More stories

  • in

    A colourful tropical world

    von Humboldt, A. Views of Nature: Or Contemplations on the Sublime Phenomena of Creation (transl. Otté, E. C. & Bohn, H. G.) (Henry G. Bohn, 1850).Cooney, C. R. et al. Nat. Ecol. Evol., https://doi.org/10.1038/s41559-022-01714-1 (2022).Article 

    Google Scholar 
    Hawkins, B. A. et al. J. Biogeogr. 39, 825–841 (2012).Article 

    Google Scholar 
    Pulido-Santacruz, P. & Weir, J. T. Evolution 70, 860–872 (2016).Article 

    Google Scholar 
    Fine, P. V. A. Annu. Rev. Ecol. Evol. Syst. 46, 369–392 (2015).Article 

    Google Scholar 
    Storch, D., Bohdalková, E. & Okie, J. Ecol. Lett. 21, 920–937 (2018).Article 

    Google Scholar 
    Jablonski, D., Roy, K. & Valentine, J. W. Science 314, 102–106 (2006).CAS 
    Article 

    Google Scholar 
    Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. Nature 491, 444–448 (2012).CAS 
    Article 

    Google Scholar 
    Kennedy, J. D. et al. J. Biogeogr. 41, 1746–1757 (2014).Article 

    Google Scholar 
    Pontarp, M. et al. Trends Ecol. Evol. 34, 211–223 (2019).Article 

    Google Scholar  More

  • in

    A three-dimensional climate-smart conservation approach in the high seas

    Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.This is a summary of: Brito-Morales, I. et al. Towards climate-smart, three-dimensional protected areas for biodiversity conservation in the high seas. Nat. Clim. Change https://doi.org/10.1038/s41558-022-01323-7 (2022). More

  • in

    Restructuring of plankton genomic biogeography in the surface ocean under climate change

    Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science https://doi.org/10.1126/science.281.5374.237 (1998).Guidi, L. et al. Plankton networks driving carbon export in the oligotrophic ocean. Nature https://doi.org/10.1038/nature16942 (2016).Henson, S. A., Sanders, R. & Madsen, E. Global patterns in efficiency of particulate organic carbon export and transfer to the deep ocean. Glob. Biogeochem. Cycles https://doi.org/10.1029/2011GB004099 (2012).Azam, F. et al. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. https://doi.org/10.3354/meps010257 (1983).Saab, M. A. Day-to-day variation in phytoplankton assemblages during spring blooming in a fixed station along the Lebanese coastline. J. Plankton Res. https://doi.org/10.1093/plankt/14.8.1099 (1992).Djurhuus, A. et al. Environmental DNA reveals seasonal shifts and potential interactions in a marine community. Nat. Commun. https://doi.org/10.1038/s41467-019-14105-1 (2020).Kavanaugh, M. T. et al. Seascapes as a new vernacular for pelagic ocean monitoring, management and conservation. ICES J. Mar. Sci. https://doi.org/10.1093/icesjms/fsw086 (2016).Longhurst, A. R. Ecological Geography of the Sea (Elsevier, 2007).Fay, A. R. & McKinley, G. A. Global open-ocean biomes: mean and temporal variability. Earth Syst. Sci. Data https://doi.org/10.5194/essd-6-273-2014 (2014).Reygondeau, G. et al. Dynamic biogeochemical provinces in the global ocean. Glob. Biogeochem. Cycles https://doi.org/10.1002/gbc.20089 (2013).Richter, D. J. et al. Genomic evidence for global ocean plankton biogeography shaped by large-scale current systems. Preprint at bioRxiv https://doi.org/10.1101/867739 (2020).Dutkiewicz, S. et al. Dimensions of marine phytoplankton diversity. Biogeosciences https://doi.org/10.5194/bg-17-609-2020 (2020).Hellweger, F. L., Van Sebille, E. & Fredrick, N. D. Biogeographic patterns in ocean microbes emerge in a neutral agent-based model. Science https://doi.org/10.1126/science.1254421 (2014).Laso-Jadart, R. et al. Investigating population-scale allelic differential expression in wild populations of Oithona similis (Cyclopoida, Claus, 1866). Ecol. Evol. https://doi.org/10.1002/ece3.6588 (2020).Delmont, T. O. et al. Single-amino acid variants reveal evolutionary processes that shape the biogeography of a global SAR11 subclade. eLife https://doi.org/10.7554/eLife.46497 (2019).Carradec, Q. et al. A global ocean atlas of eukaryotic genes. Nat. Commun. https://doi.org/10.1038/s41467-017-02342-1 (2018).Salazar, G. et al. Gene expression changes and community turnover differentially shape the global ocean metatranscriptome. Cell https://doi.org/10.1016/j.cell.2019.10.014 (2019).Alberti, A. et al. Viral to metazoan marine plankton nucleotide sequences from the Tara Oceans expedition. Sci. Data https://doi.org/10.1038/sdata.2017.93 (2017).Pesant, S. et al. Open science resources for the discovery and analysis of Tara Oceans data. Sci. Data https://doi.org/10.1038/sdata.2015.23 (2015).Karsenti, E. et al. A holistic approach to marine eco-systems biology. PLoS Biol. https://doi.org/10.1371/journal.pbio.1001177 (2011).Duarte, C. M. Seafaring in the 21st century: the Malaspina 2010 circumnavigation expedition. Limnol. Oceanogr. Bull. https://doi.org/10.1002/lob.10008 (2015).Barton, A. D., Irwin, A. J., Finkel, Z. V. & Stock, C. A. Anthropogenic climate change drives shift and shuffle in North Atlantic phytoplankton communities. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1519080113 (2016).Benedetti, F., Guilhaumon, F., Adloff, F. & Ayata, S. D. Investigating uncertainties in zooplankton composition shifts under climate change scenarios in the Mediterranean Sea. Ecography https://doi.org/10.1111/ecog.02434 (2018).Beaugrand, G. et al. Prediction of unprecedented biological shifts in the global ocean. Nat. Clim. Change 9, 237–243 (2019).Article 

    Google Scholar 
    Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L. & Levin, S. A. Marine taxa track local climate velocities. Science https://doi.org/10.1126/science.1239352 (2013).Bopp, L. et al. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences https://doi.org/10.5194/bg-10-6225-2013 (2013).Thomas, M. K., Kremer, C. T., Klausmeier, C. A. & Litchman, E. A global pattern of thermal adaptation in marine phytoplankton. Science https://doi.org/10.1126/science.1224836 (2012).Ibarbalz, F. M. et al. Global trends in marine plankton diversity across kingdoms of life. Cell https://doi.org/10.1016/j.cell.2019.10.008 (2019).Busseni, G. et al. Large scale patterns of marine diatom richness: drivers and trends in a changing ocean. Glob. Ecol. Biogeogr. https://doi.org/10.1111/geb.13161 (2020).Hutchinson, G. E. Concluding remarks. Cold Spring Harb. Symp. Quant. Biol. 22, 415–427 (1957).Article 

    Google Scholar 
    Delmont, T. O. et al. Functional repertoire convergence of distantly related eukaryotic plankton lineages revealed by genome-resolved metagenomics. Preprint at bioRxiv https://doi.org/10.1101/2020.10.15.341214 (2020).Delmont, T. O. et al. Heterotrophic bacterial diazotrophs are more abundant than their cyanobacterial counterparts in metagenomes covering most of the sunlit ocean. ISME J. https://doi.org/10.1038/s41396-021-01135-1 (2021).Boyer, et al. World Ocean Database 2013, NOAA Atlas NESDIS 72 (National Oceanic and Atmospheric Administration, 2013); https://doi.org/10.7289/V5NZ85MTSunagawa, S. et al. Tara Oceans: towards global ocean ecosystems biology. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-020-0364-5 (2020).Moon, K. R. et al. Visualizing structure and transitions in high-dimensional biological data. Nat. Biotechnol. https://doi.org/10.1038/s41587-019-0336-3 (2019).van Vuuren, D. P. et al. The representative concentration pathways: an overview. Climatic Change https://doi.org/10.1007/s10584-011-0148-z (2011).Polovina, J. J., Dunne, J. P., Woodworth, P. A. & Howell, E. A. Projected expansion of the subtropical biome and contraction of the temperate and equatorial upwelling biomes in the North Pacific under global warming. ICES J. Mar. Sci. https://doi.org/10.1093/icesjms/fsq198 (2011).Flombaum, P., Wang, W. L., Primeau, F. W. & Martiny, A. C. Global picophytoplankton niche partitioning predicts overall positive response to ocean warming. Nat. Geosci. https://doi.org/10.1038/s41561-019-0524-2 (2020).Richardson, A. J. In hot water: zooplankton and climate change. ICES J. Mar. Sci. 65, 279–295 (2008).Article 

    Google Scholar 
    Wrightson, L. & Tagliabue, A. Quantifying the impact of climate change on marine diazotrophy: insights from Earth system models. Front. Mar. Sci. 7, 635 (2020).Article 

    Google Scholar 
    Zehr, J. P. & Capone, D. G. Changing perspectives in marine nitrogen fixation. Science 368, eaay9514 (2020).CAS 
    Article 

    Google Scholar 
    Luo, Y.-W. et al. Database of diazotrophs in global ocean: abundance, biomass and nitrogen fixation rates. Earth Syst. Sci. Data 4, 47–73 (2012).Article 

    Google Scholar 
    Eppley, R. W. & Peterson, B. J. Particulate organic matter flux and planktonic new production in the deep ocean. Nature 282, 677–680 (1979).Article 

    Google Scholar 
    Laws, E. A., Falkowski, P. G., Smith, W. O., Ducklow, H. & McCarthy, J. J. Temperature effects on export production in the open ocean. Glob. Biogeochem. Cycles 14, 1231–1246 (2000).CAS 
    Article 

    Google Scholar 
    Agrawal, R. & Srikant, R. in Proceedings of the 20th International Conference on Very Large Data Bases (eds Bocca, J. B. et al.) 487–499 (Morgan Kaufmann, 1994).Laufkötter, C. et al. Projected decreases in future marine export production: the role of the carbon flux through the upper ocean ecosystem. Biogeosciences 13, 4023–4047 (2016).Article 

    Google Scholar 
    Iudicone, D. Some may like it hot. Nat. Geosci. https://doi.org/10.1038/s41561-020-0535-z (2020).Gorsky, G. et al. Expanding Tara Oceans protocols for underway, ecosystemic sampling of the ocean–atmosphere interface during Tara Pacific expedition (2016–2018). Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00750 (2019).Istace, B. et al. de novo assembly and population genomic survey of natural yeast isolates with the Oxford Nanopore MinION sequencer. Gigascience https://doi.org/10.1093/gigascience/giw018 (2017).Grand, M. M. et al. Developing autonomous observing systems for micronutrient trace metals. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00035 (2019).Becker, R. A., Wilks, A. R., Brownrigg, R., Minka, T. P. & Deckmyn, A. maps: Draw geographical maps. R version 3.5.0 https://cran.r-project.org/web/packages/maps/index.html (2021).Jaccard, P. Distribution comparée de la flore alpine dans quelques régions des Alpes occidentales et orientales. Bull. Murith. 31, 81–92 (1902).
    Google Scholar 
    Watson, R. A. A database of global marine commercial, small-scale, illegal and unreported fisheries catch 1950–2014. Sci. Data https://doi.org/10.1038/sdata.2017.39 (2017).Maritime Boundaries Geodatabase: Maritime Boundaries and Exclusive Economic Zones (200NM), version 11 (Flanders Marine Institute, 2019); https://doi.org/10.14284/386Aumont, O., Ethé, C., Tagliabue, A., Bopp, L. & Gehlen, M. PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies. Geosci. Model Dev. https://doi.org/10.5194/gmd-8-2465-2015 (2015).Bibby, T. S. & Moore, C. M. Silicate:nitrate ratios of upwelled waters control the phytoplankton community sustained by mesoscale eddies in sub-tropical North Atlantic and Pacific. Biogeosciences https://doi.org/10.5194/bg-8-657-2011 (2011).Brun, P., Kiørboe, T., Licandro, P. & Payne, M. R. The predictive skill of species distribution models for plankton in a changing climate. Glob. Change Biol. https://doi.org/10.1111/gcb.13274 (2016).Redfield, A. C. in James Johnstone Memorial Volume (ed. Daniel, R. J.) 176–192 (Liverpool Univ. Press, 1934).Michelangeli, P. A., Vrac, M. & Loukos, H. Probabilistic downscaling approaches: application to wind cumulative distribution functions. Geophys. Res. Lett. https://doi.org/10.1029/2009GL038401 (2009).Ridgeway, G. gbm: Generalized boosted regression models. R version 1.6–3.1 https://cran.r-project.org/web/packages/gbm/gbm.pdf (2010).Breiman, L. & Cutler, A. randomForest: Breiman and Cutler’s random forests for classification and regression. R package 4.1.0 https://www.stat.berkeley.edu/~breiman/RandomForests/ (2012).Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S 4th edn (Springer, 2002).Wood, S. N. Stable and efficient multiple smoothing parameter estimation for generalized additive models. J. Am. Stat. Assoc. https://doi.org/10.1198/016214504000000980 (2004).Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. https://doi.org/10.1016/j.patrec.2005.10.010 (2006).Biecek, P. DALEX: explainers for complex predictive models. J. Mach. Learn. Res. 19, 1–5 (2018).
    Google Scholar 
    Jones, M. C. & Cheung, W. W. L. Multi-model ensemble projections of climate change effects on global marine biodiversity. ICES J. Mar. Sci. https://doi.org/10.1093/icesjms/fsu172 (2015).Vallejos, C. A. Exploring a world of a thousand dimensions. Nat. Biotechnol. https://doi.org/10.1038/s41587-019-0330-9 (2019).Kaufman, L. and Rousseeuw, P.J. in Statistical Data Analysis Based on the L1 Norm and Related Methods (ed. Dodge, Y.) 405–416 (North-Holland, 1987).Rousseeuw, P. J. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. https://doi.org/10.1016/0377-0427(87)90125-7 (1987).Orsi, A. H., Whitworth, T. & Nowlin, W. D. On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep Sea Res. Part I https://doi.org/10.1016/0967-0637(95)00021-W (1995).Hubert, L. & Arabie, P. Comparing partitions. J. Classif. https://doi.org/10.1007/BF01908075 (1985).Somerfield, P. J. Identification of the Bray–Curtis similarity index: comment on Yoshioka (2008). Mar. Ecol. Prog. Ser. https://doi.org/10.3354/meps07841 (2008).Bloom, S. Similarity indices in community studies: potential pitfalls. Mar. Ecol. Prog. Ser. https://doi.org/10.3354/meps005125 (1981).Welch, B. L. The generalisation of student’s problems when several different population variances are involved. Biometrika 34, 28–35 (1947).CAS 

    Google Scholar 
    Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6, 65–70 (1979).
    Google Scholar 
    Mann, H. B. & Whitney, D. R. On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 18, 50–60 (1947).Article 

    Google Scholar 
    Sthle, L. & Wold, S. Analysis of variance (ANOVA). Chemom. Intell. Lab. Syst. 6, 259–272 (1989).Article 

    Google Scholar 
    Bozdogan, H. Model selection and Akaike’s Information Criterion (AIC): the general theory and its analytical extensions. Psychometrika 52, 345–370 (1987).Article 

    Google Scholar 
    Frémont, P. et al. Biogeographies of genomic provinces from ‘Restructuring of plankton genomic biogeography in the surface ocean under climate change’. figshare. https://figshare.com/articles/dataset/Biogeographies_genomic_provinces/19071620 (2022). More

  • in

    Latitudinal gradients in avian colourfulness

    Darwin, C. R. On the Origin of Species, or the Preservation of Favoured Races in the Struggle for Life (John Murray, 1859).Wallace, A. R. Natural Selection and Tropical Nature: Essays on Descriptive and Theoretical Biology 2nd edn (Macmillan, 1895).Darwin, C. R. A Naturalist’s Voyage Round the World (John Murray, 1913).Wallace, A. R. Colour in nature. Nature 19, 580–581 (1879).
    Google Scholar 
    Dalrymple, R. L. et al. Abiotic and biotic predictors of macroecological patterns in bird and butterfly coloration. Ecol. Monogr. 88, 204–224 (2018).
    Google Scholar 
    Adams, J. M., Kang, C. & June-Wells, M. Are tropical butterflies more colorful? Ecol. Res. 29, 685–691 (2014).
    Google Scholar 
    Bailey, S. F. Latitudinal gradients in colors and patterns of passerine birds. Condor 80, 372–381 (1978).
    Google Scholar 
    Wilson, M. F. & Von Neaumann, R. A. Why are neotropical birds more colourful than North American birds? Avicultural Mag. 78, 141–147 (1972).
    Google Scholar 
    Dalrymple, R. L. et al. Birds, butterflies and flowers in the tropics are not more colourful than those at higher latitudes. Glob. Ecol. Biogeogr. 24, 1424–1432 (2015).
    Google Scholar 
    Friedman, N. R. & Remeš, V. Ecogeographical gradients in plumage coloration among Australasian songbird clades. Glob. Ecol. Biogeogr. 26, 261–274 (2017).
    Google Scholar 
    Dale, J., Dey, C. J., Delhey, K., Kempenaers, B. & Valcu, M. The effects of life history and sexual selection on male and female plumage colouration. Nature 527, 367–370 (2015).CAS 

    Google Scholar 
    Dunn, P. O., Armenta, J. K. & Whittingham, L. A. Natural and sexual selection act on different axes of variation in avian plumage color. Sci. Adv. 1, e1400155 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Stoddard, M. C. & Prum, R. O. How colorful are birds? Evolution of the avian plumage color gamut. Behav. Ecol. 22, 1042–1052 (2011).
    Google Scholar 
    Renoult, J. P., Kelber, A. & Schaefer, H. M. Colour spaces in ecology and evolutionary biology. Biol. Rev. 92, 292–315 (2017).
    Google Scholar 
    Stoddard, M. C. & Prum, R. O. Evolution of avian plumage color in a tetrahedral color space: a phylogenetic analysis of New World buntings. Am. Nat. 171, 755–776 (2008).
    Google Scholar 
    Delhey, K. The colour of an avifauna: a quantitative analysis of the colour of Australian birds. Sci. Rep. 5, 18514 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51, 933–938 (2001).
    Google Scholar 
    Rabosky, D. L. et al. An inverse latitudinal gradient in speciation rate for marine fishes. Nature 559, 392–395 (2018).CAS 

    Google Scholar 
    Lynch, M. Methods for the analysis of comparative data in evolutionary biology. Evolution 45, 1065–1080 (1991).PubMed 
    PubMed Central 

    Google Scholar 
    Delhey, K. A review of Gloger’s rule, an ecogeographical rule of colour: definitions, interpretations and evidence. Biol. Rev. Camb. Phil. Soc. 94, 1294–1316 (2019).
    Google Scholar 
    Marchetti, K. Dark habitats and bright birds illustrate the role of the environment in species divergence. Nature 362, 149–152 (1993).
    Google Scholar 
    Endler, J. A. The color of light in forests and its implications. Ecol. Monogr. 63, 1–27 (1993).
    Google Scholar 
    Schemske, D. W. in Speciation and Patterns of Diversity Vol. 12 (eds Butlin, R. et al.) 219–239 (Cambridge Univ. Press, 2009).Schemske, D. W., Mittelbach, G. G., Cornell, H. V., Sobel, J. M. & Roy, K. Is there a latitudinal gradient in the importance of biotic interactions? Annu. Rev. Ecol. Evol. Syst. 40, 245–269 (2009).
    Google Scholar 
    MacArthur, R. H. Patterns of communities in the tropics. Biol. J. Linn. Soc. 1, 19–30 (1969).
    Google Scholar 
    Hadfield, J. D. & Nakagawa, S. General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi-trait models for continuous and categorical characters. J. Evol. Biol. 23, 494–508 (2010).CAS 

    Google Scholar 
    Cooney, C. R. et al. Sexual selection predicts the rate and direction of colour divergence in a large avian radiation. Nat. Commun. 10, 1773 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Cooney, C. R., MacGregor, H. E. A., Seddon, N. & Tobias, J. A. Multi-modal signal evolution in birds: re-assessing a standard proxy for sexual selection. Proc. R. Soc. B 285, 20181557 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    van der Bijl, W. et al. Butterfly dichromatism primarily evolved via Darwin’s, not Wallace’s, model. Evol. Lett. 4, 545–555 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Darwin, C. R. The Descent of Man, and Selection in Relation to Sex (John Murray, 1871).Tobias, J. A., Montgomerie, R. & Lyon, B. E. The evolution of female ornaments and weaponry: social selection, sexual selection and ecological competition. Phil. Trans. R. Soc. B 367, 2274–2293 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Galván, I., Negro, J. J., Rodríguez, A. & Carrascal, L. M. On showy dwarfs and sober giants: body size as a constraint for the evolution of bird plumage colouration. Acta Ornithol. 48, 65–80 (2013).
    Google Scholar 
    Kiltie, R. A. Scaling of visual acuity with body size in mammals and birds. Funct. Ecol. 14, 226–234 (2000).
    Google Scholar 
    Zahavi, A. & Zahavi, A. The Handicap Principle (Oxford Univ. Press, 1997).Badyaev, A. V. & Hill, G. E. Avian sexual dichromatism in relation to phylogeny and ecology. Annu. Rev. Ecol. Evol. Syst. 34, 27–49 (2003).
    Google Scholar 
    Simpson, R. K., Johnson, M. A. & Murphy, T. G. Migration and the evolution of sexual dichromatism: evolutionary loss of female coloration with migration among wood-warblers. Proc. R. Soc. B 282, 20150375 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Helferich, G. Humboldt’s Cosmos (Tantor eBooks, 2011).Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    He, Y. et al. Segmenting biological specimens from photos to understand the evolution of UV plumage in passerine birds. Preprint at bioRxiv https://doi.org/10.1101/2021.07.22.453339 (2021).Chen, L. C., Zhu, Y., Papandreou, G., Schroff, F. & Adam, H. Encoder–decoder with atrous separable convolution for semantic image segmentation. Preprint at arXiv https://doi.org/10.48550/arXiv.1802.02611 (2018).Hussein, B. R., Malik, O. A., Ong, W.-H. & Slik, J. W. F. in Computational Science and Technology Lecture Notes in Electrical Engineering (eds Alfred, R. et al.) 321–330 (Springer Singapore, 2020).Troscianko, J. & Stevens, M. Image calibration and analysis toolbox—a free software suite for objectively measuring reflectance, colour and pattern. Methods Ecol. Evol. 6, 1320–1331 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Hijmans, R. J. raster: Geographic Data Analysis and Modeling. R package version 3.5-15 https://CRAN.R-project.org/package=raster (2022).Maia, R., Gruson, H., Endler, J. A., White, T. E. & O’Hara, R. B. pavo 2: new tools for the spectral and spatial analysis of colour in R. Methods Ecol. Evol. 10, 1097–1107 (2019).
    Google Scholar 
    Stoddard, M. C. et al. Wild hummingbirds discriminate nonspectral colors. Proc. Natl Acad. Sci. USA 117, 15112–15122 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gomez, D. & Théry, M. Simultaneous crypsis and conspicuousness in color patterns: comparative analysis of a neotropical rainforest bird community. Am. Nat. 169, S42–S61 (2007).
    Google Scholar 
    Blonder, B. Do hypervolumes have holes? Am. Nat. 187, E93–E105 (2016).
    Google Scholar 
    Schliep, K. P. phangorn: phylogenetic analysis in R. Bioinformatics 27, 592–593 (2011).CAS 

    Google Scholar 
    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
    Google Scholar 
    Beckmann, M. et al. glUV: a global UV-B radiation data set for macroecological studies. Methods Ecol. Evol. 5, 372–383 (2014).
    Google Scholar 
    Running, S. W. et al. A continuous satellite-derived measure of global terrestrial primary production. Bioscience 54, 547–560 (2004).
    Google Scholar 
    Tobias, J. A. & Pigot, A. L. Integrating behaviour and ecology into global biodiversity conservation strategies. Phil. Trans. R. Soc. B 374, 20190012 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Dunn, P. O., Whittingham, L. A. & Pitcher, T. E. Mating systems, sperm competition, and the evolution of sexual dimorphism in birds. Evolution 55, 161–175 (2001).CAS 

    Google Scholar 
    Bivand, R. S. & Wong, D. W. S. Comparing implementations of global and local indicators of spatial association. TEST 27, 716–748 (2018).
    Google Scholar 
    Hawkins, B. A. et al. Structural bias in aggregated species-level variables driven by repeated species co-occurrences: a pervasive problem in community and assemblage data. J. Biogeogr. 44, 1199–1211 (2017).
    Google Scholar 
    Hadfield, J. D. MCMC methods for multi-response generalised linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).
    Google Scholar 
    Healy, K. et al. Ecology and mode-of-life explain lifespan variation in birds and mammals. Proc. R. Soc. B 281, 20140298 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021); https://www.R-project.org/ More

  • in

    Biological trade-offs underpin coral reef ecosystem functioning

    Welti, N. et al. Bridging food webs, ecosystem metabolism, and biogeochemistry using ecological stoichiometry theory. Front. Microbiol. 8, 1298 (2017).Article 

    Google Scholar 
    Ceballos, G. et al. Accelerated modern human-induced species losses: entering the sixth mass extinction. Sci. Adv. 1, e14002 (2015).Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).CAS 
    Article 

    Google Scholar 
    Pauly, D. et al. Towards sustainability in world fisheries. Nature 418, 689–695 (2002).Bellwood, D. R., Streit, R. P., Brandl, S. J. & Tebbett, S. B. The meaning of the term ‘function’ in ecology: a coral reef perspective. Funct. Ecol. 33, 948–961 (2019).Williams, G. J. et al. Coral reef ecology in the Anthropocene. Funct. Ecol. 33, 1014–1022 (2019).Article 

    Google Scholar 
    Brandl, S. J. et al. Coral reef ecosystem functioning: eight core processes and the role of biodiversity. Front. Ecol. Environ. 17, 445–454 (2019).Article 

    Google Scholar 
    Cinner, J. E. et al. Meeting fisheries, ecosystem function, and biodiversity goals in a human-dominated world. Science 368, 307–311 (2020).CAS 
    Article 

    Google Scholar 
    Mouillot, D. et al. Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs. Proc. Natl Acad. Sci. USA 111, 13757–13762 (2014).CAS 
    Article 

    Google Scholar 
    Mora, C. et al. Global human footprint on the linkage between biodiversity and ecosystem functioning in reef fishes. PLoS Biol. 9, e1000606 (2011).CAS 
    Article 

    Google Scholar 
    Barneche, D. R. et al. Scaling metabolism from individuals to reef-fish communities at broad spatial scales. Ecol. Lett. 17, 1067–1076 (2014).CAS 
    Article 

    Google Scholar 
    McIntyre, P. B. et al. Fish distributions and nutrient cycling in streams: can fish create biogeochemical hotspots? Ecology 89, 2335–2346 (2008).Article 

    Google Scholar 
    Allgeier, J. E., Layman, C. A., Mumby, P. J. & Rosemond, A. D. Consistent nutrient storage and supply mediated by diverse fish communities in coral reef ecosystems. Glob. Change Biol. 20, 2459–2472 (2014).Article 

    Google Scholar 
    Morais, R. A. & Bellwood, D. R. Pelagic subsidies underpin fish productivity on a degraded coral reef. Curr. Biol. 29, 1521–1527.e6 (2019).CAS 
    Article 

    Google Scholar 
    Morais, R. A., Connolly, S. R. & Bellwood, D. R. Human exploitation shapes productivity–biomass relationships on coral reefs. Glob. Change Biol. 26, 1295–1305 (2020).Article 

    Google Scholar 
    Barneche, D. R. et al. Body size, reef area and temperature predict global reef-fish species richness across spatial scales. Glob. Ecol. Biogeogr. 28, 315–327 (2019).Article 

    Google Scholar 
    Schiettekatte, N. M. D. et al. Nutrient limitation, bioenergetics and stoichiometry: a new model to predict elemental fluxes mediated by fishes. Funct. Ecol. 34, 1857–1869 (2020).Article 

    Google Scholar 
    Schramski, J. R., Dell, A. I., Grady, J. M., Sibly, R. M. & Brown, J. H. Metabolic theory predicts whole-ecosystem properties. Proc. Natl Acad. Sci. USA 112, 2617–2622 (2015).CAS 
    Article 

    Google Scholar 
    Morais, R. A. & Bellwood, D. R. Global drivers of reef fish growth. Fish Fish. 19, 874–889 (2018).Article 

    Google Scholar 
    Hood, J. M., Vanni, M. J. & Flecker, A. S. Nutrient recycling by two phosphorus-rich grazing catfish: the potential for phosphorus-limitation of fish growth. Oecologia 146, 247–257 (2005).Article 

    Google Scholar 
    Barneche, D. R. & Allen, A. P. The energetics of fish growth and how it constrains food-web trophic structure. Ecol. Lett. 21, 836–844 (2018).Article 

    Google Scholar 
    Brandl, S. J. et al. Demographic dynamics of the smallest marine vertebrates fuel coral reef ecosystem functioning. Science 364, 1189–1192 (2019).CAS 
    Article 

    Google Scholar 
    Lefcheck, J. S. et al. Tropical fish diversity enhances coral reef functioning across multiple scales. Sci. Adv. 5, eaav6420 (2019).Topor, Z. M., Rasher, D. B., Duffy, J. E. & Brandl, S. J. Marine protected areas enhance coral reef functioning by promoting fish biodiversity. Conserv. Lett. 12, e12638 (2019).Article 

    Google Scholar 
    Bellwood, D. R., Hughes, T. P. & Hoey, A. S. Sleeping functional group drives coral-reef recovery. Curr. Biol. 16, 2434–2439 (2006).CAS 
    Article 

    Google Scholar 
    Darling, E. S. & D’agata, S. Coral reefs: fishing for sustainability. Curr. Biol. 27, R65–R68 (2017).CAS 
    Article 

    Google Scholar 
    Graham, N. A. J. et al. Human disruption of coral reef trophic structure. Curr. Biol. 27, 231–236 (2017).CAS 
    Article 

    Google Scholar 
    Graham, N. A. J. et al. Dynamic fragility of oceanic coral reef ecosystems. Proc. Natl Acad. Sci. USA 103, 8425–8429 (2006).CAS 
    Article 

    Google Scholar 
    Stuart-Smith, R. D., Brown, C. J., Ceccarelli, D. M. & Edgar, G. J. Ecosystem restructuring along the great barrier reef following mass coral bleaching. Nature 560, 92–96 (2018).CAS 
    Article 

    Google Scholar 
    Burkepile, D. E. et al. Nutrient supply from fishes facilitates macroalgae and suppresses corals in a Caribbean coral reef ecosystem. Sci. Rep. 3, 1493 (2013).CAS 
    Article 

    Google Scholar 
    Graham, N. A. J. et al. Changing role of coral reef marine reserves in a warming climate. Nat. Commun. 11, 2000 (2020).Reynolds, R. W. et al. Daily high-resolution-blended analyses for sea surface temperature. J. Clim. 20, 5473–5496 (2007).Article 

    Google Scholar 
    Froese, R., Thorson, J. T. & Reyes, R. B. A Bayesian approach for estimating length–weight relationships in fishes. J. Appl. Ichthyol. 30, 78–85 (2014).Article 

    Google Scholar 
    Froese, R. & Pauly, D. FishBase (2018); https://www.fishbase.in/home.htmParravicini, V. et al. Delineating reef fish trophic guilds with global gut content data synthesis and phylogeny. PLoS Biol. 18, e3000702 (2020).CAS 
    Article 

    Google Scholar 
    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).Article 

    Google Scholar 
    Bürkner, P.-C. brms: an R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).Article 

    Google Scholar 
    Carpenter, B. et al. Stan: a probabilistic programming language. J. Stat. Softw. 76, 1–31 (2017).Article 

    Google Scholar  More

  • in

    Towards climate-smart, three-dimensional protected areas for biodiversity conservation in the high seas

    Levin, L. A. & Le Bris, N. The deep ocean under climate change. Science 350, 766–768 (2015).CAS 

    Google Scholar 
    Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).
    Google Scholar 
    Roberts, C. M. et al. Marine reserves can mitigate and promote adaptation to climate change. Proc. Natl Acad. Sci. USA 114, 6167–6175 (2017).CAS 

    Google Scholar 
    Davies, T. E., Maxwell, S. M., Kaschner, K., Garilao, C. & Ban, N. C. Large marine protected areas represent biodiversity now and under climate change. Sci. Rep. 7, 9569 (2017).CAS 

    Google Scholar 
    Bates, A. E. et al. Climate resilience in marine protected areas and the ‘protection paradox’. Biol. Conserv. 236, 305–314 (2019).
    Google Scholar 
    Costello, M. J. & Ballantine, B. Biodiversity conservation should focus on no-take marine reserves: 94% of marine protected areas allow fishing. Trends Ecol. Evol. 30, 507–509 (2015).
    Google Scholar 
    Ballantine, B. Fifty years on: lessons from marine reserves in New Zealand and principles for a worldwide network. Biol. Conserv. 176, 297–307 (2014).
    Google Scholar 
    Lester, S. E. et al. Biological effects within no-take marine reserves: a global synthesis. Mar. Ecol. Prog. Ser. 384, 33–46 (2009).
    Google Scholar 
    Jones, K. R., Watson, J. E. M., Possingham, H. P. & Klein, C. J. Incorporating climate change into spatial conservation prioritisation: a review. Biol. Conserv. 194, 121–130 (2016).
    Google Scholar 
    Grorud-Colvert, K. et al. The MPA Guide: a framework to achieve global goals for the ocean. Science 373, eabf0861 (2021).CAS 

    Google Scholar 
    McLeod, E. et al. Integrating climate and ocean change vulnerability into conservation planning. Coast. Manage. 40, 651–672 (2012).
    Google Scholar 
    Magris, R. A. et al. A blueprint for securing Brazil’s marine biodiversity and supporting the achievement of global conservation goals. Divers. Distrib. 27, 198–215 (2021).
    Google Scholar 
    Brito-Morales, I. et al. Climate velocity reveals increasing exposure of deep-ocean biodiversity to future warming. Nat. Clim. Change 10, 576–581 (2020).CAS 

    Google Scholar 
    Tittensor, D. P. et al. Integrating climate adaptation and biodiversity conservation in the global ocean. Sci. Adv. 5, eaay9969 (2019).
    Google Scholar 
    Burrows, M. T. et al. The pace of shifting climate in marine and terrestrial ecosystems. Science 334, 652–655 (2011).CAS 

    Google Scholar 
    Burrows, M. T. et al. Geographical limits to species-range shifts are suggested by climate velocity. Nature 507, 492–495 (2014).CAS 

    Google Scholar 
    Chaudhary, C., Richardson, A. J., Schoeman, D. S. & Costello, M. J. Global warming is causing a more pronounced dip inmarine species richness around the Equator. Proc. Natl Acad. Sci. USA 118, e2015094118 (2021).CAS 

    Google Scholar 
    Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).
    Google Scholar 
    Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3, 919–925 (2013).
    Google Scholar 
    Levin, N., Kark, S. & Danovaro, R. Adding the third dimension to marine conservation. Conserv. Lett. 11, e12408 (2018).
    Google Scholar 
    O’Leary, B. C. & Roberts, C. M. Ecological connectivity across ocean depths: implications for protected area design. Glob. Ecol. Conserv. 15, e00431 (2018).
    Google Scholar 
    Game, E. T. et al. Pelagic protected areas: the missing dimension in ocean conservation. Trends Ecol. Evol. 24, 360–369 (2009).
    Google Scholar 
    Protected Planet Report 2020 (UNEP-WCMC and IUCN, 2021); https://livereport.protectedplanet.net/Wright, G. et al. Marine spatial planning in areas beyond national jurisdiction. Mar. Policy 132, 103384 (2021).
    Google Scholar 
    Zero Draft of the Post-2020 Global Biodiversity Framework (Convention on Biological Diversity, 2020).Dunn, D. C. et al. The Convention on Biological Diversity’s ecologically or biologically significant areas: origins, development, and current status. Mar. Policy 49, 137–145 (2014).
    Google Scholar 
    Claudet, J., Loiseau, C., Sostres, M. & Zupan, M. Underprotected marine protected areas in a global biodiversity hotspot. One Earth 2, 380–384 (2020).
    Google Scholar 
    Bruno, J. F. et al. Climate change threatens the world’s marine protected areas. Nat. Clim. Change 8, 499–503 (2018).
    Google Scholar 
    Arafeh-Dalmau, N. et al. Incorporating climate velocity into the design of climate-smart networks of marine protected areas. Methods Ecol. Evol. 12, 1969–1983 (2021).
    Google Scholar 
    García Molinos, J. et al. Climate velocity and the future global redistribution of marine biodiversity. Nat. Clim. Change 6, 83–88 (2016).
    Google Scholar 
    Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L. & Levin, S. A. Marine taxa track local climate velocities. Science 341, 1239–1242 (2013).CAS 

    Google Scholar 
    Tittensor, D. P. et al. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101 (2010).CAS 

    Google Scholar 
    Richardson, A. J. In hot water: zooplankton and climate change. ICES J. Mar. Sci. 65, 279–295 (2008).
    Google Scholar 
    Brito-Morales, I. et al. Climate velocity can inform conservation in a warming world. Trends Ecol. Evol. 33, 441–457 (2018).
    Google Scholar 
    Jones, K. R. et al. Area requirements to safeguard Earth’s marine species. One Earth 2, 188–196 (2020).
    Google Scholar 
    Ortuño Crespo, G. & Dunn, D. C. A review of the impacts of fisheries on open-ocean ecosystems. ICES J. Mar. Sci. 74, 2283–2297 (2017).
    Google Scholar 
    Watson, R. A. A database of global marine commercial, small-scale, illegal and unreported fisheries catch 1950–2014. Sci. Data 4, 170039 (2017).
    Google Scholar 
    Hanson, J. O. et al. prioritizr: Systematic Conservation Prioritization in R. R package version 5.0 (2021).Visalli, M. E. et al. Data-driven approach for highlighting priority areas for protection in marine areas beyond national jurisdiction. Mar. Policy 122, 103927 (2020).
    Google Scholar 
    Dunn, D. C. et al. A strategy for the conservation of biodiversity on mid-ocean ridges from deep-sea mining. Sci. Adv. 4, eaar4313 (2018).
    Google Scholar 
    Irigoien, X. et al. Large mesopelagic fishes biomass and trophic efficiency in the open ocean. Nat. Commun. 5, 3271 (2014).
    Google Scholar 
    Costello, M. J. & Chaudhary, C. Marine biodiversity, biogeography, deep-sea gradients, and conservation. Curr. Biol. 27, R511–R527 (2017).CAS 

    Google Scholar 
    Venegas-Li, R., Levin, N., Possingham, H. & Kark, S. 3D spatial conservation prioritisation: accounting for depth in marine environments. Methods Ecol. Evol. 9, 773–784 (2018).
    Google Scholar 
    Menini, E. & Van Dover, C. L. An atlas of protected hydrothermal vents. Mar. Policy 108, 103654 (2019).
    Google Scholar 
    Crespo, G. O. et al. High-seas fish biodiversity is slipping through the governance net. Nat. Ecol. Evol. 3, 1273–1276 (2019).
    Google Scholar 
    Hanson, J. O. et al. Global conservation of species’ niches. Nature 580, 232–234 (2020).CAS 

    Google Scholar 
    Barton, A. D. et al. The biogeography of marine plankton traits. Ecol. Lett. 16, 522–534 (2013).
    Google Scholar 
    Tittensor, D. P. et al. Next-generation ensemble projections reveal higher climate risks for marine ecosystems. Nat. Clim. Change 11, 973–981 (2021).
    Google Scholar 
    Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L. & Sunday, J. M. Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature 569, 108–111 (2019).CAS 

    Google Scholar 
    Daigle, R. M. et al. Operationalizing ecological connectivity in spatial conservation planning with Marxan Connect. Methods Ecol. Evol. 11, 570–579 (2020).
    Google Scholar 
    Fredston-Hermann, A., Gaines, S. D. & Halpern, B. S. Biogeographic constraints to marine conservation in a changing climate. Ann. N. Y. Acad. Sci. 1429, 5–17 (2018).
    Google Scholar 
    Cashion, T. et al. Shifting seas, shifting boundaries: dynamic marine protected area designs for a changing climate. PLoS ONE 15, e0241771 (2020).CAS 

    Google Scholar 
    Ortuño Crespo, G. et al. Beyond static spatial management: scientific and legal considerations for dynamic management in the high seas. Mar. Policy 122, 104102 (2020).
    Google Scholar 
    Levin, L. A., Amon, D. J. & Lily, H. Challenges to the sustainability of deep-seabed mining. Nat. Sustain. 3, 784–794 (2020).
    Google Scholar 
    Levin, L. A. et al. Climate change considerations are fundamental to management of deep-sea resource extraction. Glob. Change Biol. 26, 4664–4678 (2020).
    Google Scholar 
    Morato, T., Watson, R., Pitcher, T. J. & Pauly, D. Fishing down the deep. Fish Fish. 7, 24–34 (2006).
    Google Scholar 
    Rogers, A. D. & Gianni, M. Implementation of UNGA Resolutions 61/105 and 64/72 in the Management of Deep-Sea Fisheries on the High Seas (DIANE, 2011).Bailey, D. M., Collins, M. A., Gordon, J. D. M., Zuur, A. F. & Priede, I. G. Long-term changes in deep-water fish populations in the Northeast Atlantic: a deeper reaching effect of fisheries? Proc. R. Soc. B 276, 1965–1969 (2009).CAS 

    Google Scholar 
    NOAA National Geophysical Data Center ETOPO1 1 Arc-Minute Global Relief Model (NOAA National Centers for Environmental Information, 2009).O’Neill, B. C. et al. The roads ahead: narratives for Shared Socioeconomic Pathways describing world futures in the 21st century. Glob. Environ. Change 42, 169–180 (2017).
    Google Scholar 
    Vrac, M., Stein, M. L., Hayhoe, K. & Liang, X.-Z. A general method for validating statistical downscaling methods under future climate change. Geophys. Res. 34, L18701 (2007).
    Google Scholar 
    Rogers, A. D. Environmental change in the deep ocean. Annu. Rev. Environ. Resour. 40, 1–38 (2015).
    Google Scholar 
    Sayre, R. G. et al. A three-dimensional mapping of the ocean based on environmental data. Oceanography 30, 90–103 (2017).
    Google Scholar 
    Schulzweida, U. CDO User Guide (Max Planck Institute for Meteorology, 2019).R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).Mumby, P. J. et al. Reserve design for uncertain responses of coral reefs to climate change. Ecol. Lett. 14, 132–140 (2011).
    Google Scholar 
    Magris, R. A., Heron, S. F. & Pressey, R. L. Conservation planning for coral reefs accounting for climate warming disturbances. PLoS ONE 10, e0140828 (2015).
    Google Scholar 
    Chollett, I., Enríquez, S. & Mumby, P. J. Redefining thermal regimes to design reserves for coral reefs in the face of climate change. PLoS ONE 9, e110634 (2014).
    Google Scholar 
    Sala, E. et al. Protecting the global ocean for biodiversity, food and climate. Nature 592, 397–402 (2021).CAS 

    Google Scholar 
    García Molinos, J., Schoeman, D. S., Brown, C. J. & Burrows, M. T. VoCC: an R package for calculating the velocity of climate change and related climatic metrics. Methods Ecol. Evol. 10, 2195–2202 (2019).
    Google Scholar 
    Iwamura, T., Wilson, K. A., Venter, O. & Possingham, H. P. A climatic stability approach to prioritizing global conservation investments. PLoS ONE 5, e15103 (2010).CAS 

    Google Scholar 
    Jorda, G. et al. Ocean warming compresses the three-dimensional habitat of marine life. Nat. Ecol. Evol. 4, 109–114 (2020).
    Google Scholar 
    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nat. Clim. Change 2, 686–690 (2012).
    Google Scholar 
    Burrows, M. T. et al. Ocean community warming responses explained by thermal affinities and temperature gradients. Nat. Clim. Change 9, 959–963 (2019).
    Google Scholar 
    Ball, I. R., Possingham, H. P. & Watts, M. in Spatial Conservation Prioritization: Quantitative Methods and Computational Tools (eds Moilanen, A. et al.) Ch. 14 (Oxford Univ. Press, 2009).Asaad, I., Lundquist, C. J., Erdmann, M. V. & Costello, M. J. Ecological criteria to identify areas for biodiversity conservation. Biol. Conserv. 213, 309–316 (2017).
    Google Scholar 
    Kaschner, K. et al. AquaMaps: Predicted Range Maps for Aquatic Species (2019).Harris, P. T., Macmillan-Lawler, M., Rupp, J. & Baker, E. K. Geomorphology of the oceans. Mar. Geol. 352, 4–24 (2014).
    Google Scholar 
    Froese, R. & Pauly, D. FishBase (2021).Palomares, M. L. D. & Pauly, D. SeaLifeBase (2021).Morato, T., Hoyle, S. D., Allain, V. & Nicol, S. J. Seamounts are hotspots of pelagic biodiversity in the open ocean. Proc. Natl Acad. Sci. USA 107, 9707–9711 (2010).CAS 

    Google Scholar 
    Rowden, A. A. et al. A test of the seamount oasis hypothesis: seamounts support higher epibenthic megafaunal biomass than adjacent slopes. Mar. Ecol. 31, 95–106 (2010).
    Google Scholar 
    Devred, E., Sathyendranath, S. & Platt, T. Delineation of ecological provinces using ocean colour radiometry. Mar. Ecol. Prog. Ser. 346, 1–13 (2007).CAS 

    Google Scholar 
    Oliver, M. J. & Irwin, A. J. Objective global ocean biogeographic provinces. Geophys. Res. Lett. 35, L15601 (2008).
    Google Scholar 
    Costello, M. J. et al. Marine biogeographic realms and species endemicity. Nat. Commun. 8, 1057 (2017).
    Google Scholar 
    Sutton, T. T. et al. A global biogeographic classification of the mesopelagic zone. Deep Sea Res. 1 126, 85–102 (2017).
    Google Scholar 
    Global Open Oceans and Deep Seabed (GOODS)—Biogeographic Classification (UNESCO, 2009).Ban, N. C. & Klein, C. J. Spatial socioeconomic data as a cost in systematic marine conservation planning. Conserv. Lett. 2, 206–215 (2009).
    Google Scholar 
    Tai, T. C., Cashion, T., Lam, V. W. Y., Swartz, W. & Sumaila, U. R. Ex-vessel fish price database: disaggregating prices for low-priced species from reduction fisheries. Front. Mar. Sci. 4, 363 (2017).
    Google Scholar 
    Gurobi Optimizer Reference Manual (Gurobi Optimization, 2020).Hanson, J. O., Schuster, R., Strimas-Mackey, M. & Bennett, J. R. Optimality in prioritizing conservation projects. Methods Ecol. Evol. 10, 1655–1663 (2019).
    Google Scholar 
    IUCN Red List of Threatened Species (IUCN, 2020); https://www.iucnredlist.org/enChamberlain, S. rredlist: ‘IUCN’ Red List Client. R package version 0.7.0 (2020).McHugh, M. L. Interrater reliability: the kappa statistic. Biochem. Med. 22, 276–282 (2012).
    Google Scholar 
    Brito-Morales, I. Towards climate-smart, 3-D protected areas for biodiversity conservation in the high seas (v2.0). Zenodo https://doi.org/10.5281/zenodo.5912047 (2022). More

  • in

    Population density, bottom-up and top-down control as an interactive triplet to trigger dispersal

    Nathan, R. The challenges of studying dispersal. Trends. Ecol. Evol. 16, 481–483. https://doi.org/10.1016/S0169-5347(01)02272-8 (2001).CAS 
    Article 

    Google Scholar 
    Bonte, D. et al. Costs of dispersal. Biol. Rev. Camb. Philos. Soc. 87, 290–312. https://doi.org/10.1111/j.1469-185X.2011.00201.x (2012).Article 
    PubMed 

    Google Scholar 
    Matthysen, E. Multicausality of dispersal: A review. In Dispersal Ecology and Evolution (eds Clobert, J. et al.) 3–18 (Oxford University Press, 2012).Chapter 

    Google Scholar 
    Clobert, J., Le Galliard, J.-F., Cote, J., Meylan, S. & Massot, M. Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations. Ecol. Lett. 12, 197–209. https://doi.org/10.1111/j.1461-0248.2008.01267.x (2009).Article 
    PubMed 

    Google Scholar 
    Poethke, H. J. & Hovestadt, T. Evolution of density- and patch-size-dependent dispersal rates. Proc. R. Soc. Lond. 269, 637–645. https://doi.org/10.1098/rspb.2001.1936 (2002).Article 

    Google Scholar 
    Benton, T. G. & Bowler, D. E. Dispersal in invertebrates: Influences on individual decisions. Ecol. Evol. 1, 41–49 (2012).
    Google Scholar 
    Legrand, D. et al. Ranking the ecological causes of dispersal in a butterfly. Ecography 38, 822–831. https://doi.org/10.1111/ecog.01283 (2015).Article 

    Google Scholar 
    Travis, J. M. J., Murrell, D. J. & Dytham, C. The evolution of density–dependent dispersal. Proc. R. Soc. Lond. B 266, 1837–1842. https://doi.org/10.1098/rspb.1999.0854 (1999).Article 

    Google Scholar 
    Matthysen, E. Density-dependent dispersal in birds and mammals. Ecography 28, 403–416. https://doi.org/10.1111/j.0906-7590.2005.04073.x (2005).Article 

    Google Scholar 
    de Meester, N., Derycke, S., Rigaux, A. & Moens, T. Active dispersal is differentially affected by inter- and intraspecific competition in closely related nematode species. Oikos 124, 561–570. https://doi.org/10.1111/oik.01779 (2015).Article 

    Google Scholar 
    Bowler, D. E. & Benton, T. G. Causes and consequences of animal dispersal strategies: Relating individual behaviour to spatial dynamics. Biol. Rev. 80, 205–225. https://doi.org/10.1017/S1464793104006645 (2005).Article 
    PubMed 

    Google Scholar 
    Bengtsson, G., Hedlund, K. & Rundgren, S. Food- and density-dependent dispersal: Evidence from a soil collembolan. J. Anim. Ecol. 63, 513. https://doi.org/10.2307/5218 (1994).Article 

    Google Scholar 
    Fellous, S., Duncan, A., Coulon, A. & Kaltz, O. Quorum sensing and density-dependent dispersal in an aquatic model system. PLoS ONE 7, e48436. https://doi.org/10.1371/journal.pone.0048436 (2012).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aguillon, S. M. & Duckworth, R. A. Kin aggression and resource availability influence phenotype-dependent dispersal in a passerine bird. Behav. Ecol. Sociobiol. 69, 625–633. https://doi.org/10.1007/s00265-015-1873-5 (2015).Article 

    Google Scholar 
    Byers, J. E. Effects of body size and resource availability on dispersal in a native and a non-native estuarine snail. J. Exp. Mar. Biol. Ecol. 248, 133–150. https://doi.org/10.1016/S0022-0981(00)00163-5 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    de Meester, N., Derycke, S. & Moens, T. Differences in time until dispersal between cryptic species of a marine nematode species complex. PLoS ONE 7, e42674. https://doi.org/10.1371/journal.pone.0042674 (2012).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sepulveda, A. J. & Marczak, L. B. Active dispersal of an aquatic invader determined by resource and flow conditions. Biol. Invasions 14, 1201–1209. https://doi.org/10.1007/s10530-011-0149-x (2012).Article 

    Google Scholar 
    Lobbia, P. A. & Mougabure-Cueto, G. Active dispersal in Triatoma infestans (Klug, 1834) (Hemiptera Reduviidae: Triatominae): Effects of nutritional status, the presence of a food source and the toxicological phenotype. Acta Trop. 204, 105345. https://doi.org/10.1016/j.actatropica.2020.105345 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Barbraud, C., Johnson, A. R. & Bertault, G. Phenotypic correlates of post-fledging dispersal in a population of greater flamingos: The importance of body condition. J. Anim. Ecol. 72, 246–257. https://doi.org/10.1046/j.1365-2656.2003.00695.x (2003).Article 

    Google Scholar 
    Bonte, D. & de La Peña, E. Evolution of body condition-dependent dispersal in metapopulations. J. Evol. Biol. 22, 1242–1251. https://doi.org/10.1111/j.1420-9101.2009.01737.x (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Moran, N. P., Sánchez-Tójar, A., Schielzeth, H. & Reinhold, K. Poor nutritional condition promotes high-risk behaviours: A systematic review and meta-analysis. Biol. Rev. Camb. Philos. Soc. 96, 269–288. https://doi.org/10.1111/brv.12655 (2021).Article 
    PubMed 

    Google Scholar 
    Altermatt, F. & Fronhofer, E. A. Dispersal in dendritic networks: Ecological consequences on the spatial distribution of population densities. Freshw. Biol. 63, 22–32. https://doi.org/10.1111/fwb.12951 (2018).Article 

    Google Scholar 
    McCauley, S. J. & Rowe, L. Notonecta exhibit threat-sensitive, predator-induced dispersal. Biol. Lett. 6, 449–452. https://doi.org/10.1098/rsbl.2009.1082 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Baines, C. B., McCauley, S. J. & Rowe, L. Dispersal depends on body condition and predation risk in the semi-aquatic insect, Notonecta undulata. Ecol. Evol. 5, 2307–2316. https://doi.org/10.1002/ece3.1508 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hammill, E., Fitzjohn, R. G. & Srivastava, D. S. Conspecific density modulates the effect of predation on dispersal rates. Oecologia 178, 1149–1158. https://doi.org/10.1007/s00442-015-3303-9 (2015).ADS 
    Article 
    PubMed 

    Google Scholar 
    Fronhofer, E. A. et al. Bottom-up and top-down control of dispersal across major organismal groups. Nat. Ecol. Evol. 2, 1859–1863. https://doi.org/10.1038/s41559-018-0686-0 (2018).Article 
    PubMed 

    Google Scholar 
    Delm, M. Vigilance for predators: Detection and dilution effects. Behav. Ecol. Sociobiol. https://doi.org/10.1007/BF00171099 (1990).Article 

    Google Scholar 
    Matthysen, E. Multicausality of dispersal: A review. Ecol. Evol. 1, 3–18 (2012).
    Google Scholar 
    Bowler, D. E. & Benton, T. G. Variation in dispersal mortality and dispersal propensity among individuals: The effects of age, sex and resource availability. J. Anim. Ecol. 78, 1234–1241. https://doi.org/10.1111/j.1365-2656.2009.01580.x (2009).Article 
    PubMed 

    Google Scholar 
    Giere, O. Meiobenthology. The microscopic motile fauna of aquatic sediments 2nd edn. (Springer, 2009).
    Google Scholar 
    Ptatscheck, C. & Traunspurger, W. The ability to get everywhere: Dispersal modes of free-living, aquatic nematodes. Hydrobiologia 22, 71. https://doi.org/10.1007/s10750-020-04373-0 (2020).Article 

    Google Scholar 
    Ptatscheck, C. & Gansfort, B. Dispersal of free-living nematodes. In Ecology of Freshwater Nematodes (ed. Traunspurger, W.) 151–184 (CABI, 2021).Chapter 

    Google Scholar 
    Traunspurger, W., Bergtold, M., Ettemeyer, A. & Goedkoop, W. Effects of copepods and chironomids on the abundance and vertical distribution of nematodes in a freshwater sediment. J. Freshw. Ecol. 21, 81–90. https://doi.org/10.1080/02705060.2006.9664100 (2006).Article 

    Google Scholar 
    Bargmann, C. I. Chemosensation in C. elegans. WormBook 1, 1–29. https://doi.org/10.1895/wormbook.1.123.1 (2006).Article 

    Google Scholar 
    Chasnov, J. R. & Chow, K. L. Why are there males in the hermaphroditic species Caenorhabditis elegans?. Genetics 160, 983–994 (2002).CAS 
    Article 

    Google Scholar 
    Ramot, D., Johnson, B. E., Berry, T. L., Carnell, L. & Goodman, M. B. The Parallel Worm Tracker: A platform for measuring average speed and drug-induced paralysis in nematodes. PLoS ONE 3, e2208. https://doi.org/10.1371/journal.pone.0002208 (2008).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Muschiol, D. & Traunspurger, W. Life cycle and calculation of the intrinsic rate of natural increase of two bacterivorous nematodes, Panagrolaimus sp. and Poikilolaimus sp. from chemoautotrophic Movile Cave, Romania. Nematology 9, 271–284. https://doi.org/10.1163/156854107780739117 (2007).Article 

    Google Scholar 
    Beier, S., Bolley, M. & Traunspurger, W. Predator-prey interactions between Dugesia gonocephala and free-living nematodes. Freshw. Biol. 49, 77–86. https://doi.org/10.1046/j.1365-2426.2003.01168.x (2004).Article 

    Google Scholar 
    Powers, E. M. & Sayre, R. M. A predacious soil turbellarian that feeds on free-living and plant-parasitic nematodes. Nematology 12, 619–629. https://doi.org/10.1163/187529266X00482 (1966).Article 

    Google Scholar 
    Kreuzinger-Janik, B., Kruscha, S., Majdi, N. & Traunspurger, W. Flatworms like it round: Nematode consumption by Planaria torva (Müller 1774) and Polycelis tenuis (Ijima 1884). Hydrobiologia 819, 231–242. https://doi.org/10.1007/s10750-018-3642-8 (2018).Article 

    Google Scholar 
    Burnham, K. P. & Anderson, D. R. Practical use of the information-theoretic approach. In Model Selection and Inference (eds Burnham, K. P. & Anderson, D. R.) 75–117 (Springer, 1998).Chapter 

    Google Scholar 
    McCulloch, C. E., Searle, S. R. & Neuhaus, J. M. Generalized, Linear, and Mixed Models (Wiley, 2008).MATH 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2021). https://www.R-project.org/.Mazerolle, M. J. AICcmodavg: Model Selection and Multimodel Inference Based on (Q)AIC(c) (2020).Bonte, D., de Roissart, A., Wybouw, N. & van Leeuwen, T. Fitness maximization by dispersal: Evidence from an invasion experiment. Ecology 95, 3104–3111. https://doi.org/10.1890/13-2269.1 (2014).Article 

    Google Scholar 
    You, Y., Kim, J., Raizen, D. M. & Avery, L. Insulin, cGMP, and TGF-beta signals regulate food intake and quiescence in C. elegans: a model for satiety. Cell Metab. 7, 249–257. https://doi.org/10.1016/j.cmet.2008.01.005 (2008).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shtonda, B. B. & Avery, L. Dietary choice behavior in Caenorhabditis elegans. J. Exp. Biol. 209, 89–102. https://doi.org/10.1242/jeb.01955 (2006).Article 
    PubMed 

    Google Scholar 
    Mathieu, J. et al. Habitat quality, conspecific density, and habitat pre-use affect the dispersal behaviour of two earthworm species, Aporrectodea icterica and Dendrobaena veneta, in a mesocosm experiment. Soil Biol. Biochem. 42, 203–209. https://doi.org/10.1016/j.soilbio.2009.10.018 (2010).CAS 
    Article 

    Google Scholar 
    Oro, D., Cam, E., Pradel, R. & Martínez-Abraín, A. Influence of food availability on demography and local population dynamics in a long-lived seabird. Proc. R. Soc. Lond. B 271, 387–396. https://doi.org/10.1098/rspb.2003.2609 (2004).Article 

    Google Scholar 
    Harvey, S. C. Non-dauer larval dispersal in Caenorhabditis elegans. J. Exp. Zool. B Mol. Dev. Evol. 312B, 224–230. https://doi.org/10.1002/jez.b.21287 (2009).Article 
    PubMed 

    Google Scholar 
    Wilden, B., Majdi, N., Kuhlicke, U., Neu, T. R. & Traunspurger, W. Flatworm mucus as the base of a food web. BMC Ecol. 19, 15. https://doi.org/10.1186/s12898-019-0231-2 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gloria-Soria, A. & Azevedo, R. B. R. npr-1 Regulates foraging and dispersal strategies in Caenorhabditis elegans. Curr. Biol. 18, 1694–1699. https://doi.org/10.1016/j.cub.2008.09.043 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Harrison, R. G. Dispersal Polymorphisms in Insects. Annu. Rev. Ecol. Syst. 11, 95–118. https://doi.org/10.1146/annurev.es.11.110180.000523 (1980).Article 

    Google Scholar 
    Denno, R. F. & Peterson, M. A. Density-dependent dispersal and its consequences for population dynamics. Popul Dyn 1, 113–130 (2021).
    Google Scholar 
    Srinivasan, J. et al. A modular library of small molecule signals regulates social behaviors in Caenorhabditis elegans. PLoS Biol. 10, e1001237. https://doi.org/10.1371/journal.pbio.1001237 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bretscher, A. J. et al. Temperature, oxygen, and salt-sensing neurons in C. elegans are carbon dioxide sensors that control avoidance behavior. Neuron 69, 1099–1113. https://doi.org/10.1016/j.neuron.2011.02.023 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Freckman, D. W., Duncan, D. A. & Larson, J. R. Nematode density and biomass in an annual grassland ecosystem. J. Range Manag. 32, 418. https://doi.org/10.2307/3898550 (1979).Article 

    Google Scholar 
    Cote, J. et al. Evolution of dispersal strategies and dispersal syndromes in fragmented landscapes. Ecography 40, 56–73. https://doi.org/10.1111/ecog.02538 (2017).Article 

    Google Scholar  More

  • in

    Black Kites on a flyway between Western Siberia and the Indian Subcontinent

    Ferguson-Lees, J., Christie, D. A. Raptors of the World. Helm Identification Guides (Christopher Helm, London, 2001).
    Google Scholar 
    BirdLife International 2021 Species factsheet: Milvus migrans. Downloaded from http://www.birdlife.org on 10 May 2021.Sergio, F., Pedrini, P. & Marchesi, L. Adaptive selection of foraging and nesting habitat by black kites Milvus migrans and its implications for conservation: a multi-scale approach. Biol. Conserv. 112, 351–362 (2003).
    Google Scholar 
    Tanferna, A., López-Jiménez, L., Blas, J., Hiraldo, F. & Sergio, F. Habitat selection by Black kite breeders and floaters: implications for conservation management of raptor floaters. Biol. Conserv. 160, 1–9 (2013).
    Google Scholar 
    Cortés-Avizanda, A. et al. Spatial heterogeneity in resource distribution promotes facultative sociality in two Trans-Saharan migratory birds. PLoS ONE 6, e21016 (2011).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Panuccio, M., Agostini, N., Mellone. U. & Bogliani, G. Circannual variation in movement patterns of the Black Kite (Milvus migrans migrans): A review. Ethol. Ecol. Evol. 26, 1–18 (2013).Dickinson, E. C. & Remsen, J. V. The Howard and Moore Complete Checklist of the Birds of the World, 4th (Aves Press, 2013).
    Google Scholar 
    Clements, J. F. et al. The eBird/Clements Checklist of Birds of the World: v2019. (2019).Orta, J., Marks, J. S., Garcia, E. & Kirwan, G. M. Black Kite (Milvus migrans). In Birds of the World (eds. Billerman, S.M., Keeney, B.K., Rodewald, P.G. & Schulenberg T.S.) 168–172 (Cornell Lab of Ornithology, 2020).Gill, F., Donsker, D. & Rasmussen, P. IOC World Bird List – version 11.1 (worldbirdnames.org., 2021).Dementiev, G. P., Gladkov, N. A., Ptushenko, E. S., Spangenberg, E. P. & Sudilovskaya, A. M. Birds of the Soviet Union, Vol. 1 (Sovetskaya Nauka, Moscow, in Russian, 1951).
    Google Scholar 
    Stepanyan, L. S. Conspectus of the Ornithological Fauna of the USSR (Nauka, Moscow, in Russian, 1990).Karyakin, I. Problem of identification of Eurasian subspecies of the Black Kite and records of the Pariah Kite in Southern Siberia, Russia. Raptors Conserv. 34, 49–67 (2017).
    Google Scholar 
    Skyrpan, M. & Literák, I. A kite Milvus migrans migrans/lineatus in Ukraine. Biologia 74, 1669–1673 (2019).
    Google Scholar 
    Panter, C. T. et al. Kites (Milvus spp.) wintering on Crete. Eur. Zool. J. 87, 591–596 (2020).
    Google Scholar 
    Skyrpan, M. et al. Kites Milvus migrans lineatus (Milvus migrans migrans/lineatus) are spreading west across Europe. J. Ornithol. 162, 317–323 (2021).
    Google Scholar 
    Onrubia Baticón A. Patrones espacio-temporales de la migración de aves planeadoras en el Estrecho de Gibraltar (Spatial and temporal patterns of soaring birds migration through the straits of Gibraltar). Doctoral thesis (Universidad de León, 2015).Literák, I. et al. Weather-influenced water-crossing behaviour of black kites Milvus migrans during migration. Biologia 76, 1267–1273 (2021).
    Google Scholar 
    Ovčiariková, S. et al. Natal dispersal in Black Kites Milvus migrans migrans in Europe. J. Ornithol. 161, 935–951 (2020).
    Google Scholar 
    Sklyarenko, S., Gavrilov, E. & Gavrilov, A. Migratory flyways of raptors and owls in Kazakhstan according to ringing data. Vogelwarte 41, 263–268 (2002).
    Google Scholar 
    Probst, R. & Pavličev, M. Migration in the Novosibirsk region and the Kuznetsky Alatau, Russia. Sandgrouse 28, 114–118 (2006).
    Google Scholar 
    Harris, T. Migration Hotspots. The World’s Best Bird Migration Sites. (Bloomsbury, London, New Delhi, New York, Sydney, 2013).Hirano, T. & Ueda, M. Black Kite Milvus migrans in Japanese. Bird Res. News 810, 1–6 (2011).
    Google Scholar 
    Choudhuri, A. Migration of Black-eared or Large Indian Kite Milvus migrans lineatus Gray from Mongolia to North-Eastern India. J. Bombay Nat. Hist. Soc. 102, 229–230 (2005).
    Google Scholar 
    Davaasuren, B. Khurkh Bird Ringing Station Annual Report 2018. (Wildlife Science Conservation Center of Mongolia, Ulaanbaatar, 2019).Kumar, N. et al. GPS-telemetry unveils the regular high-elevation crossing of the Himalayan by a migratory raptor: Implications for definition of a “Central Asian Flyway”. Sci. Rep. 10, 15988 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Juhant, M. A. & Bildstein, K. L. Raptor migration across and around the Himalayas. In Bird Migration Across the Himalayas (eds. Prins, H. H. T. & Namgail, T.) 98–116 (Cambridge University Press, Cambridge, 2017).
    Google Scholar 
    Rotics, S. et al. The challenges of the first migration: Movement and behaviour of juvenile vs. adult white storks with insights regarding juvenile mortality. J. Anim. Ecol. 85, 938–947 (2016).PubMed 

    Google Scholar 
    Vidal-Mateo, J. et al. Wind effects on the migration routes of trans-Saharan soaring raptors: Geographical, seasonal and interspecific variation. Curr. Zool. 62, 89–97 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Safi, K. et al. Flying with the wind: Scale dependency of speed and direction measurements in modelling wind support in avian flight. Mov. Ecol. 1, 4 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Green, M., Alerstam, T., Clausen, P., Drent, R. & Ebbinge, B. S. Dark-bellied Brent Geese Branta bernicla bernicla, as recorded by satellite telemetry, do not minimize flight distance during spring migration. Ibis 144, 106–121 (2002).
    Google Scholar 
    Malmiga, G., Nilsson, C., Bäckman, J. & Alerstam, T. Interspecific comparison of the flight performance between sparrowhawks and common buzzards migrating at the Falsterbo peninsula: a radar study. Curr. Zool. 605, 670–679 (2014).
    Google Scholar 
    Vansteelant, W. M. G. et al. Regional and seasonal flight speeds of soaring migrants and the role of weather conditions at hourly and daily scales. J. Avian Biol. 46, 25–39 (2015).
    Google Scholar 
    Dodge, S., Bohrer, G. & Weinzierl, R. MoveBank track annotation project: linking animal movement data with the environment to discover the impact of environmental change in animal migration. In Workshop on GIScience in the Big Data Age in Conjunction with the Seventh International Conference on Geographic Information Science 2012 GIScience (eds. Janowicz, K., Kessler, C., Kauppinen, T. & Kolas, D.) 35–41 (Columbus, OH, 2012).Scott, G. R. et al. How bar-headed geese fly over the Himalayas. Physiology 30, 107–115 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Andreyenkova, N. G., Andreyenkov, O. V., Karyakin, I. V. & Zhimulev, I. F. New haplotypes of the mitochondrial gene cytB in the nesting population of the Siberian Black Kite Milvus migrans lineatus Gray, 1831 in the territory of the Republic of Tyva. Dokl. Biochem. Biophys. 482, 242–244 (2018).CAS 
    PubMed 

    Google Scholar 
    Mellone, U. et al. Interspecific comparison of the performance of soaring migrants in relation to morphology, meteorological conditions and migration strategies. PLoS ONE 7, e39833 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kemp, M. U., Emiel van Loon, E., Shamoun-Baranes, J. & Bouten, W. RNCEP: global weather and climate data at your fingertips. Methods Ecol. Evol. 3, 65–70 (2012).
    Google Scholar 
    Team, R.C. R: A Language and Environment for Statistical Computing. R 739 (Foundation for Statistical Computing [Internet], Vienna, Austria, 2018). https://www.R-project.org/Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Google Scholar 
    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, 2002).MATH 

    Google Scholar 
    Andreyenkova, N. G. et al. Phylogeography and demographic history of the Black Kite Milvus migrans, raptor widespread in Eurasia, Australia and Africa. J. Avian Biol. 52, e02822 (2021).
    Google Scholar 
    Lindholm, A. & Forsten, A. Black Kites Milvus migrans in Russian Altai. Caluta 2, 1–6 (2011).
    Google Scholar 
    Vansteelant, W.M.G. An ontogenetic perspective on migration learning and critical life-history traits in raptors. In Abstracts of British Ornithologists’ Union 2019 Annual Conference Tracking Migration: Drivers, Challenges and Consequences of Seasonal Movements. 45–46. (University of Warwick, UK, 2019).Dixon, A., Rahman, L., Sokolov, A. & Sokolov, V. Peregrine Falcons crossing the „Roof of the World”. In Bird Migration Across the Himalayas, Wetland Functioning Amidst Mountains and Glaciers (eds. Prins, H.T. & Namgail, T.) 128–141 (Cambridge University Press, Cambridge, 2017).Parr, N. et al. High altitude flights by ruddy shelduck Tadorna ferruginea during trans-Himalayan migrations. J. Avian Biol. 48, 1310–1315 (2017).
    Google Scholar 
    Hawkes, L. A. et al. The paradox of extreme high-altitude migration in bar-headed geese Anser indicus. Proc. R. Soc. B 280, 1–8 (2013).
    Google Scholar 
    Bishop, C. M. et al. The roller coaster flight strategy of bar-headed geese conserves energy during Himalayan migrations. Science 347, 250–254 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Agostini, N., Pannucio, M. & Pasquaretta, C. Morphology, flight performace, and water crossing tendencies of Afro-Palearctic raptors during migration. Curr. Zool. 61, 951–958 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Altshuler, D. & Dudley, R. The physiology and biomechanics of avian flight at high altitude. Integr. Comp. Biol. 46, 62–71 (2006).PubMed 

    Google Scholar 
    Santos, C. D. et al. Match between soaring modes of black kites and the fine-scale distribution of updrafts. Sci. Rep. 7, 6421 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ohlmann, K. The wind system in the Himalayas: From a Bird’s-Eye View. In Bird Migration Across the Himalayas, Wetland Functioning Amidst Mountains and Glaciers (eds. Prins, H.T. & Namgail, T.), 9–28 (Cambridge University Press, Cambridge, 2017).Heise, R. Birds, gliders and uplift systems over the Himalayas. In Bird Migration Across the Himalayas, Wetland Functioning Amidst Mountains and Glaciers (eds. Prins, H.T. & Namgail, T.), 229–40 (Cambridge University Press, Cambridge, 2017).Harel, R. et al. Decision-making by a soaring bird: time, energy and risk considerations at different spatiotemporal scales. Philos. T. R. Soc. B 371, 20150397 (2016).
    Google Scholar 
    Vansteelant, W. M. G., Shamoun-Baranes, J., McLaren, J., van Diermen, J. & Bouten, W. Soaring across continents: Decision-making of a soaring migrant under changing atmospheric conditions along an entire flyway. J. Avian Biol. 48, 887–896 (2017).
    Google Scholar 
    Nilsson, C., Klaassen, R. H. G. & Alerstam, T. Differences in speed and duration of bird migration between spring and autumn. Am. Nat. 181, 837–845 (2013).PubMed 

    Google Scholar 
    Kokko, H. Competition for early arrival in migratory birds. J. Anim. Ecol. 68, 940–150 (1999).
    Google Scholar 
    Moore, F.R., Smith, R.J. & Sandberg, R. Stopover ecology of intercontinental migrants: en route problems and consequences for reproductive performance. In Birds of Two Worlds: the Ecology and Evolution of Migration (eds. Greenberg, R. & Marra, P.P.), 251–261 (Johns Hopkins University Press, Baltimore, 2005).McNamara, J. M., Welham, R. K. & Houston, A. I. The timing of migration within the context of an annual routine. J. Avian Biol. 29, 416–423 (1998).
    Google Scholar 
    Köppen, U. et al. Seasonal migrations of four individual bar-headed geese Anser indicus from Kyrgyzstan followed by satellite telemetry. J. Ornithol. 151, 703–712 (2010).
    Google Scholar 
    Kölzsch, A. et al. Towards a new understanding of migration timing: slower spring than autumn migration in geese reflects different decision rules for stopover use and departure. Oikos 125, 1496–1507 (2016).
    Google Scholar 
    Butler, R. W., Williams, T. D., Warnock, N. & Bishop, M. A. Wind assistance: a requirement for migration of shorebirds? Auk 114, 456–466 (1997).
    Google Scholar 
    Santos, C. D., Silva, J. P., Muñoz, A. R., Onrubia, A. & Wikelski, M. The gateway to Africa: What determines sea crossing performance of a migratory soaring birds at the Strait of Gibraltar. J. Anim. Ecol. 89, 1317–1328 (2020).PubMed 

    Google Scholar 
    Kumerloeve, H. V. Überwintern des Schwarzmilans im vorderen Orient. Falke 14, 274–227 (1967).
    Google Scholar 
    Baumgart, W., Kasparek, M. & Stephan, B. Die Vögel Syrien: eine Übersicht (Max Kasparek Verlag, 1995).
    Google Scholar 
    Tsvelykh, A. N. & Panyushkin, V. E. Wintering of the Black Kite Milvus migrans in Ukraine. Vestn. Zool. 36, 81–83 (2002).
    Google Scholar 
    Sarà, M. The colonisation of Sicily by the Black Kite Milvus migrans. J. Raptor Res. 37, 167–172 (2003).
    Google Scholar 
    Domashevskii, S. V. First record of the Black Kite in winter in the northern part of Ukraine. Berkut 18, 212–213 (2009).
    Google Scholar 
    Ciach, M. & Kruszyk, R. Foraging of White Storks Ciconia ciconia on rubbish dumps on nonbreeding grounds. Waterbirds 33, 101–104 (2010).
    Google Scholar 
    Biricik, M. & Karakaş. R. Black Kites Milvus migrans winter in Southeastern Anatolia, Turkey. J. Raptor Res. 45, 370–373 (2011).Literák, I., Horal, D., Alivizatos, H. & Matušík, H. Common wintering of black kites Milvus migrans migrans in Greece, and new data on their wintering elsewhere in Europe. Slovak Raptor J. 11, 91–102 (2017).
    Google Scholar 
    Shirihai, H., Yosef, R., Alon, D., Kirwan, G.M. & Spaar, R. Raptor Migration in Israel and the Middle East (International Birdwatching Centre Eilat IBRCE, IOC, Israel, 2000).Forsman, D. Identification of Black-eared Kite. Bird. World 16, 156–216 (2003).
    Google Scholar 
    Abuladze, A. Birds of Prey of Georgia, Materials towards a Fauna of Georgia, Issue VI (Ilia State University, Tbilisi, 2013).
    Google Scholar 
    Brooke, R. K. The migratory Black Kite Milvus migrans migrans Aves: Accipitridae of the Palearctic in southern Africa. Durb. Mus. Novit. 10, 53–66 (1974).
    Google Scholar 
    Forsman, D. Flight Identifcation of Raptors of Europe (North Africa and the Middle East (Christopher Helm, 2016).
    Google Scholar 
    Percie du Sert, N. et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol. 18, e3000410 (2020). More