in

The effect of putrescine on space use and activity in sea lamprey (Petromyzon marinus)

  • Hume, J. B. et al. Managing native and non-native sea lamprey (Petromyzon marinus) through anthropogenic change: A prospective assessment of key threats and uncertainties. J. Great Lakes Res. 47, S704–S722 (2021).

    Article 

    Google Scholar 

  • Siefkes, M. J. Use of physiological knowledge to control the invasive sea lamprey (Petromyzon marinus) in the Laurentian Great Lakes. Conserv. Physiol. 5, 1–18 (2017).

    Article 

    Google Scholar 

  • Hunn, J. B. & Youngs, W. D. Role of physical barriers in the control of Sea Lamprey (Petrorn yzon marinus). Can. J. Fish. Aquat. Sci. 37, 2118–2122 (1980).

    Article 

    Google Scholar 

  • Christie, M. R., Sepúlveda, M. S. & Dunlop, E. S. Rapid resistance to pesticide control is predicted to evolve in an invasive fish. Sci. Rep. 9, 18157. https://doi.org/10.1038/s41598-019-54260-5 (2019).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cline, T. J. et al. Climate impacts on landlocked sea lamprey: Implications for host-parasite interactions and invasive species management. Ecosphere 5(6), 68. https://doi.org/10.1890/ES14-00059.1 (2014).

    Article 

    Google Scholar 

  • Lennox, R. J. et al. Potential changes to the biology and challenges to the management of invasive sea lamprey Petromyzon marinus in the Laurentian Great Lakes due to climate change. Glob. Change Biol. 26, 1118–1137. https://doi.org/10.1111/gcb.14957 (2020).

    ADS 
    Article 

    Google Scholar 

  • Siefkes, M. J., Johnson, N. S. & Muir, A. M. A renewed philosophy about supplemental sea lamprey controls. J. Great Lakes Res. 47, S742–S752 (2021).

    Article 

    Google Scholar 

  • Fissette, S. D. et al. Progress towards integrating an understanding of chemical ecology into sea lamprey control. J. Great Lakes Res. 47, S660–S672 (2021).

    CAS 
    Article 

    Google Scholar 

  • Miehls, S. et al. The future of barriers and trapping methods in the sea lamprey (Petromyzon marinus) control program in the Laurentian Great Lakes. Rev. Fish Biol. Fish. 30, 1–24 (2020).

    Article 

    Google Scholar 

  • Imre, I., Di Rocco, R. T., Belanger, C. F., Brown, G. E. & Johnson, N. S. The behavioural response of adult Petromyzon marinus to damage-released alarm and predator cues. J. Fish Biol. 84, 1490–1502 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kats, L. B. & Dill, L. M. The scent of death: chemosensory assessment of predation risk by prey animals. Ecoscience 5, 361–394 (1998).

    Article 

    Google Scholar 

  • Wisenden, B. D. Olfactory assessment of predation risk in the aquatic environment. Philos. Trans. R. Soc. B Biol. Sci. 355, 1205–1208 (2000).

  • Wisenden, B. D., Chivers, D. P., Brown, G. E. & Smith, R. J. The role of experience in risk assessment: Avoidance of areas chemically labelled with fathead minnow alarm pheromone by conspecifics and heterospecifics. Ecoscience 2, 116–122 (1995).

    Article 

    Google Scholar 

  • Bairos-Novak, K. R., Ferrari, M. C. O. & Chivers, D. P. A novel alarm signal in aquatic prey: Familiar minnows coordinate group defences against predators through chemical disturbance cues. J. Anim. Ecol. 88, 1281–1290 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Chivers, D. P. & Smith, R. J. F. Chemical alarm signalling in aquatic predator-prey systems: A review and prospectus. Ecoscience 5, 338–352 (1998).

    Article 

    Google Scholar 

  • Ferrari, M. C. O., Wisenden, B. D. & Chivers, D. P. Chemical ecology of predator–prey interactions in aquatic ecosystems: A review and prospectus. Can. J. Zool. 88, 698–724 (2010).

    Article 

    Google Scholar 

  • Lawrence, B. J. & Smith, R. J. F. Behavioral response of solitary fathead minnows, Pimephales promelas, to alarm substance. J. Chem. Ecol. 3, 209–219 (1989).

    Article 

    Google Scholar 

  • Bals, J. D. & Wagner, C. M. Behavioral responses of sea lamprey (Petromyzon marinus) to a putative alarm cue derived from conspecific and heterospecific sources. Behaviour 149, 901–923 (2012).

    Article 

    Google Scholar 

  • Hume, J. B. & Wagner, C. M. A death in the family: Sea lamprey (Petromyzon marinus) avoidance of confamilial alarm cues diminishes with phylogenetic distance. Ecol. Evol. 8, 3751–3762 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wagner, C. M., Stroud, E. M. & Meckley, T. D. A deathly odor suggests a new sustainable tool for controlling a costly invasive species. Can. J. Fish. Aquat. Sci. 68, 1157–1160 (2011).

    Article 

    Google Scholar 

  • Byford, G. J., Wagner, C. M., Hume, J. B. & Moser, M. L. Do native pacific lamprey and invasive sea lamprey share an alarm cue? Implications for use of a natural repellent to guide imperiled pacific lamprey into fishways. North Am. J. Fish. Manag. 36, 1090–1096 (2016).

    Article 

    Google Scholar 

  • Wagner, C. M., Kierczynski, K. E., Hume, J. B. & Luhring, T. M. Exposure to a putative alarm cue reduces downstream drift in larval sea lamprey Petromyzon marinus in the laboratory. J. Fish Biol. 89, 1897–1904 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Di Rocco, R. T., Johnson, N. S., Brege, L., Imre, I. & Brown, G. E. Sea lamprey avoid areas scented with conspecific tissue extract in Michigan streams. Fish. Manag. Ecol. 23, 548–560 (2016).

    Article 

    Google Scholar 

  • Hume, J. B., Luhring, T. M. & Wagner, C. M. Push, pull, or push–pull? An alarm cue better guides sea lamprey towards capture devices than a mating pheromone during the reproductive migration. Biol. Invasions 22, 2129–2142 (2020).

    Article 

    Google Scholar 

  • Hume, J. B. et al. Application of a putative alarm cue hastens the arrival of invasive sea lamprey (Petromyzon marinus) at a trapping location. Can. J. Fish. Aquat. Sci. 72, 1799–1806 (2015).

    CAS 
    Article 

    Google Scholar 

  • Blumstein, D. T. Habituation and sensitization: New thoughts about old ideas. Anim. Behav. 120, 255–262 (2016).

    Article 

    Google Scholar 

  • Greggor, A. L., Berger-Tal, O. & Blumstein, D. T. the rules of attraction: The necessary role of animal cognition in explaining conservation failures and successes. Ann. Rev. Ecol. Evol. Syst. 51, 483–503 (2020).

    Article 

    Google Scholar 

  • Imre, I., Di Rocco, R. T., McClure, H., Johnson, N. S. & Brown, G. E. Migratory-stage sea lamprey Petromyzon marinus stop responding to conspecific damage-released alarm cues after 4 h of continuous exposure in laboratory conditions. J. Fish Biol. 90, 1297–1304 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wagner, C. M., Bals, J. D., Hanson, M. E. & Scott, A. M. Attenuation and recovery of an avoidance response to a chemical antipredator cue in an invasive fish: implications for use as a repellent in conservation. Cons. Phys. 10, 1–12 (2022).

    CAS 

    Google Scholar 

  • Hussain, A. et al. High-affinity olfactory receptor for the death-associated odor cadaverine. Proc. Natl. Acad. Sci. U. S. A. 110, 19579–19584 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Yao, M. et al. The ancient chemistry of avoiding risks of predation and disease. Evol. Biol. 36, 267–281 (2009).

    Article 

    Google Scholar 

  • Wisman, A. & Shrira, I. The smell of death: Evidence that putrescine elicits threat management. Front. Psychol. 6, 1–11 (2015).

    Article 

    Google Scholar 

  • Oliveira, T. A. et al. Death-associated odors induce stress in zebrafish. Horm. Behav. 65, 340–344 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Pinel, J. P. J., Gorzalka, B. B. & Ladak, F. Cadaverine and Putrescine Initiate the Burial of Dead Conspecifics by Rats. Physiol. Behav. 27, 819–824 (1981).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Prounis, G. S. & Shields, W. M. Necrophobic behavior in small mammals. Behav. Processes 94, 41–44 (2013).

    PubMed 
    Article 

    Google Scholar 

  • Sun, Q., Haynes, K. F. & Zhou, X. Dynamic changes in death cues modulate risks and rewards of corpse management in a social insect. Funct. Ecol. 31, 697–706 (2017).

    Article 

    Google Scholar 

  • Heale, V. R., Petersen, K. & Vanderwolf, C. H. Effect of colchicine-induced cell loss in the dentate gyms and Ammon’s horn on the olfactory control of feeding in rats. Brain. Res. J. 712, 213–220 (1996).

    CAS 
    Article 

    Google Scholar 

  • Rolen, S. H., Sorensen, P. W., Mattson, D. & Caprio, J. Polyamines as olfactory stimuli in the goldfish Carassius auratus. J. Exp. Biol. 206, 1683–1696 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Dissanayake, A. A., Wagner, C. M. & Nair, M. G. Nitrogenous compounds characterized in the deterrent skin extract of migratory adult sea lamprey from the Great Lakes region. PLoS ONE 14(5), e0217417. https://doi.org/10.1371/journal.pone.0168609 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cooke, M., Leeves, N. & White, C. Time profile of putrescine, cadaverine, indole and skatole in human saliva. Arch. Oral Biol. 9969, 323–327 (2003).

    Article 

    Google Scholar 

  • Tilden, J. An account of a singular property of lamprey eels. Mem. Amer. Acad. Sci. 46, 335–336 (1809).

    Google Scholar 

  • Di Rocco, R. T., Belanger, C. F., Imre, I., Brown, G. E. & Johnson, N. S. Daytime avoidance of chemosensory alarm cues by adult sea lamprey (Petromyzon marinus). Can. J. Fish. Aquat. Sci. 830, 824–830 (2014).

    Article 

    Google Scholar 

  • Imre, I., Di Rocco, R. T., Brown, G. E. & Johnson, N. S. Habituation of adult sea lamprey repeatedly exposed to damage-released alarm and predator cues. Environ. Biol. Fishes 99, 613–620 (2016).

    Article 

    Google Scholar 

  • Ferrari, M. C. O., Messier, F. & Chivers, D. P. Degradation of chemical alarm cues under natural conditions: Risk assessment by larval woodfrogs. Chemoecology 17, 263–266 (2008).

    Article 

    Google Scholar 

  • Brown, G. E., Rive, A. C., Ferrari, M. C. O. & Chivers, D. P. The dynamic nature of antipredator behavior: Prey fish integrate threat-sensitive antipredator responses within background levels of predation risk. Behav. Ecol. Sociobiol. 61, 9–16 (2006).

    Article 

    Google Scholar 

  • McCann, E. L., Johnson, N. S., Hrodey, P. J. & Pangle, K. L. Characterization of sea lamprey stream entry using dual-frequency identification sonar. Trans. Am. Fish. Soc. 147, 514–524 (2018).

    Article 

    Google Scholar 

  • Binder, T. R. & McDonald, D. G. Is there a role for vision in the behaviour of sea lampreys (Petromyzon marinus) during their upstream spawning migration?. Can. J. Fish. Aquat. Sci. 64, 1403–1412 (2007).

    Article 

    Google Scholar 

  • Wagner, C. M., Jones, M. L., Twohey, M. B. & Sorensen, P. W. A field test verifies that pheromones can be useful for sea lamprey (Petromyzon marinus) control in the Great Lakes. Can. J. Fish. Aquat. Sci. 63, 475–479 (2006).

    CAS 
    Article 

    Google Scholar 

  • Wagner, C. M., Twohey, M. B. & Fine, J. M. Conspecific cueing in the sea lamprey: Do reproductive migrations consistently follow the most intense larval odour?. Anim. Behav. 78, 593–599 (2009).

    Article 

    Google Scholar 

  • Boulêtreau, S. et al. High predation of native sea lamprey during spawning migration. Sci. Rep. 10, 6122. https://doi.org/10.1038/s41598-020-62916-w (2020).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sjöberg, K. Time-related predator/prey interactions between birds and fish in a northern Swedish river. Oecologia 80, 1–10 (1989).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Fanselow, M. S., Hoffman, A. N. & Zhuravka, I. Timing and the transition between modes in the defensive behavior system. Behav. Processes 166, 103890. https://doi.org/10.1016/j.beproc.2019.103890 (2019).

  • Fanselow, M. S. & Lester, L. S. A functional behavioristic approach to aversively motivated behavior: Predatory imminence as a determinant of the topography of defensive behavior. In Evolution and Learning (ed. Bolles, R.C. & Beecher, M.D.) 185–211 (Earlbaum, 1988).

  • Dissanayake, A. A., Wagner, C. M. & Nair, M. G. Chemical characterization of lipophilic constituents in the skin of migratory adult sea lamprey from the Great Lakes Region. PLoS ONE 11(12), e0168609. https://doi.org/10.1371/journal.pone.0168609 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dissanayake, A. A., Wagner, C. M. & Nair, M. G. Evaluation of health benefits of sea lamprey (Petromyzon marinus) isolates using in vitro antiinflammatory and antioxidant assays. PLoS ONE 16(11), e0259587. https://doi.org/10.1371/journal.pone.0259587 (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • UFR-Committee. Guidelines for the use of fishes in research. Am. Fish. Soc. Symp., Bethesday, Maryland (2013).

  • Association, A. V. M. Guidelines for the Euthanasia of. Animals https://doi.org/10.1016/B978-012088449-0.50009-1 (2013).

    Article 

    Google Scholar 

  • du Sert, N. P. et al. Reporting animal research: Explanation and elaboration for the arrive guidelines 2.0. PLoS Biol. 18, 1–65 (2020).

  • Friard, O. & Gamba, M. BORIS: A free versatile open-source event-logging software for video/ audio coding and live observations. Methods Ecol. Evol. 7, 1325–1330 (2016).

    Article 

    Google Scholar 

  • Domenici, P. Context-dependent variability in the components of fish escape response: Integrating locomotor performance and behavior. J. Exp. Biol. 313, 59–79 (2010).

    Google Scholar 

  • Perrault, K., Imre, I. & Brown, G. E. Behavioural response of larval sea lamprey (Petromyzon marinus) in a laboratory environment to potential damage-released chemical alarm cues. Can. J. Zool. 92, 443–447 (2014).

    Article 

    Google Scholar 

  • Curtis, V., de Barra, M. & Aunger, R. Disgust as an adaptive system for disease avoidance behaviour. Philos. Trans. R. Soc. B Biol. Sci. 366, 389–401 (2011).

  • Fanselow, M. S. The role of learning in threat imminence and defensive behaviors. Curr. Opin. Behav. Sci. 24, 44–49 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Helfman, G. S. Threat-sensitive predator avoidance in damselfish-trumpetfish interactions. Behav. Ecol. Sociobiol. 24, 47–58 (1989).

    Article 

    Google Scholar 

  • Stephenson, J. F., Perkins, S. E. & Cable, J. Transmission risk predicts avoidance of infected conspecifics in Trinidadian guppies. J. Anim. Ecol. 87, 1525–1533 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Sepahi, A. et al. Olfactory sensory neurons mediate ultrarapid antiviral immune responses in a TrkA-dependent manner. Proc. Natl. Acad. Sci. U.S.A. 116, 12428–12436 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Croft, D. P., Edenbrow, M., Darden, S. K. & Cable, J. Effect of gyrodactylid ectoparasites on host behaviour and social network structure in guppies Poecilia reticulata. Behav. Ecol. Sociobiol. 65, 2219–2227 (2011).

    Article 

    Google Scholar 

  • Luhring, T. M. et al. A semelparous fi sh continues upstream migration when exposed to alarm cue, but adjusts movement speed and timing. Anim. Behav. 121, 41–51 (2016).

    Article 

    Google Scholar 

  • Laframboise, A. J., Ren, X., Chang, S., Dubuc, R. & Zielinski, B. S. Olfactory sensory neurons in the sea lamprey display polymorphisms. Neurosci. Lett. 414, 277–281 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Buchinger, T. J., Siefkes, M. J., Zielinski, B. S., Brant, C. O. & Li, W. Chemical cues and pheromones in the sea lamprey (Petromyzon marinus). Front. Zool. 12, 1–11 (2015).

    Article 

    Google Scholar 

  • Halgand, F. et al. Defining intact protein primary structures from saliva: A step toward the human proteome project. Anal. Chem. 84, 4383–4395 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Mackay, R. N., Wood, T. C. & Moore, P. A. Running away or running to? Do prey make decisions solely based on the landscape of fear or do they also include stimuli from a landscape of safety? J. Exp. Biol. 224, jeb242687. https://doi.org/10.1242/jeb.242687 (2021).

  • Meckley, T. D., Gurarie, E., Miller, J. R. & Michaelwagner, C. How fishes find the shore: Evidence for orientation to bathymetry from the non-homing sea lamprey. Can. J. Fish. Aquat. Sci. 74, 2045–2058 (2017).

    Article 

    Google Scholar 

  • Hume, J. B., Lucas, M. C., Reinhardt, U., Hrodey, P. J. & Wagner, C. M. Sea lamprey (Petromyzon marinus) transit of a ramp equipped with studded substrate: Implications for fish passage and invasive species control. Ecol. Eng. 155, 1–11 (2020).

    Article 

    Google Scholar 

  • Ioannou, C. C., Ramnarine, I. W. & Torney, C. J. High-predation habitats affect the social dynamics of collective exploration in a shoaling fish. Sci. Adv. 3, e1602682. https://doi.org/10.1126/sciadv.1602682 (2017).

  • Schaerf, T. M., Dillingham, P. W. & Ward, A. J. W. The effects of external cues on individual and collective behavior of shoaling fish. Sci. Adv. 3, e1603201. https://doi.org/10.1126/SCIADV.ABN2232 (2017).

  • Hoare, D. J., Couzin, I. D., Godin, J. G. J. & Krause, J. Context-dependent group size choice in fish. Anim. Behav. 67, 155–164 (2004).

    Article 

    Google Scholar 

  • Siefkes, M. J., Winterstein, S. R. & Li, W. Evidence that 3-keto petromyzonol sulphate specifically attracts ovulating female sea lamprey Petromyzon marinus. Anim. Behav. 70, 1037–1045 (2005).

    Article 

    Google Scholar 

  • Wisenden, B. D. Evidence for incipient alarm signalling in fish. J. Anim. Ecol. 88, 1278–1280 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Petersen, R. S. The role of traditional ecological knowledge in understanding a species and river system at risk: Pacific Lamprey in the Lower Klamath Basin (Oregon State University, 2006).

    Google Scholar 

  • Barton, B. A. Stress in fishes: A diversity of responses with particular reference to changes in. Integ. Comp. Biol. 525, 517–525 (2002).

    Article 

    Google Scholar 

  • Lawrence, M. J., Godin, J. J. & Cooke, S. J. Comparative Biochemistry and Physiology, Part A Does experimental cortisol elevation mediate risk-taking and antipredator behaviour in a wild teleost fish?. Comp. Biochem. Physiol. Part A 226, 75–82 (2018).

    CAS 
    Article 

    Google Scholar 

  • Conrad, J. L., Weinersmith, K. L., Brodin, T. & Saltz, J. B. Behavioural syndromes in fishes: A review with implications for ecology and fisheries management. J. Fish Biol. 78, 395–435 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Sanches, F. H. C., Miyai, C. A., Pinho-Neto, C. F. & Barreto, R. E. Stress responses to chemical alarm cues in Nile tilapia. Physiol. Behav. 149, 8–13 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Rehnberg, B. G. & Schreck, C. B. Chemosensory detection of predators by coho salmon (Oncorhynchus kisutch): Behavioral reaction and the physiological stress response1. Can. J. Zool. 65, 481–485 (1987).

    CAS 
    Article 

    Google Scholar 

  • Rehnberg, B. G., Smith, R. J. F. & Sloley, B. D. The reaction of pearl dace (Pisces, Cyprinidae) to alarm substance: Time-course of behavior, brain amines, and stress physiology. Can. J. Zool. 65, 2916–2921 (1987).

    CAS 
    Article 

    Google Scholar 

  • Close, D. A., Yun, S. S., McCormick, S. D., Wildbill, A. J. & Li, W. 11-Deoxycortisol is a corticosteroid hormone in the lamprey. Proc. Natl. Acad. Sci. U. S. A. 107, 13942–13947 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Shaughnessy, C. A. & Mccormick, S. D. 11-Deoxycortisol is a stress responsive and gluconeogenic hormone in a jawless vertebrate, the sea lamprey (Petromyzon marinus). J. Exp. Biol. 224, jeb241943. https://doi.org/10.1242/jeb.241943 (2021).

  • Cull, F. et al. Consequences of experimental cortisol manipulations on the thermal biology of the checkered puffer (Sphoeroides testudineus) in laboratory and field environments. J. Therm. Biol. 47, 63–74 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Pleizier, N., Wilson, A. D. M., Shultz, A. D. & Cooke, S. J. Puffed and bothered: Personality, performance, and the effects of stress on checkered puffer fish. Physiol. Behav. 152, 68–78 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lawrence, M. J. et al. An experimental evaluation of the role of the stress axis in mediating predator-prey interactions in wild marine fish. Comp. Biochem. Physiol. Part A 207, 21–29 (2017).

    CAS 
    Article 

    Google Scholar 

  • Atema, J., Kingsford, M. J. & Gerlach, G. Larval reef fish could use odour for detection, retention and orientation to reefs. Mar. Ecol. Prog. Ser. 241, 151–160 (2002).

    ADS 
    Article 

    Google Scholar 

  • Gardiner, J. M. & Atema, J. Sharks need the lateral line to locate odor sources: rheotaxis and eddy chemotaxis. J. Exp. Biol. 210, 1925–1934 (2007).

    PubMed 
    Article 

    Google Scholar 

  • Jutfelt, F., Sundin, J., Raby, G. D., Krång, A. S. & Clark, T. D. Two-current choice flumes for testing avoidance and preference in aquatic animals. Methods Ecol. Evol. 8, 379–390 (2017).

    Article 

    Google Scholar 

  • Moser, M. L., Almeida, P. R., Kemp, P. S. & Sorensen, P. W. Lamprey Spawning Migration in Lampreys: Biology, Conservation and Control. (ed. Docker, M. F.) 215–263 (Springer, 2015).

  • Imre, I., Brown, G. E., Bergstedt, R. A. & Mcdonald, R. Use of chemosensory cues as repellents for sea lamprey: Potential directions for population management. J. Great Lakes Res. 36, 790–793 (2010).

    CAS 
    Article 

    Google Scholar 

  • Merrick, M. J. & Koprowski, J. L. Should we consider individual behavior differences in applied wildlife conservation studies?. Biol. Conserv. 209, 34–44 (2017).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Contrasting life-history responses to climate variability in eastern and western North Pacific sardine populations

    MIT student club Engineers Without Borders works with local village in Tanzania