in

Deforestation-induced climate change reduces carbon storage in remaining tropical forests

  • Saatchi, S. S. et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl Acad. Sci. USA 108, 9899–9904 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Baccini, A. et al. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat. Clim. Chang 2, 182–185 (2012).

    ADS 
    CAS 

    Google Scholar 

  • Santoro, M. et al. The global forest above-ground biomass pool for 2010 estimated from high-resolution satellite observations. Earth Syst. Sci. Data 13, 3927–3950 (2021).

  • Cox, P. M. et al. Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature 494, 341–344 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Davidson, E. A. et al. The Amazon basin in transition. Nature 481, 321–328 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Ramankutty, N. & Foley, J. A. Estimating historical changes in global land cover: croplands from 1700 to 1992. Glob. Biogeochem. Cy. 13, 997–1027 (1999).

    ADS 
    CAS 

    Google Scholar 

  • Pongratz, J., Reick, C., Raddatz, T. & Claussen, M. A reconstruction of global agricultural areas and land cover for the last millennium. Glob. Biogeochem. Cy. 22, GB3018 (2008).

    ADS 

    Google Scholar 

  • Kaplan, J. O. et al. Holocene carbon emissions as a result of anthropogenic land cover change. Holocene 21, 775–791 (2011).

    ADS 

    Google Scholar 

  • Fearnside, P. M. Deforestation in Brazilian Amazonia: history, rates, and consequences. Conserv Biol. 19, 680–688 (2005).

    Google Scholar 

  • van Marle, M. J. et al. Fire and deforestation dynamics in Amazonia (1973–2014). Glob. Biogeochem. Cy 31, 24–38 (2017).

    Google Scholar 

  • Houghton, R. A. & Nassikas, A. A. Global and regional fluxes of carbon from land use and land cover change 1850–2015. Glob. Biogeochem. Cy 31, 456–472 (2017).

    ADS 
    CAS 

    Google Scholar 

  • Houghton, R. A. Aboveground forest biomass and the global carbon balance. Glob. Change Biol. 11, 945–958 (2005).

    ADS 

    Google Scholar 

  • Friedlingstein, P. et al. Global carbon budget 2020. Earth Syst. Sci. Data 12, 3269–3340 (2020).

    ADS 

    Google Scholar 

  • Xu, L. et al. Changes in global terrestrial live biomass over the 21st century. Sci. Adv. 7, eabe9829 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Brando, P. M. et al. The gathering firestorm in southern Amazonia. Sci. Adv. 6, eaay1632 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Qin, Y. et al. Carbon loss from forest degradation exceeds that from deforestation in the Brazilian Amazon. Nat. Clim. Chang. 11, 442–448 (2021).

    ADS 

    Google Scholar 

  • Erb, K. H. et al. Unexpectedly large impact of forest management and grazing on global vegetation biomass. Nature 553, 73–76 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Davin, E. L. & de Noblet-Ducoudré, N. Climatic impact of global-scale deforestation: radiative versus nonradiative processes. J. Clim. 23, 97–112 (2010).

    ADS 

    Google Scholar 

  • Li, Y. et al. Local cooling and warming effects of forests based on satellite observations. Nat. Commun. 6, 1–8 (2015).

    ADS 

    Google Scholar 

  • Silvério, D. V. et al. Agricultural expansion dominates climate changes in southeastern Amazonia: the overlooked non-GHG forcing. Environ. Res. Lett. 10, 104015 (2015).

    Google Scholar 

  • Betts, R. Implications of land ecosystem-atmosphere interactions for strategies for climate change adaptation and mitigation. Tellus Ser. B-Chem. Phys. Meteorol. 59, 602–615 (2007).

    ADS 

    Google Scholar 

  • Gibbard, S., Caldeira, K., Bala, G., Phillips, T. J. & Wickett, M. Climate effects of global land cover change. Geophys. Res. Lett. 32, L23705 (2005).

    ADS 

    Google Scholar 

  • Bala, G. et al. Combined climate and carbon-cycle effects of large-scale deforestation. Proc. Natl Acad. Sci. USA 104, 6550–6555 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bathiany, S., Claussen, M., Brovkin, V., Raddatz, T. & Gayler, V. Combined biogeophysical and biogeochemical effects of large-scale forest cover changes in the MPI earth system model. Biogeosciences 7, 1383–1399 (2010).

    ADS 
    CAS 

    Google Scholar 

  • Devaraju, N., Bala, G. & Modak, A. Effects of large-scale deforestation on precipitation in the monsoon regions: Remote versus local effects. Proc. Natl Acad. Sci. USA 112, 3257–3262 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Devaraju, N., Bala, G. & Nemani, R. Modelling the influence of land‐use changes on biophysical and biochemical interactions at regional and global scales. Plant Cell Environ. 38, 1931–1946 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Henderson-Sellers, A. & Gornitz, V. Possible climatic impacts of land cover transformations, with particular emphasis on tropical deforestation. Clim. Change 6, 231–257 (1984).

    ADS 

    Google Scholar 

  • Dickinson, R. E. & Henderson‐Sellers, A. Modelling tropical deforestation: a study of GCM land‐surface parametrizations. Q. J. R. Meteorol. Soc. 114, 439–462 (1988).

    ADS 

    Google Scholar 

  • Zhang, H., Henderson-Sellers, A. & McGuffie, K. Impacts of tropical deforestation. Part I: process analysis of local climatic change. J. Clim. 9, 1497–1517 (1996).

    ADS 

    Google Scholar 

  • Costa, M. H. & Foley, J. A. Combined effects of deforestation and doubled atmospheric CO2 concentrations on the climate of Amazonia. J. Clim. 13, 18–34 (2000).

    ADS 

    Google Scholar 

  • Lawrence, D. & Vandecar, K. Effects of tropical deforestation on climate and agriculture. Nat. Clim. Chang. 5, 27–36 (2015).

    ADS 

    Google Scholar 

  • Nobre, C. A., Sellers, P. J. & Shukla, J. Amazonian deforestation and regional climate change. J. Clim. 4, 957–988 (1991).

    ADS 

    Google Scholar 

  • Gedney, N. & Valdes, P. J. The effect of Amazonian deforestation on the northern hemisphere circulation and climate. Geophys. Res. Lett. 27, 3053–3056 (2000).

    ADS 

    Google Scholar 

  • Nobre, P., Malagutti, M., Urbano, D. F., de Almeida, R. A. & Giarolla, E. Amazon deforestation and climate change in a coupled model simulation. J. Clim. 22, 5686–5697 (2009).

    ADS 

    Google Scholar 

  • Snyder, P. K. The influence of tropical deforestation on the Northern Hemisphere climate by atmospheric teleconnections. Earth Interact. 14, 1–34 (2010).

    Google Scholar 

  • Spracklen, D. V., Baker, J. C. A., Garcia-Carreras, L. & Marsham, J. H. The effects of tropical vegetation on rainfall. Annu. Rev. Environ. Resour. 43, 193–218 (2018).

    Google Scholar 

  • Leite-Filho, A. T., Soares-Filho, B. S., Davis, J. L., Abrahão, G. M. & Börner, J. Deforestation reduces rainfall and agricultural revenues in the Brazilian Amazon. Nat. Commun. 12, 1–7 (2021).

    Google Scholar 

  • Baidya Roy, S. & Avissar, R. Impact of land use/land cover change on regional hydrometeorology in Amazonia. J. Geophys. Res. Atmos. 107, LBA-4 (2002).

    Google Scholar 

  • Khanna, J., Medvigy, D., Fisch, G. & de Araújo Tiburtino Neves, T. T. Regional hydroclimatic variability due to contemporary deforestation in southern Amazonia and associated boundary layer characteristics. J. Geophys. Res. Atmos. 123, 3993–4014 (2018).

    ADS 

    Google Scholar 

  • McGuffie, K., Henderson-Sellers, A., Zhang, H., Durbidge, T. B. & Pitman, A. J. Global climate sensitivity to tropical deforestation. Glob. Planet. Change 10, 97–128 (1995).

    ADS 

    Google Scholar 

  • Zhang, H., Henderson-Sellers, A. & McGuffie, K. The compounding effects of tropical deforestation and greenhouse warming on climate. Clim. Change 49, 309–338 (2001).

    CAS 

    Google Scholar 

  • Voldoire, A. & Royer, J. F. Climate sensitivity to tropical land surface changes with coupled versus prescribed SSTs. Clim. Dyn. 24, 843–862 (2005).

    Google Scholar 

  • Mahmood, R. et al. Land cover changes and their biogeophysical effects on climate. Int. J. Climatol. 34, 929–953 (2014).

    Google Scholar 

  • Kooperman, G. J. et al. Forest response to rising CO2 drives zonally asymmetric rainfall change over tropical land. Nat. Clim. Chang. 8, 434–440 (2018).

    ADS 

    Google Scholar 

  • Doughty, C. E. & Goulden, M. L. Are tropical forests near a high temperature threshold? J. Geophys. Res. Biogeosci. 113, G00B07 (2008).

    ADS 

    Google Scholar 

  • Sullivan, M. J. et al. Long-term thermal sensitivity of Earth’s tropical forests. Science 368, 869–874 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Wu, C. et al. Historical and future global burned area with changing climate and human demography. One Earth 4, 517–530 (2021).

    ADS 

    Google Scholar 

  • Brando, P. M. et al. Abrupt increases in Amazonian tree mortality due to drought–fire interactions. Proc. Natl Acad. Sci. USA 111, 6347–6352 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nobre, C. A. et al. Land-use and climate change risks in the Amazon and the need of a novel sustainable development paradigm. Proc. Natl Acad. Sci. USA 113, 10759–10768 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Trumbore, S., Brando, P. & Hartmann, H. Forest health and global change. Science 349, 814–818 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Green, J. K., Berry, J., Ciais, P., Zhang, Y. & Gentine, P. Amazon rainforest photosynthesis increases in response to atmospheric dryness. Sci. Adv. 6, eabb7232 (2020).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Numata, I. et al. Biomass collapse and carbon emissions from forest fragmentation in the Brazilian Amazon. J. Geophys. Res. Biogeosci. 115, G03027 (2010).

    ADS 

    Google Scholar 

  • Junior, C. H. S. et al. Persistent collapse of biomass in Amazonian forest edges following deforestation leads to unaccounted carbon losses. Sci. Adv. 6, eaaz8360 (2020).

    ADS 

    Google Scholar 

  • Lawrence, D. M. et al. The Land Use Model Intercomparison Project (LUMIP) contribution to CMIP6: rationale and experimental design. Geosci. Model Dev. 9, 2973–2998 (2016).

    ADS 

    Google Scholar 

  • Friedlingstein, P. et al. Climate–carbon cycle feedback analysis: results from the C4MIP model intercomparison. J. Clim. 19, 3337–3353 (2006).

    ADS 

    Google Scholar 

  • Wu, T. et al. The Beijing Climate Center climate system model (BCC-CSM): the main progress from CMIP5 to CMIP6. Geosci. Model Dev. 12, 1573–1600 (2019).

    ADS 

    Google Scholar 

  • Swart, N. C. et al. The Canadian Earth System Model version 5 (CanESM5. 0.3). Geosci. Model Dev. 12, 4823–4873 (2019).

    ADS 
    CAS 

    Google Scholar 

  • Danabasoglu, G. et al. The Community Earth System Model version 2 (CESM2). J. Adv. Model Earth Syst. 12, e2019MS001916 (2020).

    ADS 

    Google Scholar 

  • Séférian, R. et al. Evaluation of CNRM Earth System Model, CNRM‐ESM2‐1: role of earth system processes in present‐day and future climate. J. Adv. Model Earth Syst. 11, 4182–4227 (2019).

    ADS 

    Google Scholar 

  • Boucher, O. et al. Presentation and evaluation of the IPSL-CM6A-LR climate model. J. Adv. Model Earth Syst. 12, 1–52 (2020).

    Google Scholar 

  • Kelley, M. et al. GISS‐E2. 1: configurations and climatology. J. Adv. Model Earth Syst. 12, e2019MS002025 (2020).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sellar, A. A. et al. Implementation of UK Earth system models for CMIP6. J. Adv. Model Earth Syst. 12, e2019MS001946 (2020).

    ADS 

    Google Scholar 

  • Mauritsen, T. et al. Developments in the MPI‐M Earth System Model version 1.2 (MPI‐ESM1. 2) and its response to increasing CO2. J. Adv. Model Earth Syst. 11, 998–1038 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Boysen, L. et al. Global climate response to idealized deforestation in CMIP6 models. Biogeosciences 17, 5615–5638 (2020).

    ADS 
    CAS 

    Google Scholar 

  • Malhi, Y. et al. Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proc. Natl Acad. Sci. USA 106, 20610–20615 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Novick, K. A. et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Clim. Chang. 6, 1023–1027 (2016).

    ADS 
    CAS 

    Google Scholar 

  • Hurtt, G. C. et al. Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6. Geosci. Model Dev. 13, 5425–5464 (2020).

    ADS 
    CAS 

    Google Scholar 

  • Ciais, P. et al. Carbon and other biogeochemical cycles. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (eds Stocker et al.) 465–570 (Cambridge Univ Press, UK and USA, 2013).

  • Arora, V. K. et al. Carbon–concentration and carbon–climate feedbacks in CMIP6 models and their comparison to CMIP5 models. Biogeosciences 17, 4173–4222 (2020).

    ADS 
    CAS 

    Google Scholar 

  • Jones, C. D. et al. C4MIP–The coupled climate–carbon cycle model intercomparison project: experimental protocol for CMIP6. Geosci. Model Dev. 9, 2853–2880 (2016).

    ADS 
    CAS 

    Google Scholar 

  • UNFCCC. Background paper for the Workshop on Reducing Emissions from Deforestation in Developing Countries, Part 1: Scientific, Socio-economic, Technical, and Methodological Issues Related to Deforestation in Developing Countries 30 August to 1 September, Rome, Italy. Working paper No. 1(a) (2006).

  • Asner, G. P. Tropical forest carbon assessment: integrating satellite and airborne mapping approaches. Environ. Res. Lett. 4, 034009 (2009).

    ADS 

    Google Scholar 

  • Mahowald, N. M. et al. Interactions between land use change and carbon cycle feedbacks. Glob. Biogeochem. Cy 31, 96–113 (2017).

    CAS 

    Google Scholar 

  • Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Gibbs, H. K., Brown, S., Niles, J. O. & Foley, J. A. Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environ. Res. Lett. 2, 045023 (2007).

    ADS 

    Google Scholar 

  • Zhao, Z. et al. Fire enhances forest degradation within forest edge zones in Africa. Nat. Geosci. 14, 479–483 (2021).

    ADS 
    CAS 

    Google Scholar 

  • Ordway, E. M. & Asner, G. P. Carbon declines along tropical forest edges correspond to heterogeneous effects on canopy structure and function. Proc. Natl Acad. Sci. USA117, 7863–7870 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fischer, R. et al. Accelerated forest fragmentation leads to critical increase in tropical forest edge area. Sci. Adv. 7, eabg7012 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McDowell, N. et al. Drivers and mechanisms of tree mortality in moist tropical forests. N. Phytol. 219, 851–869 (2018).

    Google Scholar 

  • Staver, A. C., Archibald, S. & Levin, S. A. The global extent and determinants of savanna and forest as alternative biome states. Science 334, 230–232 (2011).

    ADS 
    CAS 
    MATH 

    Google Scholar 

  • Fu, R. et al. Increased dry-season length over southern Amazonia in recent decades and its implication for future climate projection. Proc. Natl Acad. Sci. USA 110, 18110–18115 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bagley, J. E., Desai, A. R., Harding, K. J., Snyder, P. K. & Foley, J. A. Drought and deforestation: has land cover change influenced recent precipitation extremes in the Amazon? J. Clim. 27, 345–361 (2014).

    ADS 

    Google Scholar 

  • Arora, V. K. et al. Carbon–concentration and carbon–climate feedbacks in CMIP5 Earth system models. J. Clim. 26, 5289–5314 (2013).

    ADS 

    Google Scholar 

  • Duveiller, G. et al. Biophysics and vegetation cover change: a process-based evaluation framework for confronting land surface models with satellite observations. Earth Syst. Sci. Data 10, 1265–1279 (2018).

    ADS 

    Google Scholar 

  • Schulzweida, U. Climate data operators (CDO) user guide (Version 1.9.8). https://doi.org/10.5281/zenodo.3539275 (2019).

  • Tropical Rainfall Measuring Mission (TRMM) TRMM (TMPA/3B43) Rainfall Estimate L3 1 month 0.25 degree x 0.25 degree V7, Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center (GES DISC). https://doi.org/10.5067/TRMM/TMPA/MONTH/7 (2011).

  • Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 1–18 (2020).

    Google Scholar 

  • Yang, H. et al. Comparison of forest above‐ground biomass from dynamic global vegetation models with spatially explicit remotely sensed observation‐based estimates. Glob. Chang. Biol. 26, 3997–4012 (2020).

    ADS 
    PubMed 

    Google Scholar 

  • Schneider, U. et al. GPCC Full Data Reanalysis Version 6.0 at 1.0o: Monthly Land-Surface Precipitation from Rain-Gauges built on GTS-based and Historic Data. https://doi.org/10.5676/DWD_GPCC/FD_M_V7_100 (2011).

  • Liu, Y. Y. et al. Recent reversal in loss of global terrestrial biomass. Nat. Clim. Chang 5, 470–474 (2015).

    ADS 

    Google Scholar 

  • Spracklen, D. V. & Garcia‐Carreras, L. The impact of Amazonian deforestation on Amazon basin rainfall. Geophys. Res. Lett. 42, 9546–9552 (2015).

    ADS 

    Google Scholar 


  • Source: Ecology - nature.com

    MIT announces five flagship projects in first-ever Climate Grand Challenges competition

    Genomic evidence for homoploid hybrid speciation between ancestors of two different genera