in

Nanostructured lipid carrier of oregano essential oil for controlling Tuta absoluta with minimal impact on beneficial organisms


Abstract

Tuta absoluta is a significant invasive pest, severely impacting the global tomato industry. Prolonged application of chemical insecticides has led to varying degrees of resistance in T. absoluta populations. Additionally, chemical insecticides are causing serious threats to the environment. Aiming to develop a novel bioinsecticide based on Origanum vulgare essential oil (OVE) against T. absoluta, we carried out its nanostructured lipid carrier formulation (OVE-NLC). The obtained OVE-NLC had spherical particles approximately 94.26 nm in size with a uniform size distribution of less than 0.3 and a zeta potential of − 18.75 mV. The formulated NLC also had encapsulation efficiency up to 96% and was stable at 25 °C for 3 months. The FTIR results indicated no significant chemical interaction between EO and NLC components. OVE-NLC demonstrated significant toxicity towards T. absoluta larvae and a remarkable oviposition deterrence for females. The nanoformulation also negatively affected the population growth parameters of T. absoluta, significantly reducing its fecundity by approximately 70% and 42% in contact and topical assays, respectively. Additionally, OVE-NLC had no lethal effects on the generalist predator Macrolophus pygmaeus and pollinator bee Bombus terrestris as non-target organisms. Results suggested that OVE-NLC could be successfully used as a potential tool for tomato integrated pest management programs.

Similar content being viewed by others

Toxicity of Foeniculum vulgare essential oil, its main component and nanoformulation against Phthorimaea absoluta and the generalist predator Macrolophus pygmaeus

Enhanced repellent and anti-nutritional activities of polymeric nanoparticles containing essential oils against red flour beetle, Tribolium castaneum

Insecticidal activity of essential oils from American native plants against Aedes aegypti (Diptera: Culicidae): an introduction to their possible mechanism of action

Data availability

All data supporting this study’s findings are included in the article.

References

  1. Koller, J. et al. A parasitoid Wasp allied with an entomopathogenic virus to control Tuta absoluta. Crop Prot. 179, 106617. https://doi.org/10.1016/j.cropro.2024.106617 (2024).

    Google Scholar 

  2. Bello, A. S. et al. Tomato (Solanum lycopersicum) yield response to drip irrigation and nitrogen application rates in open-field cultivation in arid environments. Sci. Hortic. 334, 113298. https://doi.org/10.1016/j.scienta.2024.113298 (2024).

    Google Scholar 

  3. Toni, H. C., Djossa, B. A., Ayenan, M. A. T. & Teka, O. Tomato (Solanum lycopersicum) pollinators and their effect on fruit set and quality. J. Hortic. Sci. Biotechnol. 96 (1), 1–13. https://doi.org/10.1080/14620316.2020.1773937 (2021).

    Google Scholar 

  4. Demirozer, O., Uzun, A. & Gosterit, A. Lethal and sublethal effects of different biopesticides on Bombus terrestris (Hymenoptera: Apidae). Apidologie 53 (2), 24. https://doi.org/10.1007/s13592-022-00933-6 (2022).

    Google Scholar 

  5. Kumar, A. et al. Rapid detection of the invasive tomato leaf miner, Phthorimaea absoluta using simple template LAMP assay. Sci. Rep. 15, 573. https://doi.org/10.1038/s41598-024-84288-1 (2025).

    Google Scholar 

  6. Soleymanzadeh, A., Valizadegan, O., Saber, M. & Hamishehkar, H. Toxicity of Foeniculum vulgare essential oil, its main component and nanoformulation against Phthorimaea absoluta and the generalist predator Macrolophus Pygmaeus. Sci. Rep. 15, 16706. https://doi.org/10.1038/s41598-025-01193-x (2025).

    Google Scholar 

  7. Konan, K. A. J. et al. Combination of generalist predators, Nesidiocoris tenuis and Macrolophus pygmaeus, with a companion plant, Sesamum indicum: what benefit for biological control of Tuta absoluta? Plos One. 16, 0257925. https://doi.org/10.1371/journal.pone.0257925 (2021).

    Google Scholar 

  8. Borges, I. et al. Prey consumption and conversion efficiency in females of two feral populations of Macrolophus pygmaeus, a biocontrol agent of Tuta absoluta. Phytoparasitica 52, 31. https://doi.org/10.1007/s12600-024-01130-0 (2024).

    Google Scholar 

  9. Mohammadi, R., Valizadegan, O. & Soleymanzadeh, A. Lethal and sublethal effects of matrine (Rui agro®) on the tomato leaf miner, Tuta absoluta and the predatory bug macrolophus Pygmaeus. J. App Res. Plant. Prot. 14 (2), 111–125. https://doi.org/10.22034/arpp.2022.15200 (2025).

    Google Scholar 

  10. Mesri, H., Valizadegan, O. & Soleymanzade, A. Laboratory assessment of some chemical insecticides toxicity on Brevicoryne brassicae (Hemiptera: Aphididae) and their selectivity for its predator, Hippodamia variegata (Coleoptera: Coccinellidae). Iran. J. Plant. Prot. Sci. 54 (1), 165–186. https://doi.org/10.22059/IJPPS.2023.360644.1007032 (2023).

    Google Scholar 

  11. Soleymanzade, A., Valizadegan, O. & Askari Saryazdi, G. Biochemical mechanisms and cross resistance patterns of Chlorpyrifos resistance in a laboratory-selected strain of Diamondback Moth, Plutella Xylostella (Lepidoptera: Plutellidae). J. Agric. Sci. Technol. 21 (7), 1859–1870 (2019a).

    Google Scholar 

  12. Soleymanzade, A., Khorrami, F. & Forouzan, M. Insecticide toxicity, synergism and resistance in Plutella Xylostella (Lepidoptera: plutellidae. Acta Phytopathol. Entomol. Hung. 54 (1), 147–154. https://doi.org/10.1556/038.54.2019.013 (2019b).

    Google Scholar 

  13. Tortorici, S. et al. Nanostructured lipid carriers of essential oils as potential tools for the sustainable control of insect pests. Ind. Crops Prod. 181, 114766. https://doi.org/10.1016/j.indcrop.2022.114766 (2022).

    Google Scholar 

  14. Modafferi, A. et al. Bioactivity of Allium sativum essential oil-based nano-emulsion against Planococcus citri and its predator Cryptolaemus Montrouzieri. Ind. Crops Prod. 208, 117837. https://doi.org/10.1016/j.indcrop.2023.117837 (2024).

    Google Scholar 

  15. Angellotti, G., Riccucci, C., Di Carlo, G., Pagliaro, M. & Ciriminna, R. Towards sustainable pest management of broad scope: sol-gel microencapsulation of Origanum vulgare essential oil. J. Sol-Gel Sci. Technol. 112 (1), 230–239. https://doi.org/10.1007/s10971-024-06512-8 (2024).

    Google Scholar 

  16. Werdin González, J. O., Gutiérrez, M. M., Murray, A. P. & Ferrero, A. A. Composition and biological activity of essential oils from labiatae against Nezara viridula (Hemiptera: Pentatomidae) soybean pest. Pest Manag Sci. 67 (8), 948–955. https://doi.org/10.1002/ps.2138 (2011).

    Google Scholar 

  17. Múnera-Echeverri, A., Múnera-Echeverri, J. L. & Segura-Sánchez, F. Bio-pesticidal potential of nanostructured lipid carriers loaded with thyme and Rosemary essential oils against common ornamental flower pests. Colloids Interfaces. 8 (5), 55. https://doi.org/10.3390/colloids8050055 (2024).

    Google Scholar 

  18. Tortorici, S. et al. Toxicity and repellent activity of a Carlina oxide nanoemulsion toward the South American tomato pinworm, Tuta absoluta. J. Pest Sci. 98, 309–320. https://doi.org/10.1007/s10340-024-01785-y (2025).

    Google Scholar 

  19. Sivalingam, S. et al. Encapsulation of essential oil to prepare environment friendly nanobio-fungicide against Fusarium oxysporum f. sp. lycopersici: an experimental and molecular dynamics approach. Colloids Surf. A: Physicochem Eng. Asp. 681, 132681. https://doi.org/10.1016/j.colsurfa.2023.132681 (2024).

    Google Scholar 

  20. Piran, P., Kafil, H. S., Ghanbarzadeh, S., Safdari, R. & Hamishehkar, H. Formulation of menthol-loaded nanostructured lipid carriers to enhance its antimicrobial activity for food preservation. Adv. Pharm. Bull. 7 (2), 261. https://doi.org/10.15171/apb.2017.031 (2017).

    Google Scholar 

  21. Khezri, K., Farahpour, M. R. & Mounesi Rad, S. Efficacy of Mentha pulegium essential oil encapsulated into nanostructured lipid carriers as an in vitro antibacterial and infected wound healing agent. Colloids Surf. A: Physicochem Eng. Asp. 589, 124414. https://doi.org/10.1016/j.colsurfa.2020.124414 (2020).

    Google Scholar 

  22. Bashiri, S., Ghanbarzadeh, B., Ayaseh, A., Dehghannya, J. & Ehsani, A. Preparation and characterization of chitosan-coated nanostructured lipid carriers (CH-NLC) containing cinnamon essential oil for enriching milk and anti-oxidant activity. LWT-Food Sci. Technol. 119, 108836. https://doi.org/10.1016/j.lwt.2019.108836 (2020).

    Google Scholar 

  23. Khosh Manzar, M., Pirouzifard, M. K., Hamishehkar, H. & Pirsa, S. Cocoa butter and cocoa butter substitute as a lipid carrier of Cuminum cyminum L. essential oil; physicochemical properties, physical stability and controlled release study. J. Mol. Liq. 319, 114303. https://doi.org/10.1016/j.molliq.2020.113638 (2020).

    Google Scholar 

  24. de Figueiredo, K. G. et al. Toxicity of cinnamomum spp. Essential oil to Tuta absoluta and to predatory Mirid. J. Pest Sci. 97 (3), 1569–1585. https://doi.org/10.1007/s10340-023-01719-0 (2024).

    Google Scholar 

  25. Piri, A. et al. Toxicity and physiological effects of Ajwain (Carum copticum, Apiaceae) essential oil and its major constituents against Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Chemosphere 256, 127103. https://doi.org/10.1016/j.chemosphere.2020.127103 (2020).

    Google Scholar 

  26. Martinou, A. F., Seraphides, N. & Stavrinides, M. C. Lethal and behavioral effects of pesticides on the insect predator Macrolophus Pygmaeus. Chemosphere 96, 167–173. https://doi.org/10.1016/j.chemosphere.2013.10.024 (2014).

    Google Scholar 

  27. Besard, L., Mommaerts, V., Abdu-Alla, G. & Smagghe, G. Lethal and sublethal side‐effect assessment supports a more benign profile of Spinetoram compared with spinosad in the bumblebee Bombus terrestris. Pest Manag Sci. 67 (5), 541–547. https://doi.org/10.1002/ps.2093 (2011).

    Google Scholar 

  28. Chi, H. TWOSEX-MSChart: a computer program for the age-stage, two-sex life table analysis. Accessed on 25 May (2005). (2005).

  29. Chi, H. & Liu, H. Two new methods for the study of insect population ecology. Bull. Inst. Zool. Acad. Sin. 24 (2), 225–240 (1985).

    Google Scholar 

  30. Chi, H. Life-table analysis incorporating both sexes and variable development rates among individuals. Environ. Entomol. 17, 26–34. https://doi.org/10.1093/ee/17.1.26 (1988).

    Google Scholar 

  31. Effron, B., Tibshirani, R. J. & Probability An introduction to the bootstrap. ChapmanHall/CRC, Monographs on Statistics and Applied New York. (1993).

  32. Xie, Y., Huang, Q., Rao, Y., Hong, L. & Zhang, D. Efficacy of Origanum vulgare essential oil and carvacrol against the housefly, musca domestica L. (Diptera: Muscidae). Environ. Sci. Pollut Res. 26, 23824–23831. https://doi.org/10.1007/s11356-019-05671-4 (2019).

    Google Scholar 

  33. De Souza, G. T. et al. Effects of the essential oil from Origanum vulgare L. on survival of pathogenic bacteria and starter lactic acid bacteria in semihard cheese broth and slurry. J. Food Prot. 79 (2), 246–252. https://doi.org/10.4315/0362-028X.JFP-15-172 (2016).

    Google Scholar 

  34. Goyal, S., Tewari, G., Pandey, H. K. & Kumari, A. Exploration of productivity, chemical composition, and antioxidant potential of Origanum vulgare L. grown at different geographical locations of Western himalaya. India J Chem. 1, 6683300. https://doi.org/10.1155/2021/6683300 (2021).

    Google Scholar 

  35. Khan, M. et al. The composition of the essential oil and aqueous distillate of Origanum vulgare L. growing in Saudi Arabia and evaluation of their antibacterial activity. Arab. J. Chem. 11 (8), 1189–1200. https://doi.org/10.1016/j.arabjc.2018.02.008 (2018).

    Google Scholar 

  36. Moazeni, M. et al. Lesson from nature: Zataria multiflora nanostructured lipid carrier topical gel formulation against Candida-associated onychomycosis, a randomized double-blind placebo-controlled clinical trial. Med. Drug Discov. 22, 100187. https://doi.org/10.1016/j.medidd.2024.100187 (2024).

    Google Scholar 

  37. Hoseini, B. et al. Application of ensemble machine learning approach to assess the factors affecting size and polydispersity index of liposomal nanoparticles. Sci. Rep. 13 (1), 18012. https://doi.org/10.1038/s41598-023-43689-4 (2023).

    Google Scholar 

  38. Apostolou, M., Assi, S., Fatokun, A. A. & Khan, I. The effects of solid and liquid lipids on the physicochemical properties of nanostructured lipid carriers. J. Pharm. Sci. 110 (8), 2859–2872. https://doi.org/10.1016/j.xphs.2021.04.012 (2021).

    Google Scholar 

  39. Pezeshki, A. et al. Nanostructured lipid carriers as a favorable delivery system for β-carotene. Food Biosci. 27, 11–17. https://doi.org/10.1016/j.fbio.2018.11.004 (2019).

    Google Scholar 

  40. Fitriani, E. W., Avanti, C., Rosana, Y. & Surini, S. Development of nanostructured lipid carrier containing tea tree oil: physicochemical properties and stability. J. Pharm. Pharmacog Res. 11 (3), 391–400. https://doi.org/10.56499/jppres23.1581_11.3.391 (2023).

    Google Scholar 

  41. Chura, S. S. D. et al. Red Sacaca essential oil-loaded nanostructured lipid carriers optimized by factorial design: cytotoxicity and cellular reactive oxygen species levels. Front. Pharmacol. 14, 1176629. https://doi.org/10.3389/fphar.2023.1176629 (2023).

    Google Scholar 

  42. Jbilou, R., Matteo, R., Bakrim, A., Bouayad, N. & Rharrabe, K. Potential use of Origanum vulgare in agricultural pest management control: a systematic review. J. Plant. Dis. Prot. 131 (2), 347–363. https://doi.org/10.1007/s41348-023-00839-0 (2024). hHadley Centre for Climate, Met Officettp:.

    Google Scholar 

  43. Abdelgaleil, S. A. M., Gad, H. A., Ramadan, G. R. M., El-Bakry, A. M. & El-Sabrout, A. Monoterpenes for management of field crop insect Hadley centre for Climate, Met officepests. J. Agric. Sci. Technol. 25 (4), 769–784 (2023).

    Google Scholar 

  44. Allsopp, E., Prinsloo, G. J., Smart, L. E. & Dewhirst, S. Y. Methyl salicylate, thymol and carvacrol as oviposition deterrents for Frankliniella occidentalis (Pergande) on Plum blossoms. Arthropod Plant. Interac. 8, 421–427. https://doi.org/10.1007/s11829-014-9323-2 (2014).

    Google Scholar 

  45. Yarou, B. B. et al. Oviposition deterrent activity of Basil plants and their essentials oils against Tuta absoluta (Lepidoptera: Gelechiidae). Environ. Sci. Pollut Res. 25, 29880–29888. https://doi.org/10.1007/s11356-017-9795-6 (2017).

    Google Scholar 

  46. Lo Pinto, M., Vella, L. & Agrò, A. Oviposition deterrence and repellent activities of selected essential oils against Tuta absoluta meyrick (Lepidoptera: Gelechiidae): laboratory and greenhouse investigations. Int. J. Trop. Insect Sci. 42 (5), 3455–3464. https://doi.org/10.1007/s42690-022-00867-7 (2022).

    Google Scholar 

  47. Ricupero, M. et al. Bioactivity and physico-chemistry of Garlic essential oil nanoemulsion in tomato. Entomol. Gen. 42, 921–930. https://doi.org/10.1127/entomologia/2022/1553 (2022).

    Google Scholar 

  48. Carbone, C. et al. Mediterranean essential oils as precious matrix components and active ingredients of lipid nanoparticles. Int. J. Pharm. 548 (1), 217–226. https://doi.org/10.1016/j.ijpharm.2018.06.064 (2018).

    Google Scholar 

  49. Ghodrati, M., Farahpour, M. R. & Hamishehkar, H. Encapsulation of peppermint essential oil in nanostructured lipid carriers: In-vitro antibacterial activity and accelerative effect on infected wound healing. Coll. Surf. A: Physicochem. Eng. Asp. 564, 161–169. https://doi.org/10.1016/j.colsurfa.2018.12.043 (2019).

    Google Scholar 

  50. Radwan, I. T., Baz, M. M., Khater, H. & Selim, A. M. Nanostructured lipid carriers (NLC) for biologically active green tea and fennel natural oils delivery: Larvicidal and adulticidal activities against Culex pipiens. Molecules. 27(6), 1939. https://doi.org/10.3390/molecules27061939 (2022).

  51. Goane, L. et al. Antibiotic treatment reduces fecundity and nutrient content in females of Anastrepha fraterculus (Diptera: Tephritidae) in a diet dependent way. J. Insect Physiol. 139, 104396. https://doi.org/10.1016/j.jinsphys.2022.104396 (2022).

    Google Scholar 

  52. Ouabou, M. et al. Insecticidal, antifeedant, and repellent effect of Lavandula mairei var. Antiatlantica essential oil and its major component carvacrol against Sitophilus oryzae. J. Stored Prod. Res. 107, 102338. https://doi.org/10.1016/j.jspr.2024.102338 (2024).

    Google Scholar 

  53. Ding, W. et al. Lethal and sublethal effects of Afidopyropen and Flonicamid on life parameters and physiological responses of the tobacco whitefly, bemisia tabaci MEAM1. Agronomy 14 (8), 1774. https://doi.org/10.3390/agronomy14081774 (2024).

    Google Scholar 

  54. Arnó, J. & Gabarra, R. Side effects of selected insecticides on the Tuta absoluta (Lepidoptera: Gelechiidae) predators Macrolophus Pygmaeus and Nesidiocoris tenuis (Hemiptera: Miridae). J. Pest. Sci.. 84, 513–520. https://doi.org/10.1007/s10340-011-0384-z (2011).

    Google Scholar 

  55. Stanley, J., Sah, K., Jain, S. K., Bhatt, J. C. & Sushil, S. N. Evaluation of pesticide toxicity at their field recommended doses to honeybees, apis Cerana and A. mellifera through laboratory, semi-field and field studies. Chemosphere 119, 668–674. https://doi.org/10.1016/j.chemosphere.2014.07.039 (2015).

    Google Scholar 

  56. Jeon, H. & Tak, J. H. Gustatory habituation to essential oil induces reduced feeding deterrence and neuronal desensitization in Spodoptera Litura. J. Pest Sci. 98, 321–336. https://doi.org/10.1007/s10340-024-01794-x (2024).

    Google Scholar 

  57. Abbes, K. et al. Combined non-target effects of insecticide and high temperature on the parasitoid Bracon nigricans. PloS One. 10 (9), 0138411. https://doi.org/10.1371/journal.pone.0138411 (2015).

    Google Scholar 

Download references

Acknowledgements

Financial support from the Deputy of Research and Technology of Urmia University, Urmia, Iran (Number: 10/1352) is acknowledged.

Funding

This study was funded by Urmia University, Iran (Number: 10/1352).

Author information

Authors and Affiliations

Authors

Contributions

AS, OV, and HH conceived and designed the experiments. AS collected data and carried out the bioassays. AS and OV analyzed the data. AS wrote the first draft of the manuscript, and OV and HH revised and improved it. All authors read and approved the manuscript.

Corresponding author

Correspondence to
Orouj Valizadegan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Cite this article

Soleymanzadeh, A., Valizadegan, O. & Hamishehkar, H. Nanostructured lipid carrier of oregano essential oil for controlling Tuta absoluta with minimal impact on beneficial organisms.
Sci Rep (2025). https://doi.org/10.1038/s41598-025-33492-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41598-025-33492-8

Keywords

  • Bioinsecticide

  • Tuta absoluta
  • Nanotechnology
  • Side effect
  • Pollinator
  • Predator


Source: Ecology - nature.com

Minor effects of nutrient additions on soil microbial carbon use efficiency

Honey bee food resources under threat from climate change

Back to Top