in

Comparisons of fall armyworm haplotypes between the Galápagos Islands and mainland Ecuador indicate limited migration to and between islands

  • 1.

    Luginbill, P. The fall armyworm. USDA Tech. Bull. 34, 1–91 (1928).

    Google Scholar 

  • 2.

    Chandrasena, D. I. et al. Characterization of field-evolved resistance to Bacillus thuringiensis-derived Cry1F delta-endotoxin in Spodopterafrugiperda populations from Argentina. Pest Manag. Sci. 74, 746–754. https://doi.org/10.1002/ps.4776 (2018).

    CAS  Article  PubMed  Google Scholar 

  • 3.

    Farias, J. R. et al. Frequency of Cry1F resistance alleles in Spodoptera frugiperda (Lepidoptera: Noctuidae) in Brazil. Pest Manag. Sci. 72, 2295–2302. https://doi.org/10.1002/ps.4274 (2016).

    CAS  Article  PubMed  Google Scholar 

  • 4.

    Farias, J. R. et al. Field-evolved resistance to Cry1F maize by Spodoptera frugiperda (Lepidoptera: Noctuidae) in Brazil. Crop Prot. 64, 150–158 (2014).

    Article  ADS  Google Scholar 

  • 5.

    Huang, F. et al. Cry1F resistance in fall armyworm Spodoptera frugiperda: Single gene versus pyramided Bt maize. PLoS ONE 9, e112958. https://doi.org/10.1371/journal.pone.0112958 (2014).

    CAS  Article  PubMed  PubMed Central  ADS  Google Scholar 

  • 6.

    Storer, N. P. et al. Discovery and characterization of field resistance to Bt maize: Spodoptera frugiperda (Lepidoptera:Noctuidae) in Puerto Rico. J. Econ. Entomol. 103, 1031–1038. https://doi.org/10.1603/Ec10040 (2010).

    Article  PubMed  Google Scholar 

  • 7.

    Ganiger, P. C. et al. Occurrence of the new invasive pest, fall armyworm, Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae), in the maize fields of Karnataka, India. Curr. Sci. India 115, 621–623 (2018).

    CAS  Article  Google Scholar 

  • 8.

    Nagoshi, R. N. Evidence that a major subpopulation of fall armyworm found in the Western Hemisphere is rare or absent in Africa, which may limit the range of crops at risk of infestation. PLoS ONE 14, e0208966. https://doi.org/10.1371/journal.pone.0208966 (2019).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 9.

    Nagoshi, R. N. et al. Southeastern Asia fall armyworms are closely related to populations in Africa and India, consistent with common origin and recent migration. Sci. Rep. 10, 1421. https://doi.org/10.1038/s41598-020-58249-3 (2020).

    CAS  Article  PubMed  PubMed Central  ADS  Google Scholar 

  • 10.

    Shylesha, A. N. et al. Studies on new invasive pest Spodopterafrugiperda (J. E. Smith) (Lepidoptera: Noctuidae) and its natural enemies. J. Biol. Control 32, 145–151. https://doi.org/10.18311/jbc/2018/21707 (2018).

    Article  Google Scholar 

  • 11.

    DPIRD, G. o. W. A. Fall armyworm in Western Australia. http://www.agric.wa.gov.au/plant-biosecurity/fall-armyworm-western-australia (2020).

  • 12.

    Pair, S. D. & Sparks, A. N. in Long-range migration of moths of agronomic importance to the United States and Canada: Specific examples of occurrence and synoptic weather patterns conducive to migration (ESA Symposium, 1982). Vol. ARS-43 (ed A. N. Sparks) 25–33 (USDA Miscellaneous Publication, 1986).

  • 13.

    Mitchell, E. R. et al. Seasonal periodicity of fall armyworm, (Lepidoptera, Noctuidae) in the Caribbean basin and northward to Canada. J. Entomol. Sci. 26, 39–50 (1991).

    Article  Google Scholar 

  • 14.

    Nagoshi, R. N., Meagher, R. L. & Hay-Roe, M. Inferring the annual migration patterns of fall armyworm (Lepidoptera: Noctuidae) in the United States from mitochondrial haplotypes. Ecol. Evol. 2, 1458–1467 (2012).

    Article  Google Scholar 

  • 15.

    Westbrook, J. K. Noctuid migration in Texas within the nocturnal aeroecological boundary layer. Integr. Comp. Biol. 48, 99–106 (2008).

    Article  Google Scholar 

  • 16.

    16Danthanarayana, W. in Proceedings in life sciences (ed International Congress of Entomology) (Springer, Hamburg, 1986).

  • 17.

    Westbrook, J. K., Nagoshi, R. N., Meagher, R. L., Fleischer, S. J. & Jairam, S. Modeling seasonal migration of fall armyworm moths. Int. J. Biometeorol. 60, 255–267 (2016).

    CAS  Article  ADS  Google Scholar 

  • 18.

    Pashley, D. P. The current status of fall armyworm host strains. Fla Entomol. 71, 227–234 (1988).

    Article  Google Scholar 

  • 19.

    19Pashley, D. P. in Electrophoretic Studies on Agricultural Pests (eds H. D. Loxdale & J. der Hollander) 103–114 (Oxford University Press, Oxford, 1989).

  • 20.

    Juárez, M. L. et al. Host association of Spodoptera frugiperda (Lepidoptera: Noctuidae) corn and rice strains in Argentina, Brazil, and Paraguay. J. Econ. Entomol. 105, 573–582. https://doi.org/10.1603/Ec11184 (2012).

    Article  PubMed  Google Scholar 

  • 21.

    Murúa, M. G. et al. Demonstration using field collections that Argentina fall armyworm populations exhibit strain-specific host plant preferences. J. Econ. Entomol. 108, 2305–2315 (2015).

    Article  Google Scholar 

  • 22.

    Nagoshi, R. N., Silvie, P., Meagher, R. L., Lopez, J. & Machados, V. Identification and comparison of fall armyworm (Lepidoptera: Noctuidae) host strains in Brazil, Texas, and Florida. Ann. Entomol. Soc. Am. 100, 394–402 (2007).

    CAS  Article  Google Scholar 

  • 23.

    Levy, H. C., Garcia-Maruniak, A. & Maruniak, J. E. Strain identification of Spodoptera frugiperda (Lepidoptera: Noctuidae) insects and cell line: PCR-RFLP of cytochrome oxidase C subunit I gene. Fla Entomol. 85, 186–190 (2002).

    CAS  Article  Google Scholar 

  • 24.

    Nagoshi, R. N. The fall armyworm triose phosphate isomerase (Tpi) gene as a marker of strain identity and interstrain mating. Ann. Entomol. Soc. Am. 103, 283–292. https://doi.org/10.1603/An09046 (2010).

    CAS  Article  Google Scholar 

  • 25.

    Nagoshi, R. N., Silvie, P. & Meagher, R. L. Comparison of haplotype frequencies differentiate fall armyworm (Lepidoptera: Noctuidae) corn-strain populations from Florida and Brazil. J. Econ. Entomol. 100, 954–961 (2007).

    Article  Google Scholar 

  • 26.

    Nagoshi, R. N., Meagher, R. L. & Jenkins, D. A. Puerto Rico fall armyworm has only limited interactions with those from Brazil or Texas but could have substantial exchanges with Florida populations. J. Econ. Entomol. 103, 360–367 (2010).

    Article  Google Scholar 

  • 27.

    Nagoshi, R. N. et al. Genetic characterization of fall armyworm infesting South Africa and India indicate recent introduction from a common source population. PLoS ONE 14, e021775 (2019).

    Google Scholar 

  • 28.

    Nagoshi, R. N., Fleischer, S. & Meagher, R. L. Demonstration and quantification of restricted mating between fall armyworm host strains in field collections by SNP comparisons. J. Econ. Entomol. 110, 2568–2575 (2017).

    CAS  Article  Google Scholar 

  • 29.

    Nagoshi, R. N., Goergen, G., Du Plessis, H., van den Berg, J. & Meagher, R. Genetic comparisons of fall armyworm populations from 11 countries spanning sub-Saharan Africa provide insights into strain composition and migratory behaviors. Sci. Rep. UK 9, 8311 (2019).

    Article  ADS  Google Scholar 

  • 30.

    Nagoshi, R. N. & Meagher, R. L. Using intron sequence comparisons in the triose-phosphate isomerase gene to study the divergence of the fall armyworm host strains. Insect Mol. Biol. 25, 324–337. https://doi.org/10.1111/imb.12223 (2016).

    CAS  Article  PubMed  Google Scholar 

  • 31.

    Meagher, R. L. & Nagoshi, R. N. Population dynamics and occurrence of Spodoptera frugiperda host strains in southern Florida. Ecol. Entomol. 29, 614–620 (2004).

    Article  Google Scholar 

  • 32.

    Nagoshi, R. N. et al. Genetic characterization of fall armyworm (Lepidoptera: Noctuidae) host strains in Argentina. J. Econ. Entomol. 105, 418–428. https://doi.org/10.1603/Ec11332 (2012).

    CAS  Article  PubMed  Google Scholar 

  • 33.

    Meagher, R. L. & Nagoshi, R. N. Differential feeding of fall armyworm (Lepidoptera: Noctuidae) host strains on meridic and natural diets. Ann. Entomol. Soc. Am. 105, 462–470. https://doi.org/10.1603/An11158 (2012).

    Article  Google Scholar 

  • 34.

    Meagher, R. L., Nagoshi, R. N., Stuhl, C. & Mitchell, E. R. Larval development of fall armyworm (Lepidoptera: Noctuidae) on different cover crop plants. Fla Entomol. 87, 454–460 (2004).

    Article  Google Scholar 

  • 35.

    Prowell, D. P., McMichael, M. & Silvain, J. F. Multilocus genetic analysis of host use, introgression, and speciation in host strains of fall armyworm (Lepidoptera: Noctuidae). Ann. Entomol. Soc. Am. 97, 1034–1044 (2004).

    CAS  Article  Google Scholar 

  • 36.

    Nagoshi, R. N. et al. Genetic characterization of fall armyworm (Spodoptera frugiperda) in Ecuador and comparisons with regional populations identify likely migratory relationships. PLoS ONE 14, e0222332. https://doi.org/10.1371/journal.pone.0222332 (2019).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 37.

    Nagoshi, R. N. et al. Haplotype profile comparisons between Spodoptera frugiperda (Lepidoptera: Noctuidae) populations from Mexico with those from Puerto Rico, South America, and the United States and their implications to migratory behavior. J. Econ. Entomol. 108, 135–144 (2015).

    CAS  Article  Google Scholar 

  • 38.

    Nagoshi, R. N. et al. Fall armyworm migration across the Lesser Antilles and the potential for genetic exchanges between North and South American populations. PLoS ONE 12, e0171743 (2017).

    CAS  Article  Google Scholar 

  • 39.

    Peck, S. B., Heraty, J., Landry, B. & Sinclair, B. J. Introduced insect fauna of an oceanic archipelago: The Galápagos Islands, Ecuador. Am. Entomol. 44, 218–237. https://doi.org/10.1093/ae/44.4.218 (1998).

    Article  Google Scholar 

  • 40.

    Zapata, F. & Granja, M. M. Optimizing marine transport of food products to Galapagos: advances in the implementation plan. http://www.galapagos.org/wp-content/uploads/2012/04/trans1-optimizing-marine-transport.pdf (2009–2010).

  • 41.

    Toral-Granda, M. V. et al. Alien species pathways to the Galapagos Islands, Ecuador. PLoS ONE 12, e0184379. https://doi.org/10.1371/journal.pone.0184379 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 42.

    Nagoshi, R. N. et al. The genetic characterization of fall armyworm populations in Ecuador and its implications to migration and pest management in the northern regions of South America. PLoS ONE 15, e0236759. https://doi.org/10.1371/journal.pone.0236759 (2020).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 43.

    Kearse, M. et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).

    Article  Google Scholar 

  • 44.

    Saitou, N. & Nei, M. The neighbor-joining method—A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987).

    CAS  PubMed  Google Scholar 

  • 45.

    Clements, M. J., Kleinschmidt, C. E., Maragos, C. M., Pataky, J. K. & White, D. G. Evaluation of inoculation techniques for fusarium ear rot and fumonisin contamination of corn. Plant Dis. 87, 147–153 (2003).

    CAS  Article  Google Scholar 

  • 46.

    Leigh, J. W. & Bryant, D. POPART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015).

    Article  Google Scholar 

  • 47.

    Murúa, G. M. et al. Fitness and mating compatibility of Spodoptera frugiperda (Lepidoptera: Noctuidae) populations from different host plant species and regions in Argentina. Ann. Entomol. Soc. Am. 101, 639–649 (2008).

    Article  Google Scholar 

  • 48.

    Librado, P. & Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009).

    CAS  Article  Google Scholar 

  • 49.

    Stein, A. F. et al. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. Meteorol. Soc. 96, 2059–2077. https://doi.org/10.1175/Bams-D-14-00110.1 (2015).

    Article  ADS  Google Scholar 


  • Source: Ecology - nature.com

    Nickel excess affects phenology and reproductive attributes of Asterella wallichiana and Plagiochasma appendiculatum growing in natural habitats

    Reductions in CFC-11 emissions put ozone recovery back on track