in

Vegetation assessments under the influence of environmental variables from the Yakhtangay Hill of the Hindu-Himalayan range, North Western Pakistan

  • Khan, M. et al. Plant species and communities assessment in interaction with edaphic and topographic factors; an ecological study of the mount Eelum District Swat Pakistan. Saudi J. Biol. Sci. 24(4), 778–786 (2017).

    Article 

    Google Scholar 

  • Ur Rahman, A. et al. Impact of multiple environmental factors on species abundance in various forest layers using an integrative modeling approach. Global Ecol. Conserv. 29, e01712 (2021).

    Article 

    Google Scholar 

  • Arneth, A., Uncertain future for vegetation cover. Nature 524(7563), 44–45.

  • Goldsmith, F., Description and analysis of vegetation. Methods Plant Ecol. (1976).

  • Rahman, I. U. et al. First insights into the floristic diversity, biological spectra and phenology of Manoor Valley Pakistan. Pak. J. Bot 50(3), 1113–1124 (2018).

    Google Scholar 

  • Khan, S.M., Plant communities and vegetation ecosystem services in the Naran Valley, Western Himalaya, 2012, University of Leicester.

  • Haq, F., Ahmad, H. & Iqbal, Z. Vegetation description and phytoclimatic gradients of subtropical forests of Nandiar Khuwar catchment District Battagram. Pak. J. Bot 47(4), 1399–1405 (2015).

    Google Scholar 

  • Iqbal, M. et al. A novel approach to phytosociological classification of weeds flora of an agro-ecological system through Cluster, two way cluster and indicator species analyses. Ecol. Ind. 84, 590–606 (2018).

    Article 

    Google Scholar 

  • Shaw, M. R. et al. Grassland responses to global environmental changes suppressed by elevated CO2. Science 298(5600), 1987–1990 (2002).

    Article 

    Google Scholar 

  • Drenovsky, R.E., Effects of mineral nutrient deficiencies on plant performance in the desert shrubs Chrysothamnus nauseosus ssp. consimilis and Sarcobatus vermiculatus2002: University of California, Davis.

  • Iqbal, M. et al. Vegetation classification of the Margalla Foothills, Islamabad under the influence of edaphic factors and anthropogenic activities using modern ecological tools. Pak. J. Bot 53(5), 1831–1843 (2021).

    Article 

    Google Scholar 

  • Bai, Y. et al. Landscape-level dynamics of grassland-forest transitions in British Columbia. J. Range Manag. 57(1), 66–75 (2004).

    Article 

    Google Scholar 

  • Zhao, T. et al. Retrievals of soil moisture and vegetation optical depth using a multi-channel collaborative algorithm. Remote Sens. Environ. 257, 112321 (2021).

    Article 

    Google Scholar 

  • Austin, M., Chapter 2: Vegetation and environment: discontinuities and continuities. IN VAN DER MAAREL, E.(Ed.) Végétation ecology. Etats‐Unis, 2005, Blackwell Publishing.

  • Peña-Claros, M. et al. Soil effects on forest structure and diversity in a moist and a dry tropical forest. Biotropica 44(3), 276–283 (2012).

    Article 

    Google Scholar 

  • Miao, R. et al. Effects of long-term grazing exclusion on plant and soil properties vary with position in dune systems in the Horqin Sandy Land. CATENA 209, 105860 (2022).

    Article 

    Google Scholar 

  • Abbas, Z. et al. Plant communities and anthropo-natural threats in the Shigar valley,(Central Karakorum) Baltistan-Pakistan. Pak. J. Bot. 52, 987–994 (2020).

    Article 

    Google Scholar 

  • Anwar, S., et al., Plant diversity and communities pattern with special emphasis on the indicator species of a dry temperate forest: A case study from Liakot area of the Hindu Kush mountains, Pakistan. Trop. Ecol. 1–16 (2022).

  • Mumshad, M. et al. Phyto-ecological studies and distribution pattern of plant species and communities of Dhirkot, Azad Jammu and Kashmir, Pakistan. PLoS ONE 16(10), e0257493 (2021).

    Article 

    Google Scholar 

  • Baldeck, C. A. et al. Soil resources and topography shape local tree community structure in tropical forests. Proc. R. Soc. B Biol. Sci. 280(1753), 20122532 (2013).

    Article 

    Google Scholar 

  • Guerra, T. N. F. et al. Influence of edge and topography on the vegetation in an Atlantic Forest remnant in northeastern Brazil. J. For. Res. 18(2), 200–208 (2013).

    Article 

    Google Scholar 

  • Townsend, A. R., Asner, G. P. & Cleveland, C. C. The biogeochemical heterogeneity of tropical forests. Trends Ecol. Evol. 23(8), 424–431 (2008).

    Article 

    Google Scholar 

  • Becknell, J. M. & Powers, J. S. Stand age and soils as drivers of plant functional traits and aboveground biomass in secondary tropical dry forest. Can. J. For. Res. 44(6), 604–613 (2014).

    Article 

    Google Scholar 

  • Geri, F., Rocchini, D. & Chiarucci, A. Landscape metrics and topographical determinants of large-scale forest dynamics in a Mediterranean landscape. Landsc. Urban Plan. 95(1–2), 46–53 (2010).

    Article 

    Google Scholar 

  • Lomolino, M. V. Elevation gradients of species-density: historical and prospective views. Glob. Ecol. Biogeogr. 10(1), 3–13 (2001).

    Article 

    Google Scholar 

  • Zhang, K. et al. An integrated flood risk assessment approach based on coupled hydrological-hydraulic modeling and bottom-up hazard vulnerability analysis. Environ. Model. Softw. 148, 105279 (2022).

    Article 

    Google Scholar 

  • Liu, Y. et al. A hybrid runoff generation modelling framework based on spatial combination of three runoff generation schemes for semi-humid and semi-arid watersheds. J. Hydrol. 590, 125440 (2020).

    Article 

    Google Scholar 

  • Mir, A. Y. et al. Ethnopharmacology and phenology of high-altitude medicinal plants in Kashmir Northern Himalaya. Ethnobot. Res. Appl. 22, 1–15 (2021).

    Google Scholar 

  • Vetaas, O. R. & Grytnes, J. A. Distribution of vascular plant species richness and endemic richness along the Himalayan elevation gradient in Nepal. Glob. Ecol. Biogeogr. 11(4), 291–301 (2002).

    Article 

    Google Scholar 

  • Li, W. et al. Fine root biomass and morphology in a temperate forest are influenced more by the nitrogen treatment approach than the rate. Ecol. Ind. 130, 108031 (2021).

    Article 

    Google Scholar 

  • Su, N. et al. Landscape context determines soil fungal diversity in a fragmented habitat. CATENA 213, 106163 (2022).

    Article 

    Google Scholar 

  • Yang, Y., et al., Nitrogen fertilization weakens the linkage between soil carbon and microbial diversity: a global meta‐analysis. Global Change Biol. (2022).

  • Ahmad, Z. et al. Weed species composition and distribution pattern in the maize crop under the influence of edaphic factors and farming practices: A case study from Mardan Pakistan. Saudi J. Biol. Sci. 23(6), 741–748 (2016).

    Article 

    Google Scholar 

  • Rahman, A. U. et al. Ecological assessment of plant communities and associated edaphic and topographic variables in the Peochar Valley of the Hindu Kush mountains. Mt. Res. Dev. 36(3), 332–341 (2016).

    Article 

    Google Scholar 

  • Ashton, P. S. A contribution of rain forest research to evolutionary theory. Ann. Mo. Bot. Gard. 64(4), 694–705 (1977).

    Article 

    Google Scholar 

  • Yang, Y. et al. Negative effects of multiple global change factors on soil microbial diversity. Soil Biol. Biochem. 156, 108229 (2021).

    Article 

    Google Scholar 

  • Pärtel, M. Local plant diversity patterns and evolutionary history at the regional scale. Ecology 83(9), 2361–2366 (2002).

    Article 

    Google Scholar 

  • Taylor, D.R., Aarssen, L.W., & Loehle, C. On the relationship between r/K selection and environmental carrying capacity: A new habitat templet for plant life history strategies. Oikos 239–250 (1990).

  • Knapp, A. K. et al. Rainfall variability, carbon cycling, and plant species diversity in a mesic grassland. Science 298(5601), 2202–2205 (2002).

    Article 

    Google Scholar 

  • Zscheischler, J. et al. Short-term favorable weather conditions are an important control of interannual variability in carbon and water fluxes. J. Geophys. Res. Biogeosci. 121(8), 2186–2198 (2016).

    Article 

    Google Scholar 

  • Gao, C. et al. Simulation and design of joint distribution of rainfall and tide level in Wuchengxiyu Region China. Urban Clim. 40, 101005 (2021).

    Article 

    Google Scholar 

  • Wang, S. et al. Exploring the utility of radar and satellite-sensed precipitation and their dynamic bias correction for integrated prediction of flood and landslide hazards. J. Hydrol. 603, 126964 (2021).

    Article 

    Google Scholar 

  • Zhang, K. et al. The sensitivity of North American terrestrial carbon fluxes to spatial and temporal variation in soil moisture: An analysis using radar-derived estimates of root-zone soil moisture. J. Geophys. Res. Biogeosci. 124(11), 3208–3231 (2019).

    Article 

    Google Scholar 

  • Yang, Y. et al. Increasing contribution of microbial residues to soil organic carbon in grassland restoration chronosequence. Soil Biol. Biochem. 170, 108688 (2022).

    Article 

    Google Scholar 

  • Li, J. et al. Differential mechanisms drive species loss under artificial shade and fertilization in the Alpine Meadow of the Tibetan Plateau. Front. Plant Sci. 13, 832473–832473 (2022).

    Article 

    Google Scholar 

  • Fischer, C. et al. How do earthworms, soil texture and plant composition affect infiltration along an experimental plant diversity gradient in grassland?. PLoS ONE 9(6), e98987 (2014).

    Article 

    Google Scholar 

  • Zhao, T. et al. Soil moisture experiment in the Luan River supporting new satellite mission opportunities. Remote Sens. Environ. 240, 111680 (2020).

    Article 

    Google Scholar 

  • Marandi, A., Polikarpus, M. & Jõeleht, A. A new approach for describing the relationship between electrical conductivity and major anion concentration in natural waters. Appl. Geochem. 38, 103–109 (2013).

    Article 

    Google Scholar 

  • Xu, J. et al. Modeling of coupled transfer of water, heat and solute in saline loess considering sodium sulfate crystallization. Cold Reg. Sci. Technol. 189, 103335 (2021).

    Article 

    Google Scholar 

  • Chen, X. et al. Spatiotemporal characteristics and attribution of dry/wet conditions in the Weihe River Basin within a typical monsoon transition zone of East Asia over the recent 547 years. Environ. Model. Softw. 143, 105116 (2021).

    Article 

    Google Scholar 

  • Ali, G., Siddique, S. & Suliman, M. Effect of canopy cover on natural regeneration of pinus wallichiana in moist temperate forest of Yakh Tangay, District Shangla Swat Pakistan. FUUAST J. Biol. 8(2), 193–201 (2018).

    Google Scholar 

  • Zhang, K. et al. Characteristics and influencing factors of rainfall-induced landslide and debris flow hazards in Shaanxi Province, China. Nat. Hazard. 19(1), 93–105 (2019).

    Article 

    Google Scholar 

  • Khan, W. et al. Vegetation mapping and multivariate approach to indicator species of a forest ecosystem: A case study from the Thandiani sub Forests Division (TsFD) in the Western Himalayas. Ecol. Ind. 71, 336–351 (2016).

    Article 

    Google Scholar 

  • Iqbal, J. & Ahmed, M. Vegetation description of some pine forests of Shangla district of Khyber Pakhtunkhwa Pakistan: A preliminary study. FUUAST J. Biol. 4(1), 83–88 (2014).

    Google Scholar 

  • Sparrow, B. D. et al. A vegetation and soil survey method for surveillance monitoring of rangeland environments. Front. Ecol. Evol. 8, 157 (2020).

    Article 

    Google Scholar 

  • Esri, R., ArcGIS desktop: release 10. Environmental Systems Research Institute, CA (2011).

  • Salzer, D., & Willoughby, J. Standardize this! The futility of attempting to apply a standard quadrat size and shape to rare plant monitoring. in Proceedings of the symposium of the North Coast Chapter of the California Native Plant Society: the ecology and management of rare plants of northwestern California. Arcata, CA. Sacramento, CA: The California Native Plant Society (2004).

  • Bano, S. et al. Eco-Floristic studies of native plants of the Beer Hills along the Indus River in the districts Haripur and Abbottabad Pakistan. Saudi J. Biol. Sci. 25(4), 801–810 (2018).

    Article 

    Google Scholar 

  • Perveen, A. & Qaiser, M. Pollen flora of Pakistan–XXXI Betulaceae. Pak. J. Bot. 31, 243–246 (1999).

    Google Scholar 

  • Raunkiaer, C., The life forms of plants and statistical plant geography; being the collected papers of C. Raunkiaer. The life forms of plants and statistical plant geography; being the collected papers of C. Raunkiaer. (1934).

  • Hussain, S.S., Pakistan manual of plant ecology1984: National Book Foundation.

  • Kamran, S. et al. The role of graveyards in species conservation and beta diversity: A vegetation appraisal of sacred habitats from Bannu Pakistan. J. For. Res. 31(4), 1147–1158 (2020).

    Article 

    Google Scholar 

  • Manan, F. et al. Environmental determinants of plant associations and evaluation of the conservation status of Parrotiopsis jacquemontiana in Dir, the Hindu Kush Range of Mountains. Trop. Ecol. 61(4), 509–526 (2020).

    Article 

    Google Scholar 

  • Tfaily, M. M. et al. Sequential extraction protocol for organic matter from soils and sediments using high resolution mass spectrometry. Anal. Chim. Acta 972, 54–61 (2017).

    Article 

    Google Scholar 

  • Chaney, R., Slonim, S., & Slonim, S. Determination of calcium carbonate content in soils, in Geotechnical properties, behavior, and performance of calcareous soils1982, ASTM International.

  • McCune, B., & Mefford, M. PC-ORD, Multivariate analysis of ecological data, Version 5 for Windows edition. MjM Software Design, Gleneden Beach, Oregon USA (2005).

  • Lepš, J., & Šmilauer, P. Multivariate analysis of ecological data using CANOCO2003: Cambridge university press.

  • Xie, W. et al. A novel hybrid method for landslide susceptibility mapping-based geodetector and machine learning cluster: A case of Xiaojin county, China. ISPRS Int. J. Geo Inf. 10(2), 93 (2021).

    Article 

    Google Scholar 

  • Li, L., Lei, Y. & Pan, D. Economic and environmental evaluation of coal production in China and policy implications. Nat. Hazards 77(2), 1125–1141 (2015).

    Article 

    Google Scholar 

  • Team, R.C., R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/ (2013).

  • Anwar, S. et al. Floristic composition and ecological gradient analyses of the Liakot Forests in the Kalam region of District Swat Pakistan. J. For. Res. 30(4), 1407–1416 (2019).

    Article 

    Google Scholar 

  • Haq, S. M. et al. Exploring and understanding the floristic richness, life-form, leaf-size spectra and phenology of plants in protected forests: A case study of Dachigam National Park in Himalaya Asia. Acta Ecol. Sin. 41(5), 479–490 (2021).

    Article 

    Google Scholar 

  • Ilyas, M. et al. A Preliminary checklist of the vascular flora of Kabal Valley, Swat Pakistan. Pak. J. Bot 45(2), 605–615 (2013).

    Google Scholar 

  • Amjad, M. S. et al. Floristic composition, biological spectrum and phenological pattern of vegetation in the subtropical forest of Kotli District, AJK Pakistan. Pure Appl. Biol. (PAB) 6(2), 426–447 (2017).

    Google Scholar 

  • Shaheen, H. et al. Species diversity, community structure, and distribution patterns in western Himalayan alpine pastures of Kashmir Pakistan. Mount. Res. Dev. 31(2), 153–159 (2011).

    Article 

    Google Scholar 

  • Abbas, Z. et al. Ethnobotany of the balti community, tormik valley, karakorum range, baltistan, pakistan. J. Ethnobiol. Ethnomed. 12(1), 1–16 (2016).

    Article 

    Google Scholar 

  • Ahmed, M. et al. Phytosociology and structure of Himalayan forests from different climatic zones of Pakistan. Pak. J. Bot. 38(2), 361 (2006).

    MathSciNet 

    Google Scholar 

  • Shehzadi, S. et al. Floristic compositions along an 18-Km long transect in Ayubia National Park District Abbottabad Pakistan. Pak. J. Bot. 41(5), 2115–2127 (2009).

    Google Scholar 

  • Khan, W., et al., Life forms, leaf size spectra and diversity indices of plant species grown in the Thandiani forests, district Abbottabad, Khyber Pakhtunkhwa, Pakistan. Saudi J. Biol. Sci.

  • Kharkwal, G. et al. Phytodiversity and growth form in relation to altitudinal gradient in the Central Himalayan (Kumaun) region of India. Curr. Sci. 1, 873–878 (2005).

    Google Scholar 

  • Bennie, J. et al. Slope, aspect and climate: Spatially explicit and implicit models of topographic microclimate in chalk grassland. Ecol. Model. 216(1), 47–59 (2008).

    Article 

    Google Scholar 

  • Choudhary, K. & Nama, K. S. Phyto-diversity of Mukundara hills national park of Kota district, Rajasthan India. Adv. Appl. Sci. Res. 5(1), 18–23 (2014).

    Google Scholar 

  • Shimwell, D.W., Description and classification of vegetation (1971).

  • Malik, Z.H., Comparative study of vegetation of GungaChotti and Bedori Hills, Distric Bagh, Azad Jammu and Kashmir with special reference to range conditions, 2005, University of Peshawar, Pakistan.

  • Khan, W. et al. Life forms, leaf size spectra, regeneration capacity and diversity of plant species grown in the Thandiani forests, district Abbottabad, Khyber Pakhtunkhwa Pakistan. Saudi J. Biol. Sci. 25(1), 94–100 (2018).

    Article 

    Google Scholar 

  • Grytnes, J. A. & Vetaas, O. R. Species richness and altitude: A comparison between null models and interpolated plant species richness along the Himalayan altitudinal gradient Nepal. Am. Nat. 159(3), 294–304 (2002).

    Article 

    Google Scholar 

  • Majid, A., Khan, M. & Calixto, E. Ecological assessment of plant communities along the edaphic and topographic gradients of biha valley, District Swat Pakistan. Appl. Ecol. Environ. Res. 16(5), 5611–5631 (2018).

    Article 

    Google Scholar 

  • Khan, S.M., et al., Vegetation dynamics in the Western Himalayas, diversity indices and climate change. Sci. Tech. Dev. 31(3), 232–243 (2012).

  • Khan, S. M. et al. Identifying plant species and communities across environmental gradients in the Western Himalayas: Method development and conservation use. Eco. Inform. 14, 99–103 (2013).

    Article 

    Google Scholar 

  • Shaheen, H. & Shinwari, Z. K. Phyto diversity and endemic richness of Karambar lake vegetation from Chitral Hindukush-Himalayas. Pak. J. Bot 44(1), 17–21 (2012).

    Google Scholar 

  • Wana, D., Plant communities and diversity along altitudinal gradients from Lake Abaya to Chencha Highlands, 2002, MA Thesis, School of Graduate Studies, Addis Ababa University. Addis Ababa.

  • Canfora, L. et al. Is soil microbial diversity affected by soil and groundwater salinity? Evidences from a coastal system in central Italy. Environ. Monit. Assess. 189(7), 1–15 (2017).

    Article 

    Google Scholar 

  • Liu, S., et al., The distribution characteristics and human health risks of high-fluorine groundwater in coastal plain: A case study in Southern Laizhou Bay, China. Front. Environ. Sci. 568 (2022).

  • Niu, Y. et al. Vegetation distribution along mountain environmental gradient predicts shifts in plant community response to climate change in alpine meadow on the Tibetan Plateau. Sci. Total Environ. 650, 505–514 (2019).

    Article 

    Google Scholar 

  • Nadal-Romero, E. et al. Effects of slope angle and aspect on plant cover and species richness in a humid Mediterranean badland. Earth Surf. Proc. Land. 39(13), 1705–1716 (2014).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Comparison of the effects of litter decomposition process on soil erosion under simulated rainfall

    World leaders must step up to put biodiversity deal on path to success