanalyses. Sci. Rep. 8, 11146 (2018).CAS 

    Google Scholar 
    36.Denson, E., Wasko, C. & Peel, M. C. Decreases in relative humidity across Australia. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/ac0aca (2021).37.Barkhordarian, A., Saatchi, S. S., Behrangi, A., Loikith, P. C. & Mechoso, C. R. A recent systematic increase in vapor pressure deficit over tropical South America. Sci. Rep. 9, 15331 (2019).
    Google Scholar 
    38.Findell, K. L. et al. The impact of anthropogenic land use and land cover change on regional climate extremes. Nat. Commun. 8, 989 (2017).39.McKinnon, K. A., Poppick, A. & Simpson, I. R. Hot extremes have become drier in the United States Southwest. Nat. Clim. Change https://doi.org/10.1038/s41558-021-01076-9 (2021).40.Berg, A. et al. Land–atmosphere feedbacks amplify aridity increase over land under global warming. Nat. Clim. Change 6, 869–874 (2016).
    Google Scholar 
    41.Mishra, V. et al. Moist heat stress extremes in India enhanced by irrigation. Nat. Geosci. 13, 722–728 (2020).CAS 

    Google Scholar 
    42.Dong, B. & Dai, A. The influence of the interdecadal Pacific oscillation on temperature and precipitation over the globe. Clim. Dyn. 45, 2667–2681 (2015).
    Google Scholar 
    43.Fischer, E. M. & Knutti, R. Robust projections of combined humidity and temperature extremes. Nat. Clim. Change 3, 126–130 (2013).
    Google Scholar 
    44.Tymstra C., Flannigan M. D., Stocks B. J., Cai X. & Morrison K. Wildfire management in Canada: review, challenges and opportunities. Prog. Disaster Sci. https://doi.org/10.1016/j.pdisas.2019.100045 (2020).45.Flannigan, M. D., Stocks, B., Turetsky, M. & Wotton, M. Impacts of climate change on fire activity and fire management in the circumboreal forest. Glob. Change Biol. 15, 549–560 (2009).
    Google Scholar 
    46.Chen, Y. et al. Future increases in Arctic lightning and fire risk for permafrost carbon. Nat. Clim. Change https://doi.org/10.1038/s41558-021-01011-y (2021).47.Hope, E. S., McKenney, D. W., Pedlar, J. H., Stocks, B. J. & Gauthier, S. Wildfire suppression costs for Canada under a changing climate. PLoS ONE 11, e0157425 (2016).
    Google Scholar 
    48.Podur, J. & Wotton, B. M. Will climate change overwhelm fire management capacity? Ecol. Modell. 221, 1301–1309 (2010).
    Google Scholar 
    49.Abatzoglou, J. T., Juang, C. S., Williams, A. P., Kolden, C. A. & Westerling, A. L. Increasing synchronous fire danger in forests of the western United States. Geophys. Res. Lett. 48, e2020GL091377 (2021).
    Google Scholar 
    50.Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51, 933–938 (2001).
    Google Scholar 
    51.Copernicus Climate Change Service Data Store (Copernicus Climate Change Service, accessed 4 March 2020); https://confluence.ecmwf.int/display/CKB/ERA5%3A+data+documentation52.Ramon, J., Lledo, L., Torralba, V., Soret, A. & Doblas-Reyes, F. J. What global reanalysis best represents near-surface winds? Q. J. R. Meteorol. Soc. 145, 3236–3251 (2019).
    Google Scholar 
    53.Beck, H. E. et al. Daily evaluation of 26 precipitation datasets using stage-IV gauge-radar data for the CONUS. Hydrol. Earth Syst. Sci. 23, 207–224 (2019).
    Google Scholar 
    54.Tarek, M., Brissette, F. P. & Arsenault, R. Evaluation of the ERA5 reanalysis as a potential reference dataset for hydrological modelling over North America. Hydrol. Earth Syst. Sci. 24, 2527–2544 (2020).
    Google Scholar 
    55.Torralba, V., Doblas-Reyes, F. J. & Gonzalez-Reviriego, N. Uncertainty in recent near-surface wind speed trends: a global reanalysis intercomparison. Environ. Res. Lett. 12, 114019 (2017).
    Google Scholar 
    56.Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. BioScience 67, 534–545 (2017).
    Google Scholar 
    57.Andela, N. et al. The global fire atlas of individual fire size, duration, speed and direction. Earth Syst. Sci. Data 11, 529–552 (2019).
    Google Scholar 
    58.Wotton, B. M. Interpreting and using outputs from the Canadian Forest Fire Danger Rating System in research applications. Environ. Ecol. Stat. 16, 107–131 (2009).CAS 

    Google Scholar 
    59.Field, R. D. et al. Development of a global fire weather database. Nat. Hazards Earth Syst. Sci. 15, 1407–1423 (2015).
    Google Scholar 
    60.Bedia, J. et al. Global patterns in the sensitivity of burned area to fire weather: implications for climate change. Agric. Meteorol. 214–215, 369–379 (2015).
    Google Scholar 
    61.McElhinny, M., Beckers, J. F., Hanes, C., Flannigan, M. & Jain, P. A high-resolution reanalysis of global fire weather from 1979 to 2018 – overwintering the Drought Code. Earth Syst. Sci. Data 12, 1823–1833 (2020).
    Google Scholar 
    62.Wotton, B. M. & Flannigan, M. D. Length of the fire season in a changing climate. Forestry Chron. 69, 187–192 (1993).
    Google Scholar 
    63.Sedano, F. & Randerson, J. T. Vapor pressure deficit controls on fire ignition and fire spread in boreal forest ecosystems. Biogeosciences 11, 1309–1353 (2014).
    Google Scholar 
    64.Williams, P. A. et al. Correlations between components of the water balance and burned area reveal new insights for predicting forest fire area in the southwest United States. Int. J. Wildland Fire 24, 14–26 (2014).
    Google Scholar 
    65.Williams, A. P. et al. Observed impacts of anthropogenic climate change on wildfire in California. Earths Future 7, 892–910 (2019).
    Google Scholar 
    66.Mueller, S. E. et al. Climate relationships with increasing wildfire in the southwestern US from 1984 to 2015. For. Ecol. Manage. 460, 117861 (2020).
    Google Scholar 
    67.Alduchov, O. A. & Eskridge, R. E. Improved Magnus form approximation of saturation vapor pressure. J. Appl. Meteorol. 35, 601–609 (1996).
    Google Scholar 
    68.Knauer, J., El-Madany, T. S., Zaehle, S. & Migliavacca, M. Bigleaf—an R package for the calculation of physical and physiological ecosystem properties from eddy covariance data. PLoS ONE 13, e0201114 (2018).
    Google Scholar 
    69.Friedl, M. A. et al. MODIS Collection 5 global land cover: algorithm refinements and characterization of new datasets. Remote Sens. Environ. 114, 168–182 (2010).
    Google Scholar 
    70.Loveland, T. R. & Belward, A. S. The IGBP-DIS global 1 km land cover data set, DISCover: first results. Int. J. Remote Sens. 18, 3291–3295 (1997).
    Google Scholar 
    71.Mann, H. B. Nonparametric tests against trend. Econometrica 13, 245–259 (1945).
    Google Scholar 
    72.Kendall, M. G. Rank Correlation Methods (Griffin, 1975).
    Google Scholar 
    73.Theil, H. A rank-invariant method of linear and polynomial regression analysis. I, II, III. Nederl. Akad. Wetensch. Proc. 53, part I: 386–392; part II: 521–525; part III: 1397–1412 (1950).74.Sen, P. K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 63, 1379–1389 (1968).
    Google Scholar 
    75.Yue, S., Pilon, P. & Phinney, B. Canadian streamflow trend detection: impacts of serial and cross-correlation. Hydrol. Sci. J. 48, 51–63 (2003).
    Google Scholar 
    76.Wilks, D. S. On ‘field significance’ and the false discovery rate. J. Appl. Meteorol. Climatol. 45, 1181–1189 (2006).
    Google Scholar 
    77.Wilks, D. ‘The stippling shows statistically significant grid points’: how research results are routinely overstated and overinterpreted, and what to do about it. Bull. Am. Meteorol. Soc. 97, 2263–2273 (2016).
    Google Scholar 
    78.Libiseller, C. & Grimvall, A. Performance of partial Mann–Kendall tests for trend detection in the presence of covariates. Environmetrics 13, 71–84 (2002).CAS 

    Google Scholar 
    79.Mediero, L., Santillán, D., Garrote, L. & Granados, A. Detection and attribution of trends in magnitude, frequency and timing of floods in Spain. J. Hydrol. 517, 1072–1088 (2014).
    Google Scholar 
    80.Dowdy, A. J., Mills, G. A., Finkele, K. & de Groot, W. Index sensitivity analysis applied to the Canadian Forest Fire Weather Index and the McArthur Forest Fire Danger Index. Meteorol. Appl. 17, 298–312 (2010).
    Google Scholar 
    81.Millard, S. P. EnvStats: An R Package for Environmental Statistics (Springer, 2013).82.Pohlert, T. trend: Non-Parametric Trend Tests and Change-Point Detection. R package v.1.1.4. https://CRAN.R-project.org/package=trend (2020). More