More stories

  • in

    MIT delegation mainstreams biodiversity conservation at the UN Biodiversity Convention, COP16

    For the first time, MIT sent an organized engagement to the global Conference of the Parties for the Convention on Biological Diversity, which this year was held Oct. 21 to Nov. 1 in Cali, Colombia.The 10 delegates to COP16 included faculty, researchers, and students from the MIT Environmental Solutions Initiative (ESI), the Department of Electrical Engineering and Computer Science (EECS), the Computer Science and Artificial Intelligence Laboratory (CSAIL), the Department of Urban Studies and Planning (DUSP), the Institute for Data, Systems, and Society (IDSS), and the Center for Sustainability Science and Strategy.In previous years, MIT faculty had participated sporadically in the discussions. This organized engagement, led by the ESI, is significant because it brought representatives from many of the groups working on biodiversity across the Institute; showcased the breadth of MIT’s research in more than 15 events including panels, roundtables, and keynote presentations across the Blue and Green Zones of the conference (with the Blue Zone representing the primary venue for the official negotiations and discussions and the Green Zone representing public events); and created an experiential learning opportunity for students who followed specific topics in the negotiations and throughout side events.The conference also gathered attendees from governments, nongovernmental organizations, businesses, other academic institutions, and practitioners focused on stopping global biodiversity loss and advancing the 23 goals of the Kunming-Montreal Global Biodiversity Framework (KMGBF), an international agreement adopted in 2022 to guide global efforts to protect and restore biodiversity through 2030.MIT’s involvement was particularly pronounced when addressing goals related to building coalitions of sub-national governments (targets 11, 12, 14); technology and AI for biodiversity conservation (targets 20 and 21); shaping equitable markets (targets 3, 11, and 19); and informing an action plan for Afro-descendant communities (targets 3, 10, and 22).Building coalitions of sub-national governmentsThe ESI’s Natural Climate Solutions (NCS) Program was able to support two separate coalitions of Latin American cities, namely the Coalition of Cities Against Illicit Economies in the Biogeographic Chocó Region and the Colombian Amazonian Cities coalition, who successfully signed declarations to advance specific targets of the KMGBF (the aforementioned targets 11, 12, 14).This was accomplished through roundtables and discussions where team members — including Marcela Angel, research program director at the MIT ESI; Angelica Mayolo, ESI Martin Luther King Fellow 2023-25; and Silvia Duque and Hannah Leung, MIT Master’s in City Planning students — presented a set of multi-scale actions including transnational strategies, recommendations to strengthen local and regional institutions, and community-based actions to promote the conservation of the Biogeographic Chocó as an ecological corridor.“There is an urgent need to deepen the relationship between academia and local governments of cities located in biodiversity hotspots,” said Angel. “Given the scale and unique conditions of Amazonian cities, pilot research projects present an opportunity to test and generate a proof of concept. These could generate catalytic information needed to scale up climate adaptation and conservation efforts in socially and ecologically sensitive contexts.”ESI’s research also provided key inputs for the creation of the Fund for the Biogeographic Chocó Region, a multi-donor fund launched within the framework of COP16 by a coalition composed of Colombia, Ecuador, Panamá, and Costa Rica. The fund aims to support biodiversity conservation, ecosystem restoration, climate change mitigation and adaptation, and sustainable development efforts across the region.Technology and AI for biodiversity conservationData, technology, and artificial intelligence are playing an increasing role in how we understand biodiversity and ecosystem change globally. Professor Sara Beery’s research group at MIT focuses on this intersection, developing AI methods that enable species and environmental monitoring at previously unprecedented spatial, temporal, and taxonomic scales.During the International Union of Biological Diversity Science-Policy Forum, the high-level COP16 segment focused on outlining recommendations from scientific and academic community, Beery spoke on a panel alongside María Cecilia Londoño, scientific information manager of the Humboldt Institute and co-chair of the Global Biodiversity Observations Network, and Josh Tewksbury, director of the Smithsonian Tropical Research Institute, among others, about how these technological advancements will help humanity achieve our biodiversity targets. The panel emphasized that AI innovation was needed, but with emphasis on direct human-AI partnership, AI capacity building, and the need for data and AI policy to ensure equity of access and benefit from these technologies.As a direct outcome of the session, for the first time, AI was emphasized in the statement on behalf of science and academia delivered by Hernando Garcia, director of the Humboldt Institute, and David Skorton, secretary general of the Smithsonian Institute, to the high-level segment of the COP16.That statement read, “To effectively address current and future challenges, urgent action is required in equity, governance, valuation, infrastructure, decolonization and policy frameworks around biodiversity data and artificial intelligence.”Beery also organized a panel at the GEOBON pavilion in the Blue Zone on Scaling Biodiversity Monitoring with AI, which brought together global leaders from AI research, infrastructure development, capacity and community building, and policy and regulation. The panel was initiated and experts selected from the participants at the recent Aspen Global Change Institute Workshop on Overcoming Barriers to Impact in AI for Biodiversity, co-organized by Beery.Shaping equitable marketsIn a side event co-hosted by the ESI with CAF-Development Bank of Latin America, researchers from ESI’s Natural Climate Solutions Program — including Marcela Angel; Angelica Mayolo; Jimena Muzio, ESI research associate; and Martin Perez Lara, ESI research affiliate and director for Forest Climate Solutions Impact and Monitoring at World Wide Fund for Nature of the U.S. — presented results of a study titled “Voluntary Carbon Markets for Social Impact: Comprehensive Assessment of the Role of Indigenous Peoples and Local Communities (IPLC) in Carbon Forestry Projects in Colombia.” The report highlighted the structural barriers that hinder effective participation of IPLC, and proposed a conceptual framework to assess IPLC engagement in voluntary carbon markets.Communicating these findings is important because the global carbon market has experienced a credibility crisis since 2023, influenced by critical assessments in academic literature, journalism questioning the quality of mitigation results, and persistent concerns about the engagement of private actors with IPLC. Nonetheless, carbon forestry projects have expanded rapidly in Indigenous, Afro-descendant, and local communities’ territories, and there is a need to assess the relationships between private actors and IPLC and to propose pathways for equitable participation. 

    Panelists pose at the equitable markets side event at the Latin American Pavilion in the Blue Zone.

    Previous item
    Next item

    The research presentation and subsequent panel with representatives of the association for Carbon Project Developers in Colombia Asocarbono, Fondo Acción, and CAF further discussed recommendations for all actors in the value chain of carbon certificates — including those focused on promoting equitable benefit-sharing and safeguarding compliance, increased accountability, enhanced governance structures, strengthened institutionality, and regulatory frameworks  — necessary to create an inclusive and transparent market.Informing an action plan for Afro-descendant communitiesThe Afro-Interamerican Forum on Climate Change (AIFCC), an international network working to highlight the critical role of Afro-descendant peoples in global climate action, was also present at COP16.At the Afro Summit, Mayolo presented key recommendations prepared collectively by the members of AIFCC to the technical secretariat of the Convention on Biological Diversity (CBD). The recommendations emphasize:creating financial tools for conservation and supporting Afro-descendant land rights;including a credit guarantee fund for countries that recognize Afro-descendant collective land titling and research on their contributions to biodiversity conservation;calling for increased representation of Afro-descendant communities in international policy forums;capacity-building for local governments; andstrategies for inclusive growth in green business and energy transition.These actions aim to promote inclusive and sustainable development for Afro-descendant populations.“Attending COP16 with a large group from MIT contributing knowledge and informed perspectives at 15 separate events was a privilege and honor,” says MIT ESI Director John E. Fernández. “This demonstrates the value of the ESI as a powerful research and convening body at MIT. Science is telling us unequivocally that climate change and biodiversity loss are the two greatest challenges that we face as a species and a planet. MIT has the capacity, expertise, and passion to address not only the former, but also the latter, and the ESI is committed to facilitating the very best contributions across the institute for the critical years that are ahead of us.”A fuller overview of the conference is available via The MIT Environmental Solutions Initiative’s Primer of COP16. More

  • in

    A new catalyst can turn methane into something useful

    Although it is less abundant than carbon dioxide, methane gas contributes disproportionately to global warming because it traps more heat in the atmosphere than carbon dioxide, due to its molecular structure.MIT chemical engineers have now designed a new catalyst that can convert methane into useful polymers, which could help reduce greenhouse gas emissions.“What to do with methane has been a longstanding problem,” says Michael Strano, the Carbon P. Dubbs Professor of Chemical Engineering at MIT and the senior author of the study. “It’s a source of carbon, and we want to keep it out of the atmosphere but also turn it into something useful.”The new catalyst works at room temperature and atmospheric pressure, which could make it easier and more economical to deploy at sites of methane production, such as power plants and cattle barns.Daniel Lundberg PhD ’24 and MIT postdoc Jimin Kim are the lead authors of the study, which appears today in Nature Catalysis. Former postdoc Yu-Ming Tu and postdoc Cody Ritt also authors of the paper.Capturing methaneMethane is produced by bacteria known as methanogens, which are often highly concentrated in landfills, swamps, and other sites of decaying biomass. Agriculture is a major source of methane, and methane gas is also generated as a byproduct of transporting, storing, and burning natural gas. Overall, it is believed to account for about 15 percent of global temperature increases.At the molecular level, methane is made of a single carbon atom bound to four hydrogen atoms. In theory, this molecule should be a good building block for making useful products such as polymers. However, converting methane to other compounds has proven difficult because getting it to react with other molecules usually requires high temperature and high pressures.To achieve methane conversion without that input of energy, the MIT team designed a hybrid catalyst with two components: a zeolite and a naturally occurring enzyme. Zeolites are abundant, inexpensive clay-like minerals, and previous work has found that they can be used to catalyze the conversion of methane to carbon dioxide.In this study, the researchers used a zeolite called iron-modified aluminum silicate, paired with an enzyme called alcohol oxidase. Bacteria, fungi, and plants use this enzyme to oxidize alcohols.This hybrid catalyst performs a two-step reaction in which zeolite converts methane to methanol, and then the enzyme converts methanol to formaldehyde. That reaction also generates hydrogen peroxide, which is fed back into the zeolite to provide a source of oxygen for the conversion of methane to methanol.This series of reactions can occur at room temperature and doesn’t require high pressure. The catalyst particles are suspended in water, which can absorb methane from the surrounding air. For future applications, the researchers envision that it could be painted onto surfaces.“Other systems operate at high temperature and high pressure, and they use hydrogen peroxide, which is an expensive chemical, to drive the methane oxidation. But our enzyme produces hydrogen peroxide from oxygen, so I think our system could be very cost-effective and scalable,” Kim says.Creating a system that incorporates both enzymes and artificial catalysts is a “smart strategy,” says Damien Debecker, a professor at the Institute of Condensed Matter and Nanosciences at the University of Louvain, Belgium.“Combining these two families of catalysts is challenging, as they tend to operate in rather distinct operation conditions. By unlocking this constraint and mastering the art of chemo-enzymatic cooperation, hybrid catalysis becomes key-enabling: It opens new perspectives to run complex reaction systems in an intensified way,” says Debecker, who was not involved in the research.Building polymersOnce formaldehyde is produced, the researchers showed they could use that molecule to generate polymers by adding urea, a nitrogen-containing molecule found in urine. This resin-like polymer, known as urea-formaldehyde, is now used in particle board, textiles and other products.The researchers envision that this catalyst could be incorporated into pipes used to transport natural gas. Within those pipes, the catalyst could generate a polymer that could act as a sealant to heal cracks in the pipes, which are a common source of methane leakage. The catalyst could also be applied as a film to coat surfaces that are exposed to methane gas, producing polymers that could be collected for use in manufacturing, the researchers say.Strano’s lab is now working on catalysts that could be used to remove carbon dioxide from the atmosphere and combine it with nitrate to produce urea. That urea could then be mixed with the formaldehyde produced by the zeolite-enzyme catalyst to produce urea-formaldehyde.The research was funded by the U.S. Department of Energy. More

  • in

    Q&A: Transforming research through global collaborations

    The MIT Global Seed Funds (GSF) program fosters global research collaborations with MIT faculty and their peers abroad — creating partnerships that tackle complex global issues, from climate change to health-care challenges and beyond. Administered by the MIT Center for International Studies (CIS), the GSF program has awarded more than $26 million to over 1,200 faculty research projects since its inception in 2008. Through its unique funding structure — comprising a general fund for unrestricted geographical use and several specific funds within individual countries, regions, and universities — GSF supports a wide range of projects. The current call for proposals from MIT faculty and researchers with principal investigator status is open until Dec. 10. CIS recently sat down with faculty recipients Josephine Carstensen and David McGee to discuss the value and impact GSF added to their research. Carstensen, the Gilbert W. Winslow Career Development Associate Professor of Civil and Environmental Engineering, generates computational designs for large-scale structures with the intent of designing novel low-carbon solutions. McGee, the William R. Kenan, Jr. Professor in the Department of Earth, Atmospheric and Planetary Sciences (EAPS), reconstructs the patterns, pace, and magnitudes of past hydro-climate changes.Q: How did the Global Seed Funds program connect you with global partnerships related to your research?Carstensen: One of the projects my lab is working on is to unlock the potential of complex cast-glass structures. Through our GSF partnership with researchers at TUDelft (Netherlands), my group was able to leverage our expertise in generative design algorithms alongside the TUDelft team, who are experts in the physical casting and fabrication of glass structures. Our initial connection to TUDelft was actually through one of my graduate students who was at a conference and met TUDelft researchers. He was inspired by their work and felt there could be synergy between our labs. The question then became: How do we connect with TUDelft? And that was what led us to the Global Seed Funds program. McGee: Our research is based in fieldwork conducted in partnership with experts who have a rich understanding of local environments. These locations range from lake basins in Chile and Argentina to caves in northern Mexico, Vietnam, and Madagascar. GSF has been invaluable for helping foster partnerships with collaborators and universities in these different locations, enabling the pilot work and relationship-building necessary to establish longer-term, externally funded projects.Q: Tell us more about your GSF-funded work.Carstensen: In my research group at MIT, we live mainly in a computational regime, and we do very little proof-of-concept testing. To that point, we do not even have the facilities nor experience to physically build large-scale structures, or even specialized structures. GSF has enabled us to connect with the researchers at TUDelft who do much more experimental testing than we do. Being able to work with the experts at TUDelft within their physical realm provided valuable insights into their way of approaching problems. And, likewise, the researchers at TUDelft benefited from our expertise. It has been fruitful in ways we couldn’t have imagined within our lab at MIT.McGee: The collaborative work supported by the GSF has focused on reconstructing how past climate changes impacted rainfall patterns around the world, using natural archives like lake sediments and cave formations. One particularly successful project has been our work in caves in northeastern Mexico, which has been conducted in partnership with researchers from the National Autonomous University of Mexico (UNAM) and a local caving group. This project has involved several MIT undergraduate and graduate students, sponsored a research symposium in Mexico City, and helped us obtain funding from the National Science Foundation for a longer-term project.Q: You both mentioned the involvement of your graduate students. How exactly has the GSF augmented the research experience of your students?Carstensen: The collaboration has especially benefited the graduate students from both the MIT and TUDelft teams. The opportunity presented through this project to engage in research at an international peer institution has been extremely beneficial for their academic growth and maturity. It has facilitated training in new and complementary technical areas that they would not have had otherwise and allowed them to engage with leading world experts. An example of this aspect of the project’s success is that the collaboration has inspired one of my graduate students to actively pursue postdoc opportunities in Europe (including at TU Delft) after his graduation.McGee: MIT students have traveled to caves in northeastern Mexico and to lake basins in northern Chile to conduct fieldwork and build connections with local collaborators. Samples enabled by GSF-supported projects became the focus of two graduate students’ PhD theses, two EAPS undergraduate senior theses, and multiple UROP [Undergraduate Research Opportunity Program] projects.Q: Were there any unexpected benefits to the work funded by GSF?Carstensen: The success of this project would not have been possible without this specific international collaboration. Both the Delft and MIT teams bring highly different essential expertise that has been necessary for the successful project outcome. It allowed both the Delft and MIT teams to gain an in-depth understanding of the expertise areas and resources of the other collaborators. Both teams have been deeply inspired. This partnership has fueled conversations about potential future projects and provided multiple outcomes, including a plan to publish two journal papers on the project outcome. The first invited publication is being finalized now.McGee: GSF’s focus on reciprocal exchange has enabled external collaborators to spend time at MIT, sharing their work and exchanging ideas. Other funding is often focused on sending MIT researchers and students out, but GSF has helped us bring collaborators here, making the relationship more equal. A GSF-supported visit by Argentinian researchers last year made it possible for them to interact not just with my group, but with students and faculty across EAPS. More

  • in

    New solar projects will grow renewable energy generation for four major campus buildings

    In the latest step to implement commitments made in MIT’s Fast Forward climate action plan, staff from the Department of Facilities; Office of Sustainability; and Environment, Health and Safety Office are advancing new solar panel installations this fall and winter on four major campus buildings: The Stratton Student Center (W20), the Dewey Library building (E53), and two newer buildings, New Vassar (W46) and the Theater Arts building (W97).These four new installations, in addition to existing rooftop solar installations on campus, are “just one part of our broader strategy to reduce MIT’s carbon footprint and transition to clean energy,” says Joe Higgins, vice president for campus services and stewardship.The installations will not only meet but exceed the target set for total solar energy production on campus in the Fast Forward climate action plan that was issued in 2021. With an initial target of 500 kilowatts of installed solar capacity on campus, the new installations, along with those already in place, will bring the total output to roughly 650 kW, exceeding the goal. The solar installations are an important facet of MIT’s approach to eliminating all direct campus emissions by 2050.The process of advancing to the stage of placing solar panels on campus rooftops is much more complex than just getting them installed on an ordinary house. The process began with a detailed assessment of the potential for reducing the campus greenhouse gas footprint. A first cut eliminated rooftops that were too shaded by trees or other buildings. Then, the schedule for regular replacement of roofs had to be taken into account — it’s better to put new solar panels on top of a roof that will not need replacement in a few years. Other roofs, especially lab buildings, simply had too much existing equipment on them to allow a large area of space for solar panels.Randa Ghattas, senior sustainability project manager, and Taya Dixon, assistant director for capital budgets and contracts within the Department of Facilities, spearheaded the project. Their initial assessment showed that there were many buildings identified with significant solar potential, and it took the impetus of the Fast Forward plan to kick things into action. Even after winnowing down the list of campus buildings based on shading and the life cycle of roof replacements, there were still many other factors to consider. Some buildings that had ample roof space were of older construction that couldn’t bear the loads of a full solar installation without significant reconstruction. “That actually has proved trickier than we thought,” Ghattas says. For example, one building that seemed a good candidate, and already had some solar panels on it, proved unable to sustain the greater weight and wind loads of a full solar installation. Structural capacity, she says, turned out to be “probably the most important” factor in this case.The roofs on the Student Center and on the Dewey Library building were replaced in the last few years with the intention of the later addition of solar panels. And the two newer buildings were designed from the beginning with solar in mind, even though the solar panels were not part of the initial construction. “The designs were built into them to accommodate solar,” Dixon says, “so those were easy options for us because we knew the buildings were solar-ready and could support solar being integrated into their systems, both the electrical system and the structural system of the roof.”But there were also other considerations. The Student Center is considered a historically significant building, so the installation had to be designed so that it was invisible from street level, even including a safety railing that had to be built around the solar array. But that was not a problem. “It was fine for this building,” Ghattas says, because it turned out that the geometry of the building and the roofs hid the safety railing from view below.Each installation will connect directly to the building’s electrical system, and thus into the campus grid. The power they produce will be used in the buildings they are on, though none will be sufficient to fully power its building. Overall, the new installations, in addition to the existing ones on the MIT Sloan School of Management building (E62) and the Alumni Pool (57) and the planned array on the new Graduate Junction dorm (W87-W88), will be enough to power 5 to 10 percent of the buildings’ electric needs, and offset about 190 metric tons of carbon dioxide emissions each year, Ghattas says. This is equivalent to the electricity use of 35 homes annually.Each building installation is expected to take just a couple of weeks. “We’re hopeful that we’re going to have everything installed and operational by the end of this calendar year,” she says.Other buildings could be added in coming years, as their roof replacement cycles come around. With the lessons learned along the way in getting to this point, Ghattas says, “now that we have a system in place, hopefully it’s going to be much easier in the future.”Higgins adds that “in parallel with the solar projects, we’re working on expanding electric vehicle charging stations and the electric vehicle fleet and reducing energy consumption in campus buildings.”Besides the on-campus improvements, he says, “MIT is focused on both the local and the global.” In addition to solar installations on campus buildings, which can only mitigate a small portion of campus emissions, “large-scale aggregation partnerships are key to moving the actual market landscape for adding cleaner energy generation to power grids,” which must ultimately lead to zero emissions, he says. “We are spurring the development of new utility-grade renewable energy facilities in regions with high carbon-intensive electrical grids. These projects have an immediate and significant impact in the urgently needed decarbonization of regional power grids.”MIT is also making more advances to accelerate renewable energy generation and electricity grid decarbonization at the local and state level. The Institute has recently concluded an agreement through the Solar Massachusetts Renewable Target program that supports the Commonwealth of Massachusetts’ state solar power development goals by enabling the construction of a new 5-megawatt solar energy facility on Cape Cod. The new solar energy system is integral to supporting a new net-zero emissions development that includes affordable housing, while also providing additional resiliency to the local grid.Higgins says that other technologies, strategies, and practices are being evaluated for heating, cooling, and power for the campus, “with zero carbon emissions by 2050, utilizing cleaner energy sources.” He adds that these campus initiatives “are part of MIT’s larger Climate Project, aiming to drive progress both on campus and beyond, advancing broader partnerships, new market models, and informing approaches to climate policy.”  More

  • in

    New AI tool generates realistic satellite images of future flooding

    Visualizing the potential impacts of a hurricane on people’s homes before it hits can help residents prepare and decide whether to evacuate.MIT scientists have developed a method that generates satellite imagery from the future to depict how a region would look after a potential flooding event. The method combines a generative artificial intelligence model with a physics-based flood model to create realistic, birds-eye-view images of a region, showing where flooding is likely to occur given the strength of an oncoming storm.As a test case, the team applied the method to Houston and generated satellite images depicting what certain locations around the city would look like after a storm comparable to Hurricane Harvey, which hit the region in 2017. The team compared these generated images with actual satellite images taken of the same regions after Harvey hit. They also compared AI-generated images that did not include a physics-based flood model.The team’s physics-reinforced method generated satellite images of future flooding that were more realistic and accurate. The AI-only method, in contrast, generated images of flooding in places where flooding is not physically possible.The team’s method is a proof-of-concept, meant to demonstrate a case in which generative AI models can generate realistic, trustworthy content when paired with a physics-based model. In order to apply the method to other regions to depict flooding from future storms, it will need to be trained on many more satellite images to learn how flooding would look in other regions.“The idea is: One day, we could use this before a hurricane, where it provides an additional visualization layer for the public,” says Björn Lütjens, a postdoc in MIT’s Department of Earth, Atmospheric and Planetary Sciences, who led the research while he was a doctoral student in MIT’s Department of Aeronautics and Astronautics (AeroAstro). “One of the biggest challenges is encouraging people to evacuate when they are at risk. Maybe this could be another visualization to help increase that readiness.”To illustrate the potential of the new method, which they have dubbed the “Earth Intelligence Engine,” the team has made it available as an online resource for others to try.The researchers report their results today in the journal IEEE Transactions on Geoscience and Remote Sensing. The study’s MIT co-authors include Brandon Leshchinskiy; Aruna Sankaranarayanan; and Dava Newman, professor of AeroAstro and director of the MIT Media Lab; along with collaborators from multiple institutions.Generative adversarial imagesThe new study is an extension of the team’s efforts to apply generative AI tools to visualize future climate scenarios.“Providing a hyper-local perspective of climate seems to be the most effective way to communicate our scientific results,” says Newman, the study’s senior author. “People relate to their own zip code, their local environment where their family and friends live. Providing local climate simulations becomes intuitive, personal, and relatable.”For this study, the authors use a conditional generative adversarial network, or GAN, a type of machine learning method that can generate realistic images using two competing, or “adversarial,” neural networks. The first “generator” network is trained on pairs of real data, such as satellite images before and after a hurricane. The second “discriminator” network is then trained to distinguish between the real satellite imagery and the one synthesized by the first network.Each network automatically improves its performance based on feedback from the other network. The idea, then, is that such an adversarial push and pull should ultimately produce synthetic images that are indistinguishable from the real thing. Nevertheless, GANs can still produce “hallucinations,” or factually incorrect features in an otherwise realistic image that shouldn’t be there.“Hallucinations can mislead viewers,” says Lütjens, who began to wonder whether such hallucinations could be avoided, such that generative AI tools can be trusted to help inform people, particularly in risk-sensitive scenarios. “We were thinking: How can we use these generative AI models in a climate-impact setting, where having trusted data sources is so important?”Flood hallucinationsIn their new work, the researchers considered a risk-sensitive scenario in which generative AI is tasked with creating satellite images of future flooding that could be trustworthy enough to inform decisions of how to prepare and potentially evacuate people out of harm’s way.Typically, policymakers can get an idea of where flooding might occur based on visualizations in the form of color-coded maps. These maps are the final product of a pipeline of physical models that usually begins with a hurricane track model, which then feeds into a wind model that simulates the pattern and strength of winds over a local region. This is combined with a flood or storm surge model that forecasts how wind might push any nearby body of water onto land. A hydraulic model then maps out where flooding will occur based on the local flood infrastructure and generates a visual, color-coded map of flood elevations over a particular region.“The question is: Can visualizations of satellite imagery add another level to this, that is a bit more tangible and emotionally engaging than a color-coded map of reds, yellows, and blues, while still being trustworthy?” Lütjens says.The team first tested how generative AI alone would produce satellite images of future flooding. They trained a GAN on actual satellite images taken by satellites as they passed over Houston before and after Hurricane Harvey. When they tasked the generator to produce new flood images of the same regions, they found that the images resembled typical satellite imagery, but a closer look revealed hallucinations in some images, in the form of floods where flooding should not be possible (for instance, in locations at higher elevation).To reduce hallucinations and increase the trustworthiness of the AI-generated images, the team paired the GAN with a physics-based flood model that incorporates real, physical parameters and phenomena, such as an approaching hurricane’s trajectory, storm surge, and flood patterns. With this physics-reinforced method, the team generated satellite images around Houston that depict the same flood extent, pixel by pixel, as forecasted by the flood model.“We show a tangible way to combine machine learning with physics for a use case that’s risk-sensitive, which requires us to analyze the complexity of Earth’s systems and project future actions and possible scenarios to keep people out of harm’s way,” Newman says. “We can’t wait to get our generative AI tools into the hands of decision-makers at the local community level, which could make a significant difference and perhaps save lives.”The research was supported, in part, by the MIT Portugal Program, the DAF-MIT Artificial Intelligence Accelerator, NASA, and Google Cloud. More

  • in

    A vision for U.S. science success

    White House science advisor Arati Prabhakar expressed confidence in U.S. science and technology capacities during a talk on Wednesday about major issues the country must tackle.“Let me start with the purpose of science and technology and innovation, which is to open possibilities so that we can achieve our great aspirations,” said Prabhakar, who is the director of the Office of Science and Technology Policy (OSTP) and a co-chair of the President’s Council of Advisors on Science and Technology (PCAST). “The aspirations that we have as a country today are as great as they have ever been,” she added.Much of Prabhakar’s talk focused on three major issues in science and technology development: cancer prevention, climate change, and AI. In the process, she also emphasized the necessity for the U.S. to sustain its global leadership in research across domains of science and technology, which she called “one of America’s long-time strengths.”“Ever since the end of the Second World War, we said we’re going in on basic research, we’re going to build our universities’ capacity to do it, we have an unparalleled basic research capacity, and we should always have that,” said Prabhakar.“We have gotten better, I think, in recent years at commercializing technology from our basic research,” Prabhakar added, noting, “Capital moves when you can see profit and growth.” The Biden administration, she said, has invested in a variety of new ways for the public and private sector to work together to massively accelerate the movement of technology into the market.Wednesday’s talk drew a capacity audience of nearly 300 people in MIT’s Wong Auditorium and was hosted by the Manufacturing@MIT Working Group. The event included introductory remarks by Suzanne Berger, an Institute Professor and a longtime expert on the innovation economy, and Nergis Mavalvala, dean of the School of Science and an astrophysicist and leader in gravitational-wave detection.Introducing Mavalvala, Berger said the 2015 announcement of the discovery of gravitational waves “was the day I felt proudest and most elated to be a member of the MIT community,” and noted that U.S. government support helped make the research possible. Mavalvala, in turn, said MIT was “especially honored” to hear Prabhakar discuss leading-edge research and acknowledge the role of universities in strengthening the country’s science and technology sectors.Prabhakar has extensive experience in both government and the private sector. She has been OSTP director and co-chair of PCAST since October of 2022. She served as director of the Defense Advanced Research Projects Agency (DARPA) from 2012 to 2017 and director of the National Institute of Standards and Technology (NIST) from 1993 to 1997.She has also held executive positions at Raychem and Interval Research, and spent a decade at the investment firm U.S. Venture Partners. An engineer by training, Prabhakar earned a BS in electrical engineering from Texas Tech University in 1979, an MA in electrical engineering from Caltech in 1980, and a PhD in applied physics from Caltech in 1984.Among other remarks about medicine, Prabhakar touted the Biden administration’s “Cancer Moonshot” program, which aims to cut the cancer death rate in half over the next 25 years through multiple approaches, from better health care provision and cancer detection to limiting public exposure to carcinogens. We should be striving, Prabhakar said, for “a future in which people take good health for granted and can get on with their lives.”On AI, she heralded both the promise and concerns about technology, saying, “I think it’s time for active steps to get on a path to where it actually allows people to do more and earn more.”When it comes to climate change, Prabhakar said, “We all understand that the climate is going to change. But it’s in our hands how severe those changes get. And it’s possible that we can build a better future.” She noted the bipartisan infrastructure bill signed into law in 2021 and the Biden administration’s Inflation Reduction Act as important steps forward in this fight.“Together those are making the single biggest investment anyone anywhere on the planet has ever made in the clean energy transition,” she said. “I used to feel hopeless about our ability to do that, and it gives me tremendous hope.”After her talk, Prabhakar was joined onstage for a group discussion with the three co-presidents of the MIT Energy and Climate Club: Laurentiu Anton, a doctoral candidate in electrical engineering and computer science; Rosie Keller, an MBA candidate at the MIT Sloan School of Management; and Thomas Lee, a doctoral candidate in MIT’s Institute for Data, Systems, and Society.Asked about the seemingly sagging public confidence in science today, Prabhakar offered a few thoughts.“The first thing I would say is, don’t take it personally,” Prabhakar said, noting that any dip in public regard for science is less severe than the diminished public confidence in other institutions.Adding some levity, she observed that in polling about which occupations are regarded as being desirable for a marriage partner to have, “scientist” still ranks highly.“Scientists still do really well on that front, we’ve got that going for us,” she quipped.More seriously, Prabhakar observed, rather than “preaching” at the public, scientists should recognize that “part of the job for us is to continue to be clear about what we know are the facts, and to present them clearly but humbly, and to be clear that we’re going to continue working to learn more.” At the same time, she continued, scientists can always reinforce that “oh, by the way, facts are helpful things that can actually help you make better choices about how the future turns out. I think that would be better in my view.”Prabhakar said that her White House work had been guided, in part, by one of the overarching themes that President Biden has often reinforced.“He thinks about America as a nation that can be described in a single word, and that word is ‘possibilities,’” she said. “And that idea, that is such a big idea, it lights me up. I think of what we do in the world of science and technology and innovation as really part and parcel of creating those possibilities.”Ultimately, Prabhakar said, at all times and all points in American history, scientists and technologists must continue “to prove once more that when people come together and do this work … we do it in a way that builds opportunity and expands opportunity for everyone in our country. I think this is the great privilege we all have in the work we do, and it’s also our responsibility.” More

  • in

    Advancing urban tree monitoring with AI-powered digital twins

    The Irish philosopher George Berkely, best known for his theory of immaterialism, once famously mused, “If a tree falls in a forest and no one is around to hear it, does it make a sound?”What about AI-generated trees? They probably wouldn’t make a sound, but they will be critical nonetheless for applications such as adaptation of urban flora to climate change. To that end, the novel “Tree-D Fusion” system developed by researchers at the MIT Computer Science and Artificial Intelligence Laboratory (CSAIL), Google, and Purdue University merges AI and tree-growth models with Google’s Auto Arborist data to create accurate 3D models of existing urban trees. The project has produced the first-ever large-scale database of 600,000 environmentally aware, simulation-ready tree models across North America.“We’re bridging decades of forestry science with modern AI capabilities,” says Sara Beery, MIT electrical engineering and computer science (EECS) assistant professor, MIT CSAIL principal investigator, and a co-author on a new paper about Tree-D Fusion. “This allows us to not just identify trees in cities, but to predict how they’ll grow and impact their surroundings over time. We’re not ignoring the past 30 years of work in understanding how to build these 3D synthetic models; instead, we’re using AI to make this existing knowledge more useful across a broader set of individual trees in cities around North America, and eventually the globe.”Tree-D Fusion builds on previous urban forest monitoring efforts that used Google Street View data, but branches it forward by generating complete 3D models from single images. While earlier attempts at tree modeling were limited to specific neighborhoods, or struggled with accuracy at scale, Tree-D Fusion can create detailed models that include typically hidden features, such as the back side of trees that aren’t visible in street-view photos.The technology’s practical applications extend far beyond mere observation. City planners could use Tree-D Fusion to one day peer into the future, anticipating where growing branches might tangle with power lines, or identifying neighborhoods where strategic tree placement could maximize cooling effects and air quality improvements. These predictive capabilities, the team says, could change urban forest management from reactive maintenance to proactive planning.A tree grows in Brooklyn (and many other places)The researchers took a hybrid approach to their method, using deep learning to create a 3D envelope of each tree’s shape, then using traditional procedural models to simulate realistic branch and leaf patterns based on the tree’s genus. This combo helped the model predict how trees would grow under different environmental conditions and climate scenarios, such as different possible local temperatures and varying access to groundwater.Now, as cities worldwide grapple with rising temperatures, this research offers a new window into the future of urban forests. In a collaboration with MIT’s Senseable City Lab, the Purdue University and Google team is embarking on a global study that re-imagines trees as living climate shields. Their digital modeling system captures the intricate dance of shade patterns throughout the seasons, revealing how strategic urban forestry could hopefully change sweltering city blocks into more naturally cooled neighborhoods.“Every time a street mapping vehicle passes through a city now, we’re not just taking snapshots — we’re watching these urban forests evolve in real-time,” says Beery. “This continuous monitoring creates a living digital forest that mirrors its physical counterpart, offering cities a powerful lens to observe how environmental stresses shape tree health and growth patterns across their urban landscape.”AI-based tree modeling has emerged as an ally in the quest for environmental justice: By mapping urban tree canopy in unprecedented detail, a sister project from the Google AI for Nature team has helped uncover disparities in green space access across different socioeconomic areas. “We’re not just studying urban forests — we’re trying to cultivate more equity,” says Beery. The team is now working closely with ecologists and tree health experts to refine these models, ensuring that as cities expand their green canopies, the benefits branch out to all residents equally.It’s a breezeWhile Tree-D fusion marks some major “growth” in the field, trees can be uniquely challenging for computer vision systems. Unlike the rigid structures of buildings or vehicles that current 3D modeling techniques handle well, trees are nature’s shape-shifters — swaying in the wind, interweaving branches with neighbors, and constantly changing their form as they grow. The Tree-D fusion models are “simulation-ready” in that they can estimate the shape of the trees in the future, depending on the environmental conditions.“What makes this work exciting is how it pushes us to rethink fundamental assumptions in computer vision,” says Beery. “While 3D scene understanding techniques like photogrammetry or NeRF [neural radiance fields] excel at capturing static objects, trees demand new approaches that can account for their dynamic nature, where even a gentle breeze can dramatically alter their structure from moment to moment.”The team’s approach of creating rough structural envelopes that approximate each tree’s form has proven remarkably effective, but certain issues remain unsolved. Perhaps the most vexing is the “entangled tree problem;” when neighboring trees grow into each other, their intertwined branches create a puzzle that no current AI system can fully unravel.The scientists see their dataset as a springboard for future innovations in computer vision, and they’re already exploring applications beyond street view imagery, looking to extend their approach to platforms like iNaturalist and wildlife camera traps.“This marks just the beginning for Tree-D Fusion,” says Jae Joong Lee, a Purdue University PhD student who developed, implemented and deployed the Tree-D-Fusion algorithm. “Together with my collaborators, I envision expanding the platform’s capabilities to a planetary scale. Our goal is to use AI-driven insights in service of natural ecosystems — supporting biodiversity, promoting global sustainability, and ultimately, benefiting the health of our entire planet.”Beery and Lee’s co-authors are Jonathan Huang, Scaled Foundations head of AI (formerly of Google); and four others from Purdue University: PhD students Jae Joong Lee and Bosheng Li, Professor and Dean’s Chair of Remote Sensing Songlin Fei, Assistant Professor Raymond Yeh, and Professor and Associate Head of Computer Science Bedrich Benes. Their work is based on efforts supported by the United States Department of Agriculture’s (USDA) Natural Resources Conservation Service and is directly supported by the USDA’s National Institute of Food and Agriculture. The researchers presented their findings at the European Conference on Computer Vision this month.  More

  • in

    J-PAL North America announces new evaluation incubator collaborators from state and local governments

    J-PAL North America recently selected government partners for the 2024-25 Leveraging Evaluation and Evidence for Equitable Recovery (LEVER) Evaluation Incubator cohort. Selected collaborators will receive funding and technical assistance to develop or launch a randomized evaluation for one of their programs. These collaborations represent jurisdictions across the United States and demonstrate the growing enthusiasm for evidence-based policymaking.Launched in 2023, LEVER is a joint venture between J-PAL North America and Results for America. Through the Evaluation Incubator, trainings, and other program offerings, LEVER seeks to address the barriers many state and local governments face around finding and generating evidence to inform program design. LEVER offers government leaders the opportunity to learn best practices for policy evaluations and how to integrate evidence into decision-making. Since the program’s inception, more than 80 government jurisdictions have participated in LEVER offerings.J-PAL North America’s Evaluation Incubator helps collaborators turn policy-relevant research questions into well-designed randomized evaluations, generating rigorous evidence to inform pressing programmatic and policy decisions. The program also aims to build a culture of evidence use and give government partners the tools to continue generating and utilizing evidence in their day-to-day operations.In addition to funding and technical assistance, the selected state and local government collaborators will be connected with researchers from J-PAL’s network to help advance their evaluation ideas. Evaluation support will also be centered on community-engaged research practices, which emphasize collaborating with and learning from the groups most affected by the program being evaluated.Evaluation Incubator selected projectsPierce County Human Services (PCHS) in the state of Washington will evaluate two programs as part of the Evaluation Incubator. The first will examine how extending stays in a fentanyl detox program affects the successful completion of inpatient treatment and hospital utilization for individuals. “PCHS is interested in evaluating longer fentanyl detox stays to inform our funding decisions, streamline our resource utilization, and encourage additional financial commitments to address the unmet needs of individuals dealing with opioid use disorder,” says Trish Crocker, grant coordinator.The second PCHS program will evaluate the impact of providing medication and outreach services via a mobile distribution unit to individuals with opioid use disorders on program take-up and substance usage. Margo Burnison, a behavioral health manager with PCHS, says that the team is “thrilled to be partnering with J-PAL North America to dive deep into the data to inform our elected leaders on the best way to utilize available resources.”The City of Los Angeles Youth Development Department (YDD) seeks to evaluate a research-informed program: Student Engagement, Exploration, and Development in STEM (SEEDS). This intergenerational STEM mentorship program supports underrepresented middle school and college students in STEM by providing culturally responsive mentorship. The program seeks to foster these students’ STEM identity and degree attainment in higher education. YDD has been working with researchers at the University of Southern California to measure the SEEDS program’s impact, but is interested in developing a randomized evaluation to generate further evidence. Darnell Cole, professor and co-director of the Research Center for Education, Identity and Social Justice, shares his excitement about the collaboration with J-PAL: “We welcome the opportunity to measure the impact of the SEEDS program on our students’ educational experience. Rigorously testing the SEEDS program will help us improve support for STEM students, ultimately enhancing their persistence and success.”The Fort Wayne Police Department’s Hope and Recovery Team in Indiana will evaluate the impact of two programs that connect social workers with people who have experienced an overdose, or who have a mental health illness, to treatment and resources. “We believe we are on the right track in the work we are doing with the crisis intervention social worker and the recovery coach, but having an outside evaluation of both programs would be extremely helpful in understanding whether and what aspects of these programs are most effective,” says Police Captain Kevin Hunter.The County of San Diego’s Office of Evaluation, Performance and Analytics, and Planning & Development Services will engage with J-PAL staff to explore evaluation opportunities for two programs that are a part of the county’s Climate Action Plan. The Equity-Driven Tree Planting Program seeks to increase tree canopy coverage, and the Climate Smart Land Stewardship Program will encourage climate-smart agricultural practices. Ricardo Basurto-Davila, chief evaluation officer, says that “the county is dedicated to evidence-based policymaking and taking decisive action against climate change. The work with J-PAL will support us in combining these commitments to maximize the effectiveness in decreasing emissions through these programs.”J-PAL North America looks forward to working with the selected collaborators in the coming months to learn more about these promising programs, clarify our partner’s evidence goals, and design randomized evaluations to measure their impact. More