in

A scenario-based modelling approach to implementing nature-based solutions for flood risk mitigation in Hannover


Abstract

The EU Nature Restoration Regulation suggests the implementation of green space as nature-based solutions to enhance urban resilience toward increasing climate risks such as extreme precipitation events and floods in Europe. Scenario based approaches enable the evaluation of the potential of specific nature-based solutions to mitigate flood risk in high flood hazard and vulnerable areas. In this study, we explore the flood risks from heavy rainfall and the potential of nature-based solutions implementations in the city of Hannover, Germany. Using the InVEST urban flood risk mitigation model, we modelled the surface runoff from heavy rainfall and assessed the social vulnerability using population and infrastructure data resulting in a flood risk evaluation. To test flood mitigation under nature-based solutions implementations including grass grid pavers and green roofs, we estimated the runoff improvement under three nature-based solutions scenarios following recommendations from the EU Nature Restoration Regulation. Our analysis revealed that Hannover’s inner-city area is particularly flood-prone and socially vulnerable, while peripheral districts are less affected. The combined risk and vulnerability arise from the surface sealing in built-up areas and their higher population density and associated infrastructure. The scenario results demonstrate flood risk reduction potential when combining different nature-based solutions, though on a limited level calling for more explicit and ambitious regulations at EU, regional and local levels.

Similar content being viewed by others

Exploring how economic level drives urban flood risk

Dynamics-constrained rainfall projection reveals substantial increase in population exposure to unprecedented floods in the North China Plain

Differential flood insurance participation and housing market trajectories under future coastal flooding in the United States

Data availability

Spatial data are all available open access. Detailed data on modelling results are provided in the Supplementary Material.

References

  1. Calvin, K. et al. IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Core Writing Team, H. L. & Romero, J.). https://doi.org/10.59327/IPCC/AR6-9789291691647 (IPCC, 2023).

  2. Sun, G. & Lockaby, B. G. Water Quantity and Quality at the Urban-Rural Interface. In Urban-Rural Interfaces, 29–48, https://doi.org/10.2136/2012.urban-rural.c3 (American Society of Agronomy, Soil Science Society of America, Crop Science Society of America, Inc., 2012).

  3. Wojkowski, J. et al. Are we losing water storage capacity mostly due to climate change—analysis of the landscape hydric potential in selected catchments in East-Central Europe. Ecol. Indic. 154, 110913 (2023).

    Google Scholar 

  4. Deutscher Wetterdienst (DWD) [German Meteorological Service]. Starkregen. https://www.dwd.de/DE/service/lexikon/begriffe/S/Starkregen.html (2024).

  5. BBC News. More than 200 killed in Valencia Floods as Torrential Rain Hits Another Spain Region. https://www.bbc.com/news/live/cgk1m7g73ydt (2024).

  6. Munich Re. Climate Change is Showing Its Claws: the World is Getting Hotter, Resulting in Severe Hurricanes, Thunderstorms and Floods. https://www.munichre.com/en/company/media-relations/media-information-and-corporate-news/media-information/2025/natural-disaster-figures-2024.html (2025).

  7. Norddeutscher Rundfunk (NDR) [Northern German Broadcasting]. Niedersachsen: Hochwasser verursacht Schäden von 161 Millionen Euro. https://www.ndr.de/nachrichten/niedersachsen/Niedersachsen-Hochwasser-verursacht-Schaeden-von-161-Millionen-Euro,hochwasser6034.html (2024).

  8. European Union. REGULATION (EU) 2024/1991 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 24 June 2024 on nature restoration and amending Regulation (EU) 2022/869. Off. J. Eur. Union OJ L, 2024/1991 (2024).

  9. European Commission and Directorate-General for Environment. Proposal for a REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on nature restoration, 80 (European Commission, 2022).

  10. Kabisch, N., Haase, D. & Annerstedt van den Bosch, M. Adding natural areas to social indicators of intra-urban health inequalities among children: a case study from Berlin, Germany. Int J. Environ. Res Public Health 13, 783 (2016).

    Google Scholar 

  11. United Nations Environment Programme (UNEP). Resolution Adopted by the United Nations Environment Assembly on 2 March 2022: Nature-based Solutions for Supporting Sustainable Development (UNEP, 2022).

  12. Kabisch, N., Korn, H., Stadler, J. & Bonn, A. Nature-Based Solutions to Climate Change Adaptation In Urban Areas—Linkages Between Science, Policy and Practice, 1–11 (Springer Nature, 2017).

  13. Ommer, J. et al. Quantifying co-benefits and disbenefits of nature-based solutions targeting disaster risk reduction. Int. J. Disaster Risk Reduct. 75, 102966 (2022).

    Google Scholar 

  14. McPhearson, T. et al. A social-ecological-technological systems framework for urban ecosystem services. One Earth 5, 505–518 (2022).

    Google Scholar 

  15. Raymond, C. M. et al. A framework for assessing and implementing the co-benefits of nature-based solutions in urban areas. Environ. Sci. Policy 77, 15–24 (2017).

    Google Scholar 

  16. Kabisch, N., Frantzeskaki, N. & Hansen, R. Principles for urban nature-based solutions. Ambio 51, 1388–1401 (2022).

    Google Scholar 

  17. Kubal, C., Haase, D., Meyer, V. & Scheuer, S. Integrated urban flood risk assessment – adapting a multicriteria approach to a city. Nat. Hazards Earth Syst. Sci. 9, 1881–1895 (2009).

    Google Scholar 

  18. Wübbelmann, T., Bouwer, L., Förster, K., Bender, S. & Burkhard, B. Urban ecosystems and heavy rainfall—a Flood Regulating Ecosystem Service modelling approach for extreme events on the local scale. One Ecosyst. 7, e87458 (2022).

  19. Quagliolo, C., Roebeling, P., Matos, F., Pezzoli, A. & Comino, E. Pluvial flood adaptation using nature-based solutions: an integrated biophysical-economic assessment. Sci. Total Environ. 902, 166202 (2023).

    Google Scholar 

  20. Wübbelmann, T. et al. Urban flood regulating ecosystem services under climate change: How can Nature-based Solutions contribute? Front Water 5, 1081850 (2023).

    Google Scholar 

  21. Majidi, A. N. et al. Planning nature-based solutions for urban flood reduction and thermal comfort enhancement. Sustainability 11, 6361 (2019).

    Google Scholar 

  22. Meyer, V., Scheuer, S. & Haase, D. A multicriteria approach for flood risk mapping exemplified at the Mulde river, Germany. Nat. Hazards 48, 17–39 (2009).

    Google Scholar 

  23. Emrich, C. T. & Cutter, S. L. Social vulnerability to climate-sensitive hazards in the Southern United States. Weather Clim. Soc. 3, 193–208 (2011).

    Google Scholar 

  24. Saulnier, D. D., Brolin Ribacke, K. & von Schreeb, J. No calm after the storm: a systematic review of human health following flood and storm disasters. Prehosp. Disaster Med. 32, 568–579 (2017).

    Google Scholar 

  25. Tate, E., Rahman, M. A., Emrich, C. T. & Sampson, C. C. Flood exposure and social vulnerability in the United States. Nat. Hazards 106, 435–457 (2021).

    Google Scholar 

  26. Landeshauptstadt Hannover [City of Hannover]. Leben mit dem Klimawandel—Hannover passt sich an. Schriftreihe kommunaler Umweltschutz (Landeshauptstadt Hannover, 2017).

  27. Ferreira, C. S. S., Potočki, K., Kapović-Solomun, M. & Kalantari, Z. Nature-based solutions for flood mitigation and resilience in Urban areas. in Nature-Based Solutions for Flood Mitigation, 59–78 (Springer, 2021).

  28. Pistocchi, A. Hydrological impact of soil sealing and urban land take. in Urban Expansion, Land Cover and Soil Ecosystem Services, 157–168 (Routledge, 2017).

  29. Wessolek, G. Sealing of Soils. in Urban Ecology 161–179 (Springer US, 2008).

  30. Krehl, A. & Siedentop, S. Towards a typology of urban centers and subcenters – evidence from German city regions. Urban Geogr. 40, 58–82 (2019).

    Google Scholar 

  31. Van Hoof, J., Kazak, J. K., Perek-Białas, J. M. & Peek, S. T. M. The challenges of urban ageing: making cities age-friendly in Europe. Int J. Environ. Res. Public Health 15, 2473 (2018).

    Google Scholar 

  32. Waygood, E. O. D., Friman, M., Olsson, L. E. & Taniguchi, A. Transport and child well-being: an integrative review. Travel Behav. Soc. 9, 32–49 (2017).

    Google Scholar 

  33. Weilnhammer, V. et al. Extreme weather events in europe and their health consequences—a systematic review. Int J. Hyg. Environ. Health 233, 113688 (2021).

    Google Scholar 

  34. Schmitt, T. G. & Scheid, C. Evaluation and communication of pluvial flood risks in urban areas. WIREs Water 7, e1401 (2020).

  35. Heilemann, K. et al. Identification and Analysis of Most Vulnerable Infrastructure in Respect to Floods. Floodprobe D2, 1 (2013).

  36. Yazdani, M., Mojtahedi, M., Loosemore, M. & Sanderson, D. A modelling framework to design an evacuation support system for healthcare infrastructures in response to major flood events. Prog. Disaster Sci. 13, 100218 (2022).

    Google Scholar 

  37. Fekete, A., Tzavella, K. & Baumhauer, R. Spatial exposure aspects contributing to vulnerability and resilience assessments of urban critical infrastructure in a flood and blackout context. Nat. Hazards 86, 151–176 (2017).

    Google Scholar 

  38. Crols, T. et al. Downdating high-resolution population density maps using sealed surface cover time series. Landsc. Urban Plan 160, 96–106 (2017).

    Google Scholar 

  39. Region Hannover. Klimaanalyse Region Hannover. Hannover: GEO-NET Umweltconsulting GmbH. https://www.hannover.de/content/download/938983/file/Handbuch%20Klimaanalyse.pdf (2023).

  40. Zölch, T., Henze, L., Keilholz, P. & Pauleit, S. Regulating urban surface runoff through nature-based solutions – An assessment at the micro-scale. Environ. Res. 157, 135–144 (2017).

    Google Scholar 

  41. Huang, Y. et al. Nature-based solutions for urban pluvial flood risk management. WIREs Water 7, e1421 (2020).

  42. Depietri, Y. & McPhearson, T. Integrating the grey, green, and blue in cities: nature-based solutions for climate change adaptation and risk reduction. in Nature-Based Solutions to Climate Change Adaptation in Urban Areas: Linkages Between Science, Policy and Practice (eds. Kabisch, N., Korn, H., Stadler, J. & Bonn, A.) 91–109 (Springer, 2017).

  43. Landeshauptstadt Hannover [City of Hannover]. STADTGRÜN 2030—Ein Freiraumentwicklungskonzept Für Hannover (Landeshauptstadt Hannover, 2020).

  44. Baró, F. & Gómez-Baggethun, E. Assessing the potential of regulating ecosystem services as nature-based solutions in urban areas. in Nature-Based Solutions to Climate Change Adaptation in Urban Areas: Linkages Between Science, Policy and Practice (eds. Kabisch, N., Korn, H., Stadler, J. & Bonn, A.) 91–109 (Springer, 2017).

  45. Kabisch, N., Basu, S., van den Bosch, M., Bratman, G. N. & Masztalerz, O. Nature-based solutions and mental health. in Nature-Based Solutions for Cities, 192–212 (Edward Elgar Publishing, 2023).

  46. Medina Camarena, K. S., Wübbelmann, T. & Förster, K. What is the contribution of urban trees to mitigate pluvial flooding?Hydrology 9, 108 (2022).

    Google Scholar 

  47. Quagliolo, C., Comino, E. & Pezzoli, A. Experimental flash floods assessment through urban flood risk mitigation (UFRM) model: the case study of Ligurian coastal cities. Front. Water 3, 663378 (2021).

    Google Scholar 

  48. Landeshauptstadt Hannover [City of Hannover]. Starkregenhinweiskarten. https://stadtmodell-prod4.hannover-stadt.de/DT5/#/ (2025).

  49. Grayson, R. & Blöschl, G. Spatial modelling of catchment dynamics. in Spatial Patterns in Catchment Hydrology: Observations and Modelling (eds. Grayson, R. & Blöschl, G.) 51–81 (Cambridge: Cambridge University Press, 2000).

  50. Natural Capital Project. InVEST 3.14.1. https://naturalcapitalproject.stanford.edu/software/invest (Stanford University, 2023).

  51. Reinstaller, S. et al. Resilient urban flood management: a multi-objective assessment of mitigation strategies. Sustainability 16, 4123 (2024).

    Google Scholar 

  52. Chang, H. et al. Assessment of urban flood vulnerability using the social-ecological-technological systems framework in six US cities. Sustain Cities Soc. 68, 102786 (2021).

    Google Scholar 

  53. Wübbelmann, T. & Kabisch, N. Backcasting—a scenario approach in urban climate adaptation planning. npj Urban Sustain. 5, 69 (2025).

    Google Scholar 

  54. Alves, A., van Opstal, C., Keijzer, N., Sutton, N. & Chen, W.-S. Planning the multifunctionality of nature-based solutions in urban spaces. Cities 146, 104751 (2024).

    Google Scholar 

  55. Kadaverugu, A., Nageshwar Rao, C. & Viswanadh, G. K. Quantification of flood mitigation services by urban green spaces using InVEST model: a case study of Hyderabad city, India. Model Earth Syst. Environ. 7, 589–602 (2021).

    Google Scholar 

  56. Ekeu-wei, I. T. & Blackburn, G. A. Applications of open-access remotely sensed data for flood modelling and mapping in developing regions. Hydrology 5, 39 (2018).

    Google Scholar 

  57. Zhou, K. et al. Urban flood risk management needs nature-based solutions: a coupled social-ecological system perspective. npj Urban Sustain. 4, 25 (2024).

    Google Scholar 

  58. Bundesamt für Naturschutz (BfN) [Federal Agency for Nature Conservation, Germany]. Naturräumliche Gliederung (WFS). https://gdk.gdi-de.org/geonetwork/srv/api/records/325bfe9a-21f0-4fc4-9dae-a8feb4668a08 (2022).

  59. Landeshauptstadt Hannover [City of Hannover]. Strukturdaten der Stadtteile und Stadtbezirke 2023. Statistische Berichte der Landeshauptstadt Hannover (Landeshauptstadt Hannover, 2024).

  60. Deutscher Wetterdienst (DWD) [German Meteorological Service]. Open Data Service. https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate (2024).

  61. Do, S. & Besnier, K. InVEST Urban Development Incorporating Earth Observation Data into the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) Urban Flood Risk Mitigation Model Python API. NASA DEVELOP Closeout (2023).

  62. Salata, S., Giaimo, C., Alberto Barbieri, C. & Garnero, G. The utilization of ecosystem services mapping in land use planning: the experience of LIFE SAM4CP project. J. Environ. Plan. Manag. 63, 523–545 (2020).

    Google Scholar 

  63. United States Department of Agriculture – Natural Resources Conservation Service (USDA-NRCS). Estimation of Direct Runoff from Storm Rainfall. in Part 630 Hydrology National Engineering Handbook (U.S. Department of Agriculture, Washington DC, 2004).

  64. Ross, C. W. et al. HYSOGs250m, global gridded hydrologic soil groups for curve-number-based runoff modeling. Sci. Data 5, 180091 (2018).

    Google Scholar 

  65. Copernicus Land Monitoring Service. CLCplus Backbone 2021 (raster 10 m), Europe, 3-yearly. European Environment Agency. https://doi.org/10.2909/71fc9d1b-479f-4da1-aa66-662a2fff2cf7 (2024).

  66. Kuehler, E., Hathaway, J. & Tirpak, A. Quantifying the benefits of urban forest systems as a component of the green infrastructure stormwater treatment network. Ecohydrology 10, e1813 (2017).

  67. United States Department of Agriculture—Natural Resources Conservation Service (USDA-NRCS). Hydrologic Soil-Cover Complexes. in Part 630 Hydrology National Engineering Handbook (U.S. Department of Agriculture, 2004).

  68. Landesamt für Geoinformation und Landesvermessung Niedersachsen (LGLN) [Lower Saxony Office for Geoinformation and Surveying, Germany]. Digitales Landschaftsmodell (Basis-DLM). Open Data, CC-BY 4.0. https://ni-lgln-opengeodata.hub.arcgis.com/documents/cd1867f0356d4ed2a102f9bdfb52eb88/about (2024).

  69. Deutscher Wetterdienst (DWD) [German Meteorological Service]. Starkniederschlagshöhen und -spenden gemäß KOSTRA-DWD-2020: Rasterfeld 109140 (2022).

  70. Tapsell, S. M., Penning-Rowsell, E. C., Tunstall, S. M. & Wilson, T. L. Vulnerability to flooding: health and social dimensions. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 360, 1511–1525 (2002).

    Google Scholar 

  71. Hamidi, A. R. et al. Flood exposure and social vulnerability analysis in rural areas of developing countries: an empirical study of Charsadda District, Pakistan. Water 14, 1176 (2022).

    Google Scholar 

  72. Landeshauptstadt Hannover [City of Hannover]. Strukturdaten der statistischen Bezirke 2023 (Landeshauptstadt Hannover, 2024).

  73. OpenStreetMap contributors. Planet OSM. (2024).

  74. Scheuer, S., Haase, D. & Meyer, V. Exploring multicriteria flood vulnerability by integrating economic, social and ecological dimensions of flood risk and coping capacity: from a starting point view towards an end point view of vulnerability. Nat. Hazards 58, 731–751 (2011).

    Google Scholar 

  75. Eisenberg, B., Lindow, K. C. & Smith, D. R. Permeable Pavements (American Society of Civil Engineers, 2015).

  76. Hunt, W. F. & Bean, E. Z. NC State University Permeable Pavement Research and Changes to the State of NC Runoff Credit System. 8th International Conference on Concrete Block Paving, San Francisco, California, USA (2006).

  77. Eisenberg, B. & Polcher, V. Nature Based Solutions—Technical Handbook—Part II. https://doi.org/10.13140/RG.2.2.24970.54726 (2019).

  78. Russell, V. L. The green roof manual: professional guide to design, installation, and maintenance, by Edmund C. Snodgrass and Linda McIntyre. Landsc. Archit. 100, 92–93 (2019).

    Google Scholar 

  79. Pätzold, S. Green Roofs in Würzburg: GIS-Based Potential Analysis as a Planning Basis in Urban Greening Instruments. Master’s thesis, Julius-Maximilians-University Würzburg. https://doi.org/10.25972/OPUS-21067 (2020).

  80. Scholz-Barth, K. Green roofs: Stormwater management from the top down. Environmental Design & Construction 4, 63–69 (2001).

    Google Scholar 

  81. Lohwasser, J., Bolognesi, T. & Schaffer, A. Impacts of population, affluence and urbanization on local air pollution and land transformation—a regional STIRPAT analysis for German districts. Ecol. Econ. 227, 108416 (2025).

    Google Scholar 

  82. Wang, B., Wang, B., Lv, B. & Wang, R. Impact of motor vehicle exhaust on the air quality of an urban city. Aerosol Air Qual. Res. 22, 220213 (2022).

    Google Scholar 

  83. Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit (BMUB) [Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety, Germany]. Weißbuch Stadtgrün: Grün in der Stadt–Für eine lebenswerte Zukunft (BMUB, 2017).

  84. Leibniz Universität Hannover (LUH) [Leibniz University Hannover, Germany]. Integriertes Klimaschutzkonzept der Leibniz Universität Hannover (Leibniz Universität Hannover, 2022).

  85. Nguyen Dang, H.-A. et al. Users’ perceptions of the contribution of a university green roof to sustainable development. Sustainability 15, 6772 (2023).

    Google Scholar 

  86. Fassman-Beck, E. et al. Curve number and runoff coefficients for extensive living roofs. J. Hydrol. Eng. 21, 04015073 (2016).

    Google Scholar 

  87. Slowikowski, K. ggrepel: automatically position non-overlapping text labels with ggplot2. CRAN: Contributed Packages. https://doi.org/10.32614/CRAN.package.ggrepel (2024).

  88. Wickham, H. Data analysis. in ggplot2: Elegant Graphics for Data Analysis, 189–201 (Cham: Springer International Publishing, 2016).

  89. Landeshauptstadt Hannover [City of Hannover]. Statistische Gliederung SKH20 (Landeshauptstadt Hannover, 2024).

Download references

Acknowledgements

This research was supported by the GoGreenNext project which has received funding from the European Union (Grant Agreement number 101137209). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Health and Digital Executive Agency (HADEA, granting authority). Neither the European Union nor the granting authority can be held responsible for them.

Funding

Open Access funding enabled and organized by Projekt DEAL.

Author information

Authors and Affiliations

Authors

Contributions

P.S., T.W., and N.K. designed and conceptualised the study. P.S. wrote the draft manuscript text, did the modelling and designed and developed the Figures. T.W. and N.K. edited the manuscript, figures and tables.

Corresponding author

Correspondence to
Nadja Kabisch.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Suplementary material

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Cite this article

Schröder, P.T., Wübbelmann, T. & Kabisch, N. A scenario-based modelling approach to implementing nature-based solutions for flood risk mitigation in Hannover.
npj Urban Sustain (2025). https://doi.org/10.1038/s42949-025-00326-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s42949-025-00326-5


Source: Ecology - nature.com

Honey bee food resources under threat from climate change

Spatial analysis of malaria incidence and environmental determinants in Hadiya Zone, Ethiopia

Back to Top