in

No significant projected climate change effects on the geographic ranges of marine aquaculture species under the sustainable scenario (SSP 1-1.9, 1.5°C warming)


Abstract

Aquaculture is increasingly relied upon for global seafood production, projected to be the leading supplier by 2030. Climate change impacts on species health and industry productivity are already evident, creating uncertainties around long-term aquaculture development. While these impacts have been projected for some species, around 62% of aquaculture production remains unassessed. We utilized climate dissimilarity to assess the exposure of 327 species—including those previously unassessed—in their native ranges to changing climates under three climate scenarios: SSP1-1.9, SSP3-7.0, and SSP5-8.5. We projected that under a sustainability scenario (SSP1-1.9), 41% of Exclusive Economic Zones (EEZ) remained unexposed, including high-value aquaculture regions. However, under increased emissions scenarios (SSP3-7.0 and SSP5-8.5) all current aquaculture EEZ are projected to be exposed. Semi-enclosed seas, like the Baltic, Black, and Red Seas, experience the largest dissimilarity, alongside equatorial regions. Our findings suggest widespread mitigation efforts are necessary to ensure the long-term resilience of marine aquaculture.

Similar content being viewed by others

Social benefits and environmental performance of aquaculture need to improve worldwide

Expanding ocean food production under climate change

Anticipating trade-offs and promoting synergies between small-scale fisheries and aquaculture to improve social, economic, and ecological outcomes

Data availability

Climate data were retrieved from the Copernicus Marine Service at [http://resources.marine.copernicus.eu/products] and the Coupled Model Intercomparison Project (Phase 6) at [https://esgf-node.llnl.gov/projects/cmip6/] in May 2023. Species’ range maps were retrieved from AquaMaps at [https://www.aquamaps.org] in May 2023.

Code availability

Our manually-derived range maps are available on figshare89 and our code on GitHub (https://github.com/jorgeassis/climateAnalogs).

References

  1. FAO. The State of World Fisheries and Aquaculture 2024. https://doi.org/10.4060/cd0683en (FAO, 2024).

  2. Froehlich, H. E. et al. Mind the gap between ICES nations’ future seafood consumption and aquaculture production. ICES J. Mar. Sci. 78, 468–477 (2021).

    Google Scholar 

  3. Climate Change Implications for Fisheries and Aquaculture: Overview of Current Scientific Knowledge (FAO, 2009).

  4. Ścieszka, S. & Klewicka, E. Algae in food: a general review. Crit. Rev. Food Sci. Nutr. 59, 3538–3547 (2019).

    Google Scholar 

  5. Clawson, G. et al. Mapping the spatial distribution of global mariculture production. Aquaculture 553, 738066 (2022).

    Google Scholar 

  6. Liu, Y., Cao, L., Cheung, W. W. L. & Sumaila, U. R. Global estimates of suitable areas for marine algae farming. Environ. Res. Lett. 18, 064028 (2023).

    Google Scholar 

  7. Troell, M. et al. Does aquaculture add resilience to the global food system? Proc. Natl. Acad. Sci. 111, 13257–13263 (2014).

    Google Scholar 

  8. Handisyde, N., Telfer, T. C. & Ross, L. G. Vulnerability of aquaculture-related livelihoods to changing climate at the global scale. Fish Fish 18, 466–488 (2016).

    Google Scholar 

  9. Reid, G. et al. Climate change and aquaculture: considering biological response and resources. Aquac. Environ. Interact. 11, 569–602 (2019).

    Google Scholar 

  10. Lorentzen, T. Modeling climate change and the effect on the Norwegian Salmon farming industry. Nat. Resour. Model. 21, 416–435 (2008).

    Google Scholar 

  11. Klinger, D. H., Levin, S. A. & Watson, J. R. The growth of finfish in global open-ocean aquaculture under climate change. Proc. R. Soc. B Biol. Sci. 284, 20170834 (2017).

    Google Scholar 

  12. Neuheimer, A. B., Thresher, R. E., Lyle, J. M. & Semmens, J. M. Tolerance limit for fish growth exceeded by warming waters. Nat. Clim. Change 1, 110–113 (2011).

    Google Scholar 

  13. Gubbins, M., Bricknell, I. & Service, M. Impacts of climate change on aquaculture. MCCIP Sci. Rev. 2013 https://doi.org/10.14465/2013.ARC33.318-327 (2013).

  14. McCoy, D. et al. Large-scale climatic effects on traditional Hawaiian fishpond aquaculture. PLOS ONE 12, e0187951 (2017).

    Google Scholar 

  15. Baker, S. M., Baker, P., Heuberger, D. & Sturmer, L. Short-term effects of rapid salinity reduction on seed clams (Mercenaria mercenaria). J. Shellfish Res. 24, 29–33 (2005).

    Google Scholar 

  16. Gao, X. et al. The response and osmotic pressure regulation mechanism of Haliotis discus hannai (Mollusca, Gastropoda) to sudden salinity changes. Hydrobiologia 795, 181–198 (2017).

    Google Scholar 

  17. Breitburg, D. et al. Declining oxygen in the global ocean and coastal waters. Science 359, eaam7240 (2018).

    Google Scholar 

  18. Callaway, R. et al. Review of climate change impacts on marine aquaculture in the UK and Ireland. Aquat. Conserv. Mar. Freshw. Ecosyst. 22, 389–421 (2012).

    Google Scholar 

  19. Oliver, E. C. J. et al. The unprecedented 2015/16 Tasman Sea marine heatwave. Nat. Commun. 8, 16101 (2017).

    Google Scholar 

  20. Salinger, M. J. et al. The unprecedented coupled ocean-atmosphere summer heatwave in the New Zealand region 2017/18: drivers, mechanisms and impacts. Environ. Res. Lett. 14, 044023 (2019).

    Google Scholar 

  21. Gentry, R. R. et al. Mapping the global potential for marine aquaculture. Nat. Ecol. Evol. 1, 1317–1324 (2017).

    Google Scholar 

  22. Froehlich, H. E., Gentry, R. R. & Halpern, B. S. Global change in marine aquaculture production potential under climate change. Nat. Ecol. Evol. 2, 1745–1750 (2018).

    Google Scholar 

  23. Meinshausen, M. et al. The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geosci. Model Dev. 13, 3571–3605 (2020).

    Google Scholar 

  24. Schoeman, D. S. et al. Demystifying global climate models for use in the life sciences. Trends Ecol. Evol. 38, 843–858 (2023).

    Google Scholar 

  25. Oyinlola, M. A. et al. Projecting global mariculture production and adaptation pathways under climate change. Glob. Change Biol. 28, 1315–1331 (2021).

    Google Scholar 

  26. Grenier, P., Parent, A.-C., Huard, D., Anctil, F. & Chaumont, D. An assessment of six dissimilarity metrics for climate analogs. J. Appl. Meteorol. Climatol. 52, 733–752 (2013).

    Google Scholar 

  27. Mahony, C. R., Cannon, A. J., Wang, T. & Aitken, S. N. A closer look at novel climates: new methods and insights at continental to landscape scales. Glob. Chang. Biol. 23, 3934–3955 (2017).

    Google Scholar 

  28. Williams, J. W., Jackson, S. T. & Kutzbach, J. E. Projected distributions of novel and disappearing climates by 2100 AD. Proc. Natl. Acad. Sci. 104, 5738–5742 (2007).

    Google Scholar 

  29. Veloz, S. D. et al. No-analog climates and shifting realized niches during the late quaternary: implications for 21st-century predictions by species distribution models. Glob. Chang. Biol. 18, 1698–1713 (2012).

    Google Scholar 

  30. Kyprioti, A., Almpanidou, V., Chatzimentor, A., Katsanevakis, S. & Mazaris, A. D. Is the current Mediterranean network of marine protected areas resilient to climate change? Sci. Total Environ. 792, 148397 (2021).

    Google Scholar 

  31. FAO. The State of World Fisheries and Aquaculture 2022 (FAO, 2022).

  32. Free, C. M. et al. Expanding ocean food production under climate change. Nature 605, 490–496 (2022).

    Google Scholar 

  33. Ma, D. et al. Strategic planning could reduce farm-scale mariculture impacts on marine biodiversity while expanding seafood production. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-025-02650-6 (2025).

  34. Belton, B., Bush, S. R. & Little, D. C. Not just for the wealthy: rethinking farmed fish consumption in the Global South. Glob. Food Secur. 16, 85–92 (2018).

    Google Scholar 

  35. Henriksson, P. J. G. et al. Indonesian aquaculture futures—identifying interventions for reducing environmental impacts. Environ. Res. Lett. 14, 124062 (2019).

    Google Scholar 

  36. Tahi̇luddi̇n, A. & Terzi̇, E. An overview of fisheries and aquaculture in the Philippines. J. Anatol. Environ. Anim. Sci. 6, 475–486 (2021).

    Google Scholar 

  37. Cheung, W. W. L., Reygondeau, G. & Frölicher, T. L. Large benefits to marine fisheries of meeting the 1.5°C global warming target. Science 354, 1591–1594 (2016).

    Google Scholar 

  38. Ma, C., Zhu, X., Liao, M., Dong, S. & Dong, Y. Heat sensitivity of mariculture species in China. ICES J. Mar. Sci. 78, 2922–2930 (2021).

    Google Scholar 

  39. Yu, J. & Yin, W. Exploring stakeholder engagement in mariculture development: challenges and prospects for China. Mar. Policy 103, 84–90 (2019).

    Google Scholar 

  40. Hobday, A. J. et al. A framework for combining seasonal forecasts and climate projections to aid risk management for fisheries and aquaculture. Front. Mar. Sci. 5, (2018).

  41. Zhang, H. & Gui, F. The application and research of new digital technology in marine aquaculture. J. Mar. Sci. Eng. 11, 401 (2023).

    Google Scholar 

  42. Rantanen, M. et al. The Arctic has warmed nearly four times faster than the globe since 1979. Commun. Earth Environ. 3, 1–10 (2022).

    Google Scholar 

  43. Brown, S. C., Mellin, C., García Molinos, J., Lorenzen, E. D. & Fordham, D. A. Faster ocean warming threatens richest areas of marine biodiversity. Glob. Chang Biol. 28, 5849–5858 (2022).

    Google Scholar 

  44. Gordó-Vilaseca, C., Stephenson, F., Coll, M., Lavin, C. & Costello, M. J. Three decades of increasing fish biodiversity across the northeast Atlantic and the Arctic Ocean. Proc. Natl. Acad. Sci. 120, e2120869120 (2023).

    Google Scholar 

  45. Atkinson, D. Temperature and organism size—a biological law for ectotherms? Adv. Ecol. Res. 25, 1–58 (1994).

    Google Scholar 

  46. Clarke, A. & Fraser, K. P. P. Why does metabolism scale with temperature? Funct. Ecol. 18, 243–251 (2004).

    Google Scholar 

  47. Tacon, A. G. J. & Metian, M. Feed matters: satisfying the feed demand of aquaculture. Rev. Fish. Sci. Aquac. 23, 1–10 (2015).

    Google Scholar 

  48. Lavin, C. P. et al. Warm and cold temperatures limit the maximum body length of teleost fishes across a latitudinal gradient in Norwegian waters. Environ. Biol. Fishes 105, 1415–1429 (2022).

    Google Scholar 

  49. Walczyńska, A., Kiełbasa, A. & Sobczyk, M. Optimal thermal range’ in ectotherms: defining criteria for tests of the temperature-size-rule. J. Therm. Biol. 60, 41–48 (2016).

    Google Scholar 

  50. Mugwanya, M., Dawood, M. A. O., Kimera, F. & Sewilam, H. Anthropogenic temperature fluctuations and their effect on aquaculture: a comprehensive review. Aquac. Fish. 7, 223–243 (2022).

    Google Scholar 

  51. Handeland, S. O., Imsland, A. K. & Stefansson, S. O. The effect of temperature and fish size on growth, feed intake, food conversion efficiency and stomach evacuation rate of Atlantic salmon post-smolts. Aquaculture 283, 36–42 (2008).

    Google Scholar 

  52. Pauly, D. The gill-oxygen limitation theory (GOLT) and its critics. Sci. Adv. 7, eabc6050 (2021).

    Google Scholar 

  53. Verberk, W. C. E. P. et al. Shrinking body sizes in response to warming: explanations for the temperature–size rule with special emphasis on the role of oxygen. Biol. Rev. 96, 247–268 (2021).

    Google Scholar 

  54. Lavin, C. P., Gordó-Vilaseca, C., Stephenson, F., Shi, Z. & Costello, M. J. Warmer temperature decreases the maximum length of six species of marine fishes, crustacean, and squid in New Zealand. Environ. Biol. Fishes 105, 1431–1446 (2022).

    Google Scholar 

  55. Bevacqua, E., Schleussner, C.-F. & Zscheischler, J. A year above 1.5 °C signals that Earth is most probably within the 20-year period that will reach the Paris Agreement limit. Nat. Clim. Chang. 15, 262–265 (2025).

    Google Scholar 

  56. Ahmed, N., Thompson, S. & Glaser, M. Global aquaculture productivity, environmental sustainability, and climate change adaptability. Environ. Manag. 63, 159–172 (2019).

    Google Scholar 

  57. Chaidez, V., Dreano, D., Agusti, S., Duarte, C. M. & Hoteit, I. Decadal trends in Red Sea maximum surface temperature. Sci. Rep. 7, 8144 (2017).

    Google Scholar 

  58. Dutheil, C., Meier, H. E. M., Gröger, M. & Börgel, F. Understanding past and future sea surface temperature trends in the Baltic Sea. Clim. Dyn. 58, 3021–3039 (2022).

    Google Scholar 

  59. Huang, L., Lee, S.-S. & Timmermann, A. Caspian sea and black sea response to greenhouse warming in a high-resolution global climate model. Geophys. Res. Lett. 48, e2020GL090270 (2021).

    Google Scholar 

  60. Bienstman, M., Çoba, D. & Zakharov, A. Marine spatial planning: the case of aquaculture. Öffentl. Sekt. 46, (2020).

  61. Holbach, A., Maar, M., Timmermann, K. & Taylor, D. A spatial model for nutrient mitigation potential of blue mussel farms in the western Baltic Sea. Sci. Total Environ. 736, 139624 (2020).

    Google Scholar 

  62. Clarke, T. M. et al. Climate change impacts on living marine resources in the Eastern Tropical Pacific. Divers. Distrib. 27, 65–81 (2021).

    Google Scholar 

  63. Hodapp, D. et al. Climate change disrupts core habitats of marine species. Glob. Chang. Biol. 29, 3304–3317 (2023).

    Google Scholar 

  64. Fogarty, H. E., Burrows, M. T., Pecl, G. T., Robinson, L. M. & Poloczanska, E. S. Are fish outside their usual ranges early indicators of climate-driven range shifts? Glob. Chang. Biol. 23, 2047–2057 (2017).

    Google Scholar 

  65. Chaudhary, C., Richardson, A. J., Schoeman, D. S. & Costello, M. J. Global warming is causing a more pronounced dip in marine species richness around the equator. Proc. Natl. Acad. Sci. 118, (2021).

  66. Pinsky, M. L., Selden, R. L. & Kitchel, Z. J. Climate-driven shifts in marine species ranges: scaling from organisms to communities. Annu. Rev. Mar. Sci. 12, 153–179 (2020).

    Google Scholar 

  67. Brummett, R. E. & Ponzoni, R. W. Concepts, alternatives, and environmental considerations in the development and use of improved strains of tilapia in African aquaculture. Rev. Fish. Sci. 17, 70–77 (2009).

    Google Scholar 

  68. Calado, R., Mota, V. C., Madeira, D. & Leal, M. C. Summer is coming! Tackling ocean warming in Atlantic Salmon cage farming. Animals 11, 1800 (2021).

    Google Scholar 

  69. Kim, J. K. et al. Seaweed aquaculture: cultivation technologies, challenges and its ecosystem services. Algae 32, 1–13 (2017).

    Google Scholar 

  70. Castilla, J. C., Yanez, E., Silva, C. & Fernandez, M. A review and analysis of Easter Islands traditional and artisan fisheries. Lat. Am. J. Aquat. Res. 42, 690–702 (2014).

    Google Scholar 

  71. Costello, C. et al. The future of food from the sea. Nature 588, 95–100 (2020).

    Google Scholar 

  72. National Aquaculture Sector Overview. Fish. Aquac.

  73. Mooney, H. A. & Cleland, E. E. The evolutionary impact of invasive species. Proc. Natl. Acad. Sci. 98, 5446–5451 (2001).

    Google Scholar 

  74. Erarto, F. & Getahun, A. Impacts of Introductions of Alien Species with Emphasis on Fishes.

  75. Pauly, D., Zeller, D. & Palomares, M. L. D. Sea Around Us Concepts, Design and Data (2020).

  76. Divanach, P. et al. Abnormalities in finfish mariculture: an overview of the problem, causes and solutions (BE, 1996).

  77. Garibaldi, L. List of Animal Species Used in Aquaculture (1996).

  78. Richard, M. et al. Influence of periphyton substrates and rearing density on Liza aurata growth and production in marine nursery ponds. Aquaculture 310, 106–111 (2010).

    Google Scholar 

  79. Groesbeck, A., Rowell, K., Lepofsky, D. & Salomon, A. Ancient aquaculture practices in British Columbia: Clam gardens provide insights and baselines for today’s management. Salish Sea Ecosyst. Conf. (2014).

  80. Walsh, M. L., Fairchild, E. A., Rennels, N. & Howell, W. H. The effects of live and artificial diets on feeding performance of winter flounder, Pseudopleuronectes americanus, in the hatchery. J. World Aquac. Soc. 46, 61–68 (2015).

    Google Scholar 

  81. Menzel, W. Estuarine and Marine Bivalve Mollusk Culture (CRC Press, 2018).

  82. TV, D. Nghiên cứu công nghệ sản xuất thức ăn công nghiệp cho ốc hương từ nguồn nguyên liệu sẵn có ở Việt Nam – Cổng thông tin Khoa học và Công nghệ. NAtional Bureau of Scientific and Technolofy Information https://www.vista.gov.vn/vi/news/ket-qua-nghien-cuu-trien-khai/nghien-cuu-cong-nghe-san-xuat-thuc-an-cong-nghiep-cho-oc-huong-tu-nguon-nguyen-lieu-san-co-o-viet-nam-8157.html (2019).

  83. Goetz, F. W. et al. Status of sablefish, Anoplopoma fimbria, aquaculture. J. World Aquac. Soc. 52, 607–646 (2021).

    Google Scholar 

  84. Le François, N. R., Fairchild, E. A., Nardi, G. & Dupont-Cyr, B.-A. The status of spotted wolffish, Anarhichas minor: a commercially ready species for U.S. marine aquaculture? J. World Aquac. Soc. 52, 509–525 (2021).

    Google Scholar 

  85. Kaschner, K. et al. AquaMaps: Predicted range maps for aquatic species (2019).

  86. Froese, R. & Pauly, D. FishBase (2024).

  87. Palomares, M. L. D. & Pauly, D. SeaLifeBase (2023).

  88. Guiry, M. D. & Guiry, G. M. AlgaeBase1 (2023).

  89. Mackintosh, A. L., Hill, G. G., Costello, M. J. & Assis, J. Species References and Range Maps. figshare https://doi.org/10.6084/m9.figshare.25673469 (2024).

  90. QGIS.org. QGIS Geographic Information System (2023).

  91. GBIF.org. Global Biodiversity Information Facility. https://www.gbif.org (2023).

  92. OBIS. Ocean Biodiversity Information System. Intergov. Oceanogr. Comm. (UNESCO, 2023).

  93. Assis, J. et al. Bio-ORACLE v2.0: extending marine data layers for bioclimatic modelling. Glob. Ecol. Biogeogr. 27, 277–284 (2018).

    Google Scholar 

  94. O’Neill, B. C. et al. A new scenario framework for climate change research: the concept of shared socioeconomic pathways. Clim. Chang. 122, 387–400 (2014).

    Google Scholar 

  95. Lotterhos, K. E., Láruson, ÁJ. & Jiang, L.-Q. Novel and disappearing climates in the global surface ocean from 1800 to 2100. Sci. Rep. 11, 15535 (2021).

    Google Scholar 

Download references

Acknowledgements

This study was supported by the Foundation for Science and Technology (FCT) of Portugal through projects UIDB/04326/2020 (https://doi.org/10.54499/UIDB/04326/2020), UIDP/04326/2020 (https://doi.org/10.54499/UIDP/04326/2020), LA/P/0101/2020 (https://doi.org/10.54499/LA/P/0101/2020), and the Individual Call to Scientific Employment Stimulus 2022.00861.CEECIND/CP1729/CT0003 (https://doi.org/10.54499/2022.00861.CEECIND/CP1729/CT0003). The authors thank the anonymous reviewers for their helpful comments on the manuscript.

Funding

Open access funding provided by Nord University.

Author information

Authors and Affiliations

Authors

Contributions

A.L.M., G.G.H.: Conceptualization, Methodology, Interpretive Analysis, Investigation, Data Curation, Writing—Original Draft, Writing—Review & Editing, and Visualization. M.J.C.: Conceptualization, Investigation, Writing—Review & Editing, and Funding Acquisition. J.A.: Conceptualization, Formal Analysis, Writing—Review & Editing, and Funding Acquisition. A.L.M. and G.G.H. contributed equally to this manuscript.

Corresponding author

Correspondence to
Amy Leigh Mackintosh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Cite this article

Mackintosh, A.L., Hill, G.G., Costello, M.J. et al. No significant projected climate change effects on the geographic ranges of marine aquaculture species under the sustainable scenario (SSP 1-1.9, 1.5°C warming).
npj Ocean Sustain (2025). https://doi.org/10.1038/s44183-025-00178-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s44183-025-00178-7


Source: Ecology - nature.com

Radiological and radioecological risk assessment around the West Delta fossil-fuel power station in Egypt

Assessing eco-environmental quality and its drivers in the Shandong section of the Yellow River Basin with an improved remote sensing ecological index

Back to Top