in

Investigation of anticoagulant rodenticide resistance induced by Vkorc1 mutations in rodents in Lebanon

  • Gentry, A. Mammal Species of the World. A Taxonomic and Geographic Reference. 2005. Don E. Wilson & DeeAnn M. Reeder (Eds.). Ed. 3, 2 Vols., 2142 Pp. Johns Hopkins University Press, Baltimore. ISBN 0-8018-8221-4. A Nomenclatural Review. The Bulletin of zoological nomenclature. 2006, 63, 215–219.

  • Dickman, C. R. Rodent-ecosystem relationships: A review. Ecologically-based management of rodent pests. ACIAR Monogr. 59, 113–133 (1999).

    Google Scholar 

  • Tobin, M., Fall, M. W. Pest control: Rodents. In Pest Control: Rodents, Encyclopedia of Life Support Systems (EOLSS) (2005).

  • Meerburg, B. G., Singleton, G. R. & Kijlstra, A. Rodent-borne diseases and their risks for public health. Crit. Rev. Microbiol. 35, 221–270. https://doi.org/10.1080/10408410902989837 (2009).

    Article 

    Google Scholar 

  • Kalfayan, B. H. Leptospira Icterohaemorrhagiae in rats of Beirut. Trans. R. Soc. Trop. Med. Hyg. 40, 895–900. https://doi.org/10.1016/0035-9203(47)90045-X (1947).

    Article 

    Google Scholar 

  • Jackson, W. B. Evaluation of rodent depredations to crops and stored products1. EPPO Bull. 7, 439–458. https://doi.org/10.1111/j.1365-2338.1977.tb02743.x (1977).

    Article 

    Google Scholar 

  • Stejskal, V., Hubert, J., Aulicky, R. & Kucerova, Z. Overview of present and past and pest-associated risks in stored food and feed products: European perspective. J. Stored Prod. Res. 64, 122–132. https://doi.org/10.1016/j.jspr.2014.12.006 (2015).

    Article 

    Google Scholar 

  • Jacob, J., Buckle, A. Use of anticoagulant rodenticides in different applications around the world. In Anticoagulant Rodenticides and Wildlife 11–43. https://doi.org/10.1007/978-3-319-64377-9_2

  • Puckett, E. E. et al. Global population divergence and admixture of the brown rat (Rattus Norvegicus). Proc. R. Soc. B Biol. Sci. 283, 20161762. https://doi.org/10.1098/rspb.2016.1762 (2016).

    Article 

    Google Scholar 

  • Barzman, M. et al. Eight principles of integrated pest management. Agron. Sustain. Dev. 35, 1199–1215. https://doi.org/10.1007/s13593-015-0327-9 (2015).

    Article 

    Google Scholar 

  • Chellappan, M. Rodents. in Polyphagous Pests of Crops (ed. Omkar) 457–532 (Springer: Singapore, 2021) ISBN 9789811580758.

  • Prakash, I. in Rodent Pest Management (CRC Press, 2018) ISBN 978-1351-08490-1.

  • Hadler, M. R., Buckle, A. P. Forty five years of anticoagulant rodenticides-past, present and future trends. In: Proceedings of the 15th Vertebrate Pest Conference 149–155 (1992).

  • Watt, B. E., Proudfoot, A. T., Bradberry, S. M. & Vale, J. A. Anticoagulant rodenticides. Toxicol. Rev. 24, 259–269. https://doi.org/10.2165/00139709-200524040-00005 (2005).

    Article 

    Google Scholar 

  • Matagrin, B. et al. New insights into the catalytic mechanism of vitamin K epoxide reductase (VKORC1)—The catalytic properties of the major mutations of RVKORC1 explain the biological cost associated to mutations. FEBS Open Bio 3, 144–150. https://doi.org/10.1016/j.fob.2013.02.001 (2013).

    Article 

    Google Scholar 

  • RRAC Rodenticide Resistance Action Group Available online: http://guide.rrac.info/resistancemaps/resistance-maps/. Information correct as off 09. (Accessed on 7 April 2021).

  • McGee, C. F., McGilloway, D. A. & Buckle, A. P. Anticoagulant rodenticides and resistance development in rodent pest species—A comprehensive review. J. Stored Prod. Res. 88, 101688. https://doi.org/10.1016/j.jspr.2020.101688 (2020).

    Article 

    Google Scholar 

  • Tie, J.-K., Nicchitta, C., von Heijne, G. & Stafford, D. W. Membrane topology mapping of vitamin K epoxide reductase by in vitro translation/cotranslocation*. J. Biol. Chem. 280, 16410–16416. https://doi.org/10.1074/jbc.M500765200 (2005).

    Article 

    Google Scholar 

  • Goulois, J., Lambert, V., Legros, L., Benoit, E. & Lattard, V. Adaptative evolution of the Vkorc1 gene in mus musculus domesticus is influenced by the selective pressure of anticoagulant rodenticides. Ecol. Evol. 7, 2767–2776. https://doi.org/10.1002/ece3.2829 (2017).

    Article 

    Google Scholar 

  • Pelz, H.-J. The genetic basis of resistance to anticoagulants in rodents. Genetics 170, 1839–1847. https://doi.org/10.1534/genetics.104.040360 (2005).

    Article 

    Google Scholar 

  • Rost, S. et al. Novel mutations in the VKORC1 gene of wild rats and mice—A response to 50 years of selection pressure by warfarin?. BMC Genet. 10, 4. https://doi.org/10.1186/1471-2156-10-4 (2009).

    Article 

    Google Scholar 

  • Çetintürk, D., Yiğit, N., Çolak, E., Duman, T., Gül, N., Saygılı Yiğit, F. First Report for Anticoagulant Rodenticide Resistance in Turkish Norway Rat. Jan 5 (2018).

  • Gérard, J., Nehmé, C. Lebanon. A geography of contrasts. Méditerranée. Revue géographique des pays méditerranéens/J. Mediterr. Geogra. (2020).

  • Haktanir, K., Karaca, A., Omar, S. M. The prospects of the impact of desertification on Turkey, Lebanon, Syria and Iraq. In Proceedings of the Environmental Challenges in the Mediterranean 2000–2050 (ed. Marquina, A.) 139–154 (Springer Netherlands, Dordrecht, 2004).

  • Bradley, C. A. & Altizer, S. Urbanization and the ecology of wildlife diseases. Trends Ecol. Evol. 22, 95–102. https://doi.org/10.1016/j.tree.2006.11.001 (2007).

    Article 

    Google Scholar 

  • Lewis, R., Lewis, J. & Atallah, S. A review of Lebanese Mammals Lagomorpha and Rodentia*. J. Zool. 153, 45–70. https://doi.org/10.1111/j.1469-7998.1967.tb05030.x (1967).

    Article 

    Google Scholar 

  • Bate, D. M. A. XIV—Note on small Mammals from the Lebanon Mountains, Syria. Ann. Mag. Nat. Hist. 12, 141–158. https://doi.org/10.1080/00222934508527500 (1945).

    Article 

    Google Scholar 

  • Sprenger, A., Lebanon, A. R. Small Mammal Survey Report (Dec 2001–Mar 2002). 5.

  • Boukhdoud, L., Saliba, C., Kahale, R. & Kharrat, M. B. D. Tracking Mammals in a Lebanese protected area using environmental DNA-based approach. Environ. DNA https://doi.org/10.1002/edn3.183 (2021).

    Article 

    Google Scholar 

  • Bou Dagher Kharrat, M., Kahale, R., Saliba, C., Boukhdoud, L. Mammals at first sight: Discover lebanese wild mammals (2019).

  • Khater, C., El-Hajj, R. in Terrestrial Biodiversity in Lebanon 141–169 (2012).

  • Nader, M. R., El Indary, S., Abi Salloum, B. & Abou Dagher, M. Combining non-invasive methods for the rapid assessment of Mammalian richness in a transect-quadrat survey scheme—Case study of the Horsh Ehden nature reserve, North Lebanon. Zookeys 119, 63–71. https://doi.org/10.3897/zookeys.119.1040 (2011).

    Article 

    Google Scholar 

  • Kersten, A. M. P. Rodents and insectivores from the palaeolithic Rock Shelter of Ksar ’Akil (Lebanon) and their palaeoecological implications. Paléorient 18, 27–45. https://doi.org/10.3406/paleo.1992.4561 (1992).

    Article 

    Google Scholar 

  • Amr, Z. S., Abi-Said, M. R. & Shehab, A. H. Diet of the Barn Owl (Tyto Alba ) from Chaddra-Akkar Northern Lebanon. JJBS 7, 109–112. https://doi.org/10.12816/0008223 (2014).

    Article 

    Google Scholar 

  • Abi-Said, Mounir R. in A Baseline Survey of the Mammals in Jabal Moussa Nature Reserve (JMNR) (2009).

  • Kryštufek, B., Abi-Said, M. & Hladnik, M. The Iranian vole microtus Irani occurs in Lebanon (Mammalia: Rodentia). Zool. Middle East 59, 101–106. https://doi.org/10.1080/09397140.2013.810863 (2013).

    Article 

    Google Scholar 

  • Inc, G.I., Berger, D.S. in Leptospirosis: Global Status: 2020 Ed (GIDEON Informatics Inc, 2020) ISBN 978-1-4988-2877-2.

  • Iacucci, A. et al. VKORC1 mutation in European populations of Rattus Norvegicus with first data for italy and the report of a new amino acid substitution. Hystrix It. J. Mamm. 29, 95–99. https://doi.org/10.4404/hystrix-00055-2018 (2018).

    Article 

    Google Scholar 

  • Backhans, A. et al. Occurrence of pathogens in wild rodents caught on Swedish pig and chicken farms. Epidemiol. Infect. 141, 1885–1891. https://doi.org/10.1017/S0950268812002609 (2013).

    Article 

    Google Scholar 

  • Franssen, F., Swart, A., van Knapen, F. & van der Giessen, J. Helminth Parasites in black rats (Rattus Rattus) and brown rats (Rattus Norvegicus) from different environments in the Netherlands. Infect. Ecol. Epidemiol. 6, 31413. https://doi.org/10.3402/iee.v6.31413 (2016).

    Article 

    Google Scholar 

  • Umali, D. V., Lapuz, R. R. S. P., Suzuki, T., Shirota, K. & Katoh, H. Transmission and shedding patterns of salmonella in naturally infected captive wild roof rats (Rattus Rattus) from a salmonella-contaminated layer farm. Avian Dis. 56, 288–294. https://doi.org/10.1637/9911-090411-Reg.1 (2012).

    Article 

    Google Scholar 

  • Heiberg, A.-C. Anticoagulant resistance: A relevant issue in sewer rat (Rattus Norvegicus) control?. Pest Manag. Sci. 65, 444–449. https://doi.org/10.1002/ps.1709 (2009).

    Article 

    Google Scholar 

  • Mohammadi, Z., Darvish, J., Ghorbani, F., Mostafavi, E. First Record of the Caucasus Field Mouse Apodemus Ponticus Sviridenko, 1936 (Rodentia Muridae) from Iran. 7.

  • Albaba, I. The terrestrial mammals of palestine: A preliminary checklist. Int. J. Fauna Biol. Stud. 3(4), 28–35 (2016).

    Google Scholar 

  • Brooks, J. E. & Jackson, W. B. A review of commensal rodents and their control. CRC Crit. Rev. Environ. Control 3, 405–453. https://doi.org/10.1080/10643387309381607 (1973).

    Article 

    Google Scholar 

  • Abou Zeid, M. I., Jammoul, A. M., Melki, K. C., Jawdah, Y. A. & Awad, M. K. Suggested policy and legislation reforms to reduce deleterious effect of pesticides in Lebanon. Heliyon 6, e05524. https://doi.org/10.1016/j.heliyon.2020.e05524 (2020).

    Article 

    Google Scholar 

  • Buckle, A., Prescott, C. Anticoagulants and risk mitigation. In Anticoagulant Rodenticides and Wildlife (eds. van den Brink, N. W., Elliott, J. E., Shore, R. F., Rattner, B. A.) 319–355 (Springer International Publishing, Cham, 2018) ISBN 978-3-319-64377-9.

  • Berny, P., Esther, A., Jacob, J., Prescott, C. Development of resistance to anticoagulant rodenticides in rodents. In Anticoagulant Rodenticides and Wildlife (eds. van den Brink, N. W., Elliott, J. E., Shore, R. F., Rattner, B. A.) (Springer International Publishing, Cham, 2018) 259–286 ISBN 978-3-319-64377-9.

  • Abil Khalil, R. et al. Seasonal diet-based resistance to anticoagulant rodenticides in the fossorial water vole (Arvicola Amphibius). Environ. Res. 200, 111422 (2021).

    Article 

    Google Scholar 

  • Ma, X. et al. Low warfarin resistance frequency in Norway rats in Two cities in China after 30 years of usage of anticoagulant rodenticides. Pest Manag. Sci. 74, 2555–2560. https://doi.org/10.1002/ps.5040 (2018).

    Article 

    Google Scholar 

  • Prescott, C., Buckle, A., Gibbings, G., Allan, E. & Stuart, A. Anticoagulant resistance in Norway rats (Rattus Norvegicus Berk.) in Kent—A VKORC1 single nucleotide polymorphism, tyrosine139phenylalanine, New to the UK. Int. J. Pest Manag. 57, 61–65. https://doi.org/10.1080/09670874.2010.523124 (2011).

    Article 

    Google Scholar 

  • Cowan, P. E. et al. Vkorc1 sequencing suggests anticoagulant resistance in rats in New Zealand. Pest Manag. Sci. 73, 262–266. https://doi.org/10.1002/ps.4304 (2017).

    Article 

    Google Scholar 

  • Pelz, H.-J. et al. Distribution and Frequency of VKORC1 sequence variants conferring resistance to anticoagulants in mus musculus. Pest. Manag. Sci. 68, 254–259. https://doi.org/10.1002/ps.2254 (2012).

    Article 

    Google Scholar 

  • Mooney, J. et al. VKORC1 sequence variants associated with resistance to anticoagulant rodenticides in irish populations of Rattus Norvegicus and mus musculus domesticus. Sci. Rep. 8, 4535. https://doi.org/10.1038/s41598-018-22815-7 (2018).

    Article 
    ADS 

    Google Scholar 

  • Šćepović, T. et al. VKOR variant and sex are the main influencing factors on bromadiolone tolerance of the house mouse (Mus Musculus L.). Pest Manag. Sci. 72, 574–579. https://doi.org/10.1002/ps.4027 (2016).

    Article 

    Google Scholar 

  • Greaves, J. H., Redfern, R. & Anasuya, B. Inheritance of resistance to warfarin in Rattus Rattus L. J. Stored Prod. Res. 12, 225–228. https://doi.org/10.1016/0022-474X(76)90037-0 (1976).

    Article 

    Google Scholar 

  • Leung, L.K.-P. & Clark, N. M. Bait avoidance and habitat use by the roof rat, Rattus Rattus, in a Piggery. Int. Biodeterior. Biodegrad. 55, 77–84. https://doi.org/10.1016/j.ibiod.2004.07.004 (2005).

    Article 

    Google Scholar 

  • Takeda, K. et al. Novel revelation of warfarin resistant mechanism in roof rats (Rattus Rattus) using pharmacokinetic/pharmacodynamic analysis. Pestic. Biochem. Physiol. 134, 1–7. https://doi.org/10.1016/j.pestbp.2016.04.004 (2016).

    Article 

    Google Scholar 

  • Song, Y. et al. Adaptive introgression of anticoagulant rodent poison resistance by hybridization between old world mice., adaptive introgression of anticoagulant rodent poison resistance by hybridization between old world mice. Curr Biol 21, 1296–1301. https://doi.org/10.1016/j.cub.2011.06.043 (2011).

    Article 

    Google Scholar 

  • Aplin, K. P., Brown, P. R., Jacob, J., Krebs, C. J. & Singleton, G. R. Field methods for rodent studies in Asia and the Indo-Pacific (No. 435-2016-33720) (2003).

  • Irwin, D. M., Kocher, T. D. & Wilson, A. C. Evolution of the cytochrome b gene of Mammals. J. Mol. Evol. 32, 128–144. https://doi.org/10.1007/BF02515385 (1991).

    Article 
    ADS 

    Google Scholar 

  • Pagès, M. et al. Revisiting the taxonomy of the rattini tribe: A phylogeny-based delimitation of species boundaries. BMC Evol. Biol. 10, 184. https://doi.org/10.1186/1471-2148-10-184 (2010).

    Article 

    Google Scholar 

  • Bradley, R. D. & Baker, E. J. A test of the genetic species concept: Cytochrome-b sequences and mammals. J. Mammal. 82, 960–973 (2001).

    <a data-track="click" rel="nofollow noopener" data-track-label="10.1644/1545-1542(2001)0822.0.CO;2″ data-track-action=”article reference” href=”https://doi.org/10.1644%2F1545-1542%282001%29082%3C0960%3AATOTGS%3E2.0.CO%3B2″ aria-label=”Article reference 63″ data-doi=”10.1644/1545-1542(2001)0822.0.CO;2″>Article 

    Google Scholar 

  • Hall, T. A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98 (1999).

    Google Scholar 

  • Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J. & Sayers, E. W. GenBank. Nucleic Acids Res. 37, D26–D31. https://doi.org/10.1093/nar/gkn723 (2009).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Carbon sinks and carbon emissions balance of land use transition in Xinjiang, China: differences and compensation

    Identification of potential light deficiency response regulators in endangered species Magnolia sinostellata