More stories

  • in

    Growth-stage-related shifts in diatom endometabolome composition set the stage for bacterial heterotrophy

    Co-culture dynamicsThis study was designed to enhance understanding of metabolite release and utilization across bloom stages in a simple community of phytoplankton and heterotrophic bacteria. The synthetic community was established with the diatom T. pseudonana and the bacterial strains R. pomeroyi DSS-3, Stenotrophomonas sp. SKA14, and P. dokdonensis MED152. These bacterial strains have high genetic similarity to isolates from phytoplankton cultures [14] and represent taxa that are common in phytoplankton blooms. Metabolites derived from the diatom were the sole source of carbon available for the bacteria, since no organic substrates were added. In addition, none of the bacteria can assimilate nitrate, and usable nitrogen was only available as diatom or bacterial extracellular products. The diatom had its highest specific growth rate of 1.65 d−1 during days 0–3, after which the rate declined (Fig. 1A). The total abundance of heterotrophic bacteria increased steadily but there was a succession that favored P. dokdonensis through day 15, and then R. pomeroyi by day 20; Stenotrophomonas disappeared from the model system by day 3 (Fig. 1B). The presence of bacteria did not affect the growth of diatoms based on comparisons of abundance in co-cultures versus axenic cultures at day 15 (Fig. 1A), as has been found previously [14, 26]. Inorganic nutrients were not limiting ( >5 μM at day 15; Table S1).Fig. 1: Time course of microbial abundances.A Cell abundance based on flow cytometric analysis for co-cultures (5 time points) and axenic cultures (day 15 only) (n = 3). The intensive sampling dates for the early and late bloom comparisons are marked with gray boxes. B Mean relative abundance of bacterial species is based on CFUs (n = 3). The day 0 samples were collected 8 h after inoculation.Full size imageDiatom endometabolite shiftsAnalyses focused on the day 3 (early bloom) and day 15 (late bloom) co-culture time points, for which a complete set of metabolomic and transcriptomic data were collected. Twenty-two diatom endometabolites that were annotated with high confidence by NMR analysis (Table S2) and quantified after normalizing to diatom cell number revealed that endometabolome composition differed substantially between bloom stages. Metabolites with significantly different cellular concentrations included nine compounds that were higher in intracellular concentration during the late bloom; these were arginine, valine, lysine, DHPS, glycerol-3-phosphate, phosphorylcholine, DMSP, glycine betaine, and homarine (T-test; P  More

  • in

    Viral diversity is linked to bacterial community composition in alpine stream biofilms

    Viral-like particle abundanceThe 10 sampling sites were equidistantly (average distance: 1.6 km) distributed between 1689 and 717 m above sea level in a 95.7 km2, pristine catchment and covered a flow-connected distance of 14.3 km (Fig. 1, Methods).Fig. 1: No evidence for a downstream accumulation of VLPs.Viral-like particles (VLP) were purified from 10 sites sampled during four seasons along an altitudinal gradient in an alpine stream (Vièze, Switzerland) (a). Neither VLP abundance (b) nor Virus-to-Prokaryote Ratios (VPR; (c)) showed pronounced spatial or temporal trends.Full size imageViral-like particle (VLP) counts normalized to areal coverage of the stream biofilm ranged from 2.8 × 109 to 3.4 × 1010 VLP m−2. On average, VLP abundance was highest in summer with 1.87 ± 0.75 × 1010 VLP m−2; however, there were no statistically significant seasonal differences in VLP abundance (repeated-measures ANOVA, F = 0.87, p = 0.47). VLP numbers did not exhibit a continuous spatial tendency, except during fall when VLP numbers increased significantly with downstream distance (r = 0.81, p 0.7 and/or pident >0.4). Indeed, 90 of the 203 putative viral depolymerases showed significant sequence similarity with 198 vOTU sequences (i.e., 6% of the overall vOTU diversity). We were able to obtain taxonomic classification for 80 of these 198 vOTUs, and found that all large Caudovirales families were represented (i.e., Myoviridae, n = 31, Siphoviridae, n = 17, Podoviridae, n = 15, Autographiviridae, n = 13, Ackermannviridae, n = 2, and Herelleviridae, n = 1). This suggests that depolymerase activity may be widespread among viruses infecting bacteria in stream biofilms. Although both the number of potential depolymerases included in our database and the number of classified vOTUs was limited, we observed that depolymerase-harboring Myoviridae vOTUs corresponded the expectation based on the overall relative abundance of Myoviridae, pointing toward the importance of dispersal for this important viral family. Siphoviridae, in contrast, were relatively underrepresented among depolymerase-harboring vOTUs. In combination with neutral model predictions, this may point towards a fundamental difference between Siphoviridae and Myoviridae in infecting stream biofilm bacteria. While Myoviridae may rather rely on efficiently spreading across distant biofilm patches facilitated by an ability to decompose the EPS matrix, many members of Siphoviridae seem to lack this ability.To investigate our second hypothesis, that lysogeny might be a successful viral life cycle strategy to spread locally within biofilm patches, we used BACPHLIP [36]. BACPHLIP predicted with high probability ( >75%) a lysogenic life cycle for 58 out of 256 complete viral genomes and a lytic life cycle for 177 viral genomes. For the remaining 21 complete viral genomes in our dataset, BACPHLIP did not result in sufficiently high prediction probability (i.e., More

  • in

    Genotype to ecotype in niche environments: adaptation of Arthrobacter to carbon availability and environmental conditions

    Morton JT, Sanders J, Quinn RA, McDonald D, Gonzalez A, Vázquez-Baesa Y, et al. Balance trees reveal microbial niche differentiation. MSystems. 2017;2:e00162–16.Stegen JC, Lin X, Konopka AE, Fredrickson JK. Stochastic and deterministic assembly processes in subsurface microbial communities. ISME J. 2012;6:1653–64.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Salles JF, Poly F, Schmid B, Le Roux X. Community niche predicts the functioning of denitrifying bacterial assemblages. Ecology. 2009;90:3324–32.PubMed 

    Google Scholar 
    Ge X, Thorgersen MP, Poole FL, Deutschbauer AM, Chandonia J-M, Novichov PS, et al. Characterization of a metal-resistant bacillus strain with a high molybdate affinity ModA from contaminated sediments at the Oak Ridge Reservation. Front Microbiol. 2020;11:2543.
    Google Scholar 
    Wiedenbeck J, Cohan FM. Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches. FEMS Microbiol Rev. 2011;35:957–76.CAS 
    PubMed 

    Google Scholar 
    Moon J-W, Paradis CJ, Joyner DC, von Netzer F, Majumder EL, Dixon ER, et al. Characterization of subsurface media from locations up- and down-gradient of a uranium-contaminated aquifer. Chemosphere. 2020;255:126951.CAS 
    PubMed 

    Google Scholar 
    Berkowitz B, Silliman SE, Dunn AM. Impact of the capillary fringe on local flow, chemical migration, and microbiology. Vadose Zo J. 2004;3:534–48.CAS 

    Google Scholar 
    Winter J, Ippisch O, Vogel H-J. Dynamic processes in capillary fringes. Vadose Zo J. 2015;14:1–2.Silliman SE, Berkowitz B, Simunek J, van Genuchten MT. Fluid flow and solute migration within the capillary fringe. Ground Water. 2002;40:76–84.CAS 
    PubMed 

    Google Scholar 
    Haberer CM, Rolle M, Liu S, Cirpka OA, Prathwohl P. A high-resolution non-invasive approach to quantify oxygen transport across the capillary fringe and within the underlying groundwater. J Contam Hydrol. 2011;122:26–39.CAS 
    PubMed 

    Google Scholar 
    Bouskill NJ, Conrad ME, Bill M, Brodie EL, Cheng Y, Hobson C, et al. Evidence for microbial mediated NO3− cycling within floodplain sediments during groundwater fluctuations. Front Earth Sci. 2019;7:189.
    Google Scholar 
    Rühle FA, von Netzer F, Lueders T, Stumpp C. Response of transport parameters and sediment microbiota to water table fluctuations in laboratory columns. Vadose Zo J. 2015;14:vzj2014.09.0116.Aigle A, Prosser JI, Gubry-Rangin C. The application of high-throughput sequencing technology to analysis of amoA phylogeny and environmental niche specialisation of terrestrial bacterial ammonia-oxidisers. Environ Microbiome. 2019;14:3.PubMed 
    PubMed Central 

    Google Scholar 
    Almeida EL, Carrillo Rincón AF, Jackson SA, Dobson ADW. Comparative genomics of marine sponge-derived Streptomyces spp. isolates SM17 and SM18 with their closest terrestrial relatives provides novel insights into environmental niche adaptations and secondary metabolite biosynthesis potential. Front Microbiol. 2019;10:1713.PubMed 
    PubMed Central 

    Google Scholar 
    Scheuerl T, Hopkins M, Nowell RW, Rivett DW, Barraclough TG, Bell T, et al. Bacterial adaptation is constrained in complex communities. Nat Commun. 2020;11:754.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bellanger X, Payot S, Leblond-Bourget N, Guédon G. Conjugative and mobilizable genomic islands in bacteria: evolution and diversity. FEMS Microbiol Rev. 2014;38:720–60.CAS 
    PubMed 

    Google Scholar 
    Harrison E, Brockhurst MA. Plasmid-mediated horizontal gene transfer is a coevolutionary process. Trends Microbiol. 2012;20:262–7.CAS 
    PubMed 

    Google Scholar 
    Wisniewski-Dyé F, Lozano L, Acosta-Cruz E, Borland S, Drogue B, Prigent-Combaret C, et al. Genome sequence of Azospirillum brasilense CBG497 and comparative analyses of Azospirillum core and accessory genomes provide insight into niche adaptation. Genes. 2012;3:576–602.Conn HJ, Dimmick I. Soil bacteria similar in morphology to Mycobacterium and Corynebacterium. J Bacteriol. 1947;54:291–303.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boivin-Jahns V, Bianchi A, Ruimy R, Garcin J, Daumas S, Cristen R, et al. Comparison of phenotypical and molecular methods for the identification of bacterial strains isolated from a deep subsurface environment. Appl Environ Microbiol. 1995;61:3400–6.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rusterholtz KJ, Mallory LM. Density, activity, and diversity of bacteria indigenous to a karstic aquifer. Microb Ecol. 1994;28:79–99.CAS 
    PubMed 

    Google Scholar 
    Eschbach M, Möbitz H, Rompf A, Jahn D. Members of the genus Arthrobacter grow anaerobically using nitrate ammonification and fermentative processes: anaerobic adaptation of aerobic bacteria abundant in soil. FEMS Microbiol Lett. 2003;223:227–30.CAS 
    PubMed 

    Google Scholar 
    Banerjee S, Palit R, Sengupta C, Standing D. Stress induced phosphate solubilization by ’Arthrobacter’ Sp. and ’Bacillus’ sp. isolated from tomato rhizosphere. Aust J Crop Sci. 2010;4:378–83.CAS 

    Google Scholar 
    Keddie RM, Collins D, Jones D. Genus Arthrobacter. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG, editors. Bergey’s manual of systematic bacteriology. Vol 2. Williams and Wilkins: New York, NY. 1986. p. 1288–301.Crocker FH, Fredrickson JK, White DC, Ringelberg DB, Balkwill DL. Phylogenetic and physiological diversity of Arthrobacter strains isolated from unconsolidated subsurface sediments. Microbiology. 2000;146:1295–310.CAS 
    PubMed 

    Google Scholar 
    Baran R, Brodie EL, Mayberry-Lewis J, Hummel E, Da Rocha UN, Chakraborty R, et al. Exometabolite niche partitioning among sympatric soil bacteria. Nat Commun. 2015;6:8289.CAS 
    PubMed 

    Google Scholar 
    Wu X, Spencer S, Gushgari-Doyle S, Yee MO, Voriskova J, Li Y, et al. Culturing of “unculturable” subsurface microbes: natural organic carbon source fuels the growth of diverse and distinct bacteria from groundwater. Front Microbiol. 2020;11:3171.
    Google Scholar 
    Watson DB, Kostka JE, Fields MW, Jardine PM. The Oak Ridge Field Research Center conceptual model. NABIR F. Res. Center: Oak Ridge, TN; 2004.Moon J, Roh Y, Phelps TJ, Phillips DH, Watson DB, Kim Y-J, et al. Physicochemical and mineralogical characterization of soil–saprolite cores from a field research site, Tennessee. J Environ Qual. 2006;35:1731–41.CAS 
    PubMed 

    Google Scholar 
    Wu X, Wu L, Liu Y, Zhang P, Li Q, Zhou J, et al. Microbial interactions with dissolved organic matter drive carbon dynamics and community succession. Front Microbiol. 2018;9:1234.PubMed 
    PubMed Central 

    Google Scholar 
    Chakraborty R, Woo H, Dehal P, Walker R, Zemla M, Auer M, et al. Complete genome sequence of Pseudomonas stutzeri strain RCH2 isolated from a Hexavalent Chromium [Cr(VI)] contaminated site. Stand Genomic Sci. 2017;12:23.PubMed 
    PubMed Central 

    Google Scholar 
    Guttenberger M, Hampp R. Ectomycorrhizins—symbiosis-specific or artifactual polypeptides from ectomycorrhizas? Planta. 1992;188:129–36.CAS 
    PubMed 

    Google Scholar 
    Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol. 2017;13:e1005595.PubMed 
    PubMed Central 

    Google Scholar 
    Hyatt D, Chen G, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics. 2010;11:119.PubMed 
    PubMed Central 

    Google Scholar 
    Cantalapiedra CP, Hernández-Plaza A, Letunic I, Bork P, Huerta-Cepas J. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol Biol Evol. 2021;38:5825–9.Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics. 2013;14:60.PubMed 
    PubMed Central 

    Google Scholar 
    Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res. 2022;50:D801–D807.CAS 
    PubMed 

    Google Scholar 
    Price MN, Deutschbauer AM, Arkin AP. GapMind: automated annotation of amino acid biosynthesis. mSystems. 2020;5:e00291–20.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2018;46:W95–W101.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bertelli C, Laird MR, Wiliams KP, Lau BY, Hoad G, Winsor GL, et al. IslandViewer 4: expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res. 2017;45:W30–W35.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Trifinopoulos J, Nguyen L-T, von Haeseler A, Minh BQ. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016;44:W232–W235.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–66.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Procter JB, Carstairs GM, Soares B, Mourão K, Ofoegbu TC, Barton D, et al. Alignment of biological sequences with Jalview. In: Katoh K Editor. Multiple sequence alignment. Springer, Humana Press: New York, NY. 2021. p. 203–24.Letunic I, Bork P. Interactive Tree of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021;49:W293–6. https://doi.org/10.1093/nar/gkab301.Eren AM, Esen O, Quince C, Vines JH, Horrison HG, Sogin ML, et al. Anvi’o: an advanced analysis and visualization platform for ’omics data. PeerJ. 2015;3:e1319.PubMed 
    PubMed Central 

    Google Scholar 
    Qiong W, Garrity GM, Tiedge JM, Cole JR. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–7.
    Google Scholar 
    Liao J, Guo X, Weller DL, Pollak S, Buckley DH, Wiedmann M, et al. Nationwide genomic atlas of soil-dwelling Listeria reveals effects of selection and population ecology on pangenome evolution. Nat Microbiol. 2021;6:1021–30.CAS 
    PubMed 

    Google Scholar 
    Schwyn B, Neilands JB. Universal chemical assay for detection and determination of siderophores. Anal Biochem. 1987;160:47–56.CAS 
    PubMed 

    Google Scholar 
    Pérez-Miranda S, Cabirol N, George-Téllez R, Zamudio-Rivera LS, Fernandez FJ. O-CAS, a fast and universal method for siderophore detection. J Microbiol Methods. 2007;70:127–31.PubMed 

    Google Scholar 
    Nyyssönen M, Tran HM, Karaoz U, Weihe C, Hadi MZ, Martiny JBH, et al. Coupled high-throughput functional screening and next generation sequencing for identification of plant polymer decomposing enzymes in metagenomic libraries. Front Microbiol. 2013;4:282PubMed 
    PubMed Central 

    Google Scholar 
    Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Gregory Caporaso J, et al. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 2010;4:1340–51.PubMed 

    Google Scholar 
    Oliveira PL, de, Duarte MCT, Ponezi AN, Durrant LR. Purification and partial characterization of manganese peroxidase from Bacillus pumilus and Paenibacillus sp. Braz J Microbiol. 2009;40:818–26.PubMed 
    PubMed Central 

    Google Scholar 
    Varrot A, Yip VLY, Li Y, Rajan SS, Yang X, Anderson WF, et al. NAD+ and metal-ion dependent hydrolysis by family 4 glycosidases: structural insight into specificity for phospho-β-D-glucosides. J Mol Biol.2005;346:423–35.CAS 
    PubMed 

    Google Scholar 
    Lambers H. Introduction: dryland salinity: a key environmental issue in southern Australia. Plant Soil. 2003;257:v–vii.Galinski EA, Trüper HG. Microbial behaviour in salt-stressed ecosystems. FEMS Microbiol Rev. 1994;15:95–108.CAS 

    Google Scholar 
    Korom SF. Natural denitrification in the saturated zone: a review. Water Resour Res. 1992;28:1657–68.CAS 

    Google Scholar 
    Niewerth H, Schuldes J, Parschat K, Kiefer P, Vorholt JA, Daniel R, et al. Complete genome sequence and metabolic potential of the quinaldine-degrading bacterium Arthrobacter sp. Rue61a. BMC Genomics. 2012;13:1–19.
    Google Scholar 
    See-Too W-S, Ee R, Lim Y-L, Convey P, Pearce DA, Mohidin TBM, et al. Complete genome of Arthrobacter alpinus strain R3. 8, bioremediation potential unraveled with genomic analysis. Stand Genomic Sci. 2017;12:1–7.
    Google Scholar 
    Bazhanov DP, Li C, Li H, Li J, Zhang X, Chen X, et al. Occurrence, diversity and community structure of culturable atrazine degraders in industrial and agricultural soils exposed to the herbicide in Shandong Province, PR China. BMC Microbiol. 2016;16:1–21.
    Google Scholar 
    Fan X, Nie MQ, Wang Y, Diwu ZJ, Liu L, Liu Y. Characteristics of the co-metabolism of 1-naphthol by Arthrobacter crystallopoietes NT16 and symbiotic Bacillus NG16. Acta Sci Circumstantiae. 2019;39:1482–8.CAS 

    Google Scholar 
    Nakatsu CH, Barabote R, Thompson S, Bruce D, Detter C, Brettin T, et al. Complete genome sequence of Arthrobacter sp. strain FB24. Stand Genomic Sci. 2013;9:106–16.PubMed 
    PubMed Central 

    Google Scholar 
    Shimasaki T, Masuda S, Garrido-Oter R, Kawasaki T, Aoki Y, Shibata A, et al. Tobacco root endophytic Arthrobacter harbors genomic features enabling the catabolism of host-specific plant specialized metabolites. MBio. 2021;12:e00846–21.CAS 
    PubMed Central 

    Google Scholar 
    Kumar R, Singh D, Swarnkar MK, Singh AK, Kumar S. Complete genome sequence of Arthrobacter alpinus ERGS4: 06, a yellow pigmented bacterium tolerant to cold and radiations isolated from Sikkim Himalaya. J Biotechnol. 2016;220:86–87.CAS 
    PubMed 

    Google Scholar 
    Russell DA, Hatfull GF. Complete genome sequence of Arthrobacter sp. ATCC 21022, a host for bacteriophage discovery. Genome Announc. 2016;4:e00168–16.PubMed 
    PubMed Central 

    Google Scholar 
    Fomenkov A, Akimov VN, Vasilyeva LV, Andersen DT, Vincze T, Roberts RJ, et al. Complete genome and methylome analysis of psychrotrophic bacterial isolates from Lake Untersee in Antarctica. Genome Announc. 2017;5:e01753–16.PubMed 
    PubMed Central 

    Google Scholar 
    Hiraoka S, Machiyama A, Ijichi M, Inoue K, Oshima K, Hattori M, et al. Genomic and metagenomic analysis of microbes in a soil environment affected by the 2011 Great East Japan Earthquake tsunami. BMC Genomics. 2016;17:1–13.
    Google Scholar 
    Han S-R, Kim B, Jang JH, Park H, Oh T-J. Complete genome sequence of Arthrobacter sp. PAMC25564 and its comparative genome analysis for elucidating the role of CAZymes in cold adaptation. BMC Genomics. 2021;22:1–14.
    Google Scholar 
    Koh H-W, Kang M, Lee K, Lee E, Kim H, Park SJ. Arthrobacter dokdonellae sp. nov., isolated from a plant of the genus Campanula. J Microbiol. 2019;57:732–7.CAS 
    PubMed 

    Google Scholar 
    Xu X, Xu M, Zhao Q, Xia Y, Chen C, Shen Z. Complete genome sequence of Cd (II)-resistant Arthrobacter sp. PGP41, a plant growth-promoting bacterium with potential in microbe-assisted phytoremediation. Curr Microbiol. 2018;75:1231–9.CAS 
    PubMed 

    Google Scholar 
    Lee GLY, Ahmad SA, Yasid NA, Zulkharnain A, Convey P, Johari WLW, et al. Biodegradation of phenol by cold-adapted bacteria from Antarctic soils. Polar Biol. 2018;41:553–62.
    Google Scholar 
    Stockdale A, Davison W, Zhang H. Micro-scale biogeochemical heterogeneity in sediments: a review of available technology and observed evidence. Earth-Science Rev. 2009;92:81–97.CAS 

    Google Scholar 
    Whiting AK, Boldt YR, Hendrich MP, Wackett LP, Que L. Manganese (II)-dependent extradiol-cleaving catechol dioxygenase from Arthrobacter globiformis CM-2. Biochemistry. 1996;35:160–70.CAS 
    PubMed 

    Google Scholar 
    Jeng W-Y, Wang M, Lin N, Lin C, Liaw Y, Cheng W, et al. Structural and functional analysis of three β-glucosidases from bacterium Clostridium cellulovorans, fungus Trichoderma reesei and termite Neotermes koshunensis. J Struct Biol. 2011;173:46–56.CAS 
    PubMed 

    Google Scholar 
    Stevenson IL. Utilization of aromatic hydrocarbons by Arthrobacter spp. Can J Microbiol. 1967;13:205–11.CAS 
    PubMed 

    Google Scholar 
    Dsouza M, Taylor MW, Turner SJ, Aislabie J. Genomic and phenotypic insights into the ecology of Arthrobacter from Antarctic soils. BMC Genomics. 2015;16:36.PubMed 
    PubMed Central 

    Google Scholar 
    Taylor R, Cronin A, Pedley S, Barker J, Atkinson T. The implications of groundwater velocity variations on microbial transport and wellhead protection–review of field evidence. FEMS Microbiol Ecol. 2004;49:17–26.CAS 
    PubMed 

    Google Scholar 
    Zhang X, Liu X, Yang F, Chen L. Pan-genome analysis links the hereditary variation of leptospirillum ferriphilum with its evolutionary adaptation. Front Microbiol. 2018;9:577.PubMed 
    PubMed Central 

    Google Scholar 
    Broadbent JR, Neeno-Eckwall EC, Stahl B, Tandee K, Cai H, Morovic W, et al. Analysis of the Lactobacillus casei supragenome and its influence in species evolution and lifestyle adaptation. BMC Genomics. 2012;13:533.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang Y, Sievert S. Pan-genome analyses identify lineage- and niche-specific markers of evolution and adaptation in Epsilonproteobacteria. Front Microbiol. 2014;5:110.PubMed 
    PubMed Central 

    Google Scholar 
    Aminov R. Horizontal gene exchange in environmental microbiota. Front Microbiol. 2011;2:158.PubMed 
    PubMed Central 

    Google Scholar 
    Kothari A, Wu Y, Chandonia J-M, Charrier M, Rajiv L, Rocha AM, et al. Large circular plasmids from groundwater plasmidomes span multiple incompatibility groups and are enriched in multimetal resistance genes. MBio. 2019;10:e02899–18.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Penn K, Jenkins C, Nett M, Udwary DW, Gontang EA, McGlinchey RP, et al. Genomic islands link secondary metabolism to functional adaptation in marine Actinobacteria. ISME J. 2009;3:1193–203.CAS 
    PubMed 

    Google Scholar 
    Wu X, Kazakov AE, Gushgari-Doyle S, Yu X, Trotter V, Stuart RK, et al. Comparative genomics reveals insights into induction of violacein biosynthesis and adaptive evolution in Janthinobacterium. Microbiol Spectr. 2022;9:e01414–e01421.
    Google Scholar 
    Jonkheer EM, Brankovics B, Houwers IM, van der Wolf JM, Bonants PJM, Vreeburg RAM, et al. The Pectobacterium pangenome, with a focus on Pectobacterium brasiliense, shows a robust core and extensive exchange of genes from a shared gene pool. BMC Genomics. 2021;22:265.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Abdel-Glil MY, Rischer U, Steinhagen D, McCarthy U, Neubauer H, Sprague LD. Phylogenetic relatedness and genome structure of Yersinia ruckeri revealed by whole genome sequencing and a comparative analysis. Front Microbiol. 2021;12:782415.González-Dominici LI, Saati-Santamaría Z, García-Fraile P. Genome analysis and genomic comparison of the novel species Arthrobacter ipsi reveal its potential protective role in its bark beetle host. Microb Ecol. 2021;81:471–82.PubMed 

    Google Scholar 
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–D596.CAS 
    PubMed 

    Google Scholar 
    Herrick JB, Stuart-Keil KG, Ghiorse WC, Madsen EL. Natural horizontal transfer of a naphthalene dioxygenase gene between bacteria native to a coal tar-contaminated field site. Appl Environ Microbiol. 1997;63:2330–7.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Griebler C, Lueders T. Microbial biodiversity in groundwater ecosystems. Freshw Biol. 2009;54:649–77.
    Google Scholar  More

  • in

    Gentamicin at sub-inhibitory concentrations selects for antibiotic resistance in the environment

    Kemper N. Veterinary antibiotics in the aquatic and terrestrial environment. Ecol Indic. 2008;8:1–13.CAS 
    Article 

    Google Scholar 
    Jechalke S, Heuer H, Siemens J, Amelung W, Smalla K. Fate and effects of veterinary antibiotics in soil. Trends Microbiol. 2014;22:536–45. Available from: https://doi.org/10.1016/j.tim.2014.05.005.CAS 
    Article 
    PubMed 

    Google Scholar 
    Kalasseril S, Paul R, J RK V, Pillai D. Investigating the impact of hospital antibiotic usage on aquatic environment and aquaculture systems: A molecular study of quinolone resistance in Escherichia coli. Sci Total Environ. 2020;748:141538. Available from: https://doi.org/10.1016/j.scitotenv.2020.141538.CAS 
    Article 

    Google Scholar 
    Ashbolt NJ. Human Health Risk Assessment (HHRA) for Environmental Development and Transfer of Antibiotic Resistance. Environ Health Perspect. 2013;121:993–1002.Article 

    Google Scholar 
    Bengtsson-Palme J, Kristiansson E, Larsson DGJ Environmental factors influencing the development and spread of antibiotic resistance. FEMS Microbiol Rev. 2017;(October 2017):68–80. Available from: http://academic.oup.com/femsre/advance-article/doi/10.1093/femsre/fux053/4563583Manaia CM Assessing the Risk of Antibiotic Resistance Transmission from the Environment to Humans: Non-Direct Proportionality between Abundance and Risk. Vol. 25, Trends in Microbiology. 2017.Manaia CM, Macedo G, Fatta-Kassinos D, Nunes OC. Antibiotic resistance in urban aquatic environments: can it be controlled? Appl Microbiol Biotechnol. 2016;100:1543–57.CAS 
    Article 

    Google Scholar 
    Durso LM, Cook KL. Impacts of antibiotic use in agriculture: what are the benefits and risks? Curr Opin Microbiol. 2014;19:37–44. https://doi.org/10.1016/j.mib.2014.05.019. Available fromArticle 
    PubMed 

    Google Scholar 
    Almakki A, Jumas-Bilak E, Marchandin H, Licznar-Fajardo P. Antibiotic resistance in urban runoff. Sci Total Environ. 2019;667:64–76. https://linkinghub.elsevier.com/retrieve/pii/S0048969719306710.CAS 
    Article 

    Google Scholar 
    Andersson DI, Hughes D. Microbiological effects of sublethal levels of antibiotics. Nat Rev Microbiol. 2014;12:465–78. Available from: https://doi.org/10.1038/nrmicro3270.CAS 
    Article 
    PubMed 

    Google Scholar 
    Gullberg E, Cao S, Berg OG, Ilbäck C, Sandegren L, Hughes D, et al. Selection of resistant bacteria at very low antibiotic concentrations. PLoS Pathog. 2011;7:1–9.Article 

    Google Scholar 
    Murray AK, Zhang L, Yin X, Zhang T, Buckling A, Snape J, et al. Novel insights into selection for antibiotic resistance in complex microbial communities. MBio. 2018;9:1–12. http://mbio.asm.org/lookup/doi/10.1128/mBio.00969-18.CAS 
    Article 

    Google Scholar 
    Chow L, Waldron L, Gillings MR. Potential impacts of aquatic pollutants: sub-clinical antibiotic concentrations induce genome changes and promote antibiotic resistance. Front Microbiol. 2015;6:1–10.
    Google Scholar 
    Bruchmann J, Kirchen S, Schwartz T. Sub-inhibitory concentrations of antibiotics and wastewater influencing biofilm formation and gene expression of multi-resistant Pseudomonas aeruginosa wastewater isolates. Environ Sci Pollut Res. 2013;20:3539–49.CAS 
    Article 

    Google Scholar 
    Gullberg E, Albrecht LM, Karlsson C, Sandegren L, Andersson DI. Selection of a Multidrug Resistance Plasmid by Sublethal Levels of Antibiotics and Heavy Metals. mBio. 2014;5:19–23.Article 

    Google Scholar 
    Choung S, Yun Z, Kwon EE, Cho Y, Ha U-H, Oh J, et al. Transfer of antibiotic resistance plasmids in pure and activated sludge cultures in the presence of environmentally representative micro-contaminant concentrations. Sci Total Environ. 2014;468–469:813–20. https://doi.org/10.1016/j.scitotenv.2013.08.100.CAS 
    Article 
    PubMed 

    Google Scholar 
    Shun-Mei E, Zeng JM, Yuan H, Lu Y, Cai RX, Chen C. Sub-inhibitory concentrations of fluoroquinolones increase conjugation frequency. Microb Pathog. 2018;114:57–62.CAS 
    Article 

    Google Scholar 
    Jutkina J, Rutgersson C, Flach CF, Joakim Larsson DG. An assay for determining minimal concentrations of antibiotics that drive horizontal transfer of resistance. Sci Total Environ. 2016;548–549:131–8. https://doi.org/10.1016/j.scitotenv.2016.01.044.CAS 
    Article 
    PubMed 

    Google Scholar 
    Jutkina J, Marathe NP, Flach CF, Larsson DGJ. Antibiotics and common antibacterial biocides stimulate horizontal transfer of resistance at low concentrations. Sci Total Environ. 2018;616–617:172–8. https://doi.org/10.1016/j.scitotenv.2017.10.312.CAS 
    Article 
    PubMed 

    Google Scholar 
    Murray AK, Zhang L, Yin X, Zhang T, Buckling A, Snape J, et al. Novel insights into selection for antibiotic resistance in complex microbial communities. MBio. 2018;9:1–12.CAS 
    Article 

    Google Scholar 
    Le-minh N, Khan SJ, Drewes JE, Stuetz RM. Fate of antibiotics during municipal water recycling treatment processes. Water Res. 2010;44:4295–323. https://doi.org/10.1016/j.watres.2010.06.020.CAS 
    Article 
    PubMed 

    Google Scholar 
    George J, Halami PM. Sub-inhibitory concentrations of gentamicin triggers the expression of aac(6′)Ie-aph(2″)Ia, chaperons and biofilm related genes in Lactobacillus plantarum MCC 3011. Res Microbiol. 2017;168:722–31. https://doi.org/10.1016/j.resmic.2017.06.002.CAS 
    Article 
    PubMed 

    Google Scholar 
    Zhang AN, Li LG, Ma L, Gillings MR, Tiedje JM, Zhang T. Conserved phylogenetic distribution and limited antibiotic resistance of class 1 integrons revealed by assessing the bacterial genome and plasmid collection. Microbiome. 2018;6:1–14.Article 

    Google Scholar 
    Gillings MR. Integrons: Past, Present, and Future. Microbiol Mol Biol Rev. 2014;78:257–77.Article 

    Google Scholar 
    Guironnet A, Sanchez-Cid C, Vogel TM, Wiest L, Vulliet E Aminoglycosides analysis optimization using Ion pairing Liquid Chromatography coupled to tandem Mass Spectrometry and application on wastewater samples. J Chromatogr. 2021;1651.Muyzer G, Hottentrager S, Teske A, Wawer C Denaturing gradient gel electrophoresis of PCR-amplified 16S rDNA—a new molecular approach to analyse the genetic diversity of mixed microbial communities. In: Akkermans A, van Elsas J, de Bruijn F, editors. Molecular microbial ecology manual. Dordrecht, The Netherlands: Kluwer Academic Publishers; 1995. p. 1–23.Watanabe K, Kodama Y, Harayama S. Design and evaluation of PCR primers to amplify bacterial 16S ribosomal DNA fragments used for community fingerprinting. J Microbiol Methods. 2001;44:253–62.CAS 
    Article 

    Google Scholar 
    Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013;41:1–11.Article 

    Google Scholar 
    Masella AP, Bartram AK, Truszkowski JM, Brown DG, Neufeld JD. PANDAseq: paired-end assembler for illumina sequences. BMC Bioinformatics. 2012;13:31 http://www.biomedcentral.com/1471-2105/13/31.CAS 
    Article 

    Google Scholar 
    Wang Q, Garrity GM, Tiedje JM, Cole JR. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–7.CAS 
    Article 

    Google Scholar 
    Holmes AJ, Gillings MR, Nield BS, Mabbutt BC, Nevalainen KMH, Stokes HW. The gene cassette metagenome is a basic resource for bacterial genome evolution. Environ Microbiol. 2003;5:383–94.CAS 
    Article 

    Google Scholar 
    Gillings MR, Xuejun D, Hardwick SA, Holley MP, Stokes HW. Gene cassettes encoding resistance to quaternary ammonium compounds: a role in the origin of clinical class 1 integrons? ISME J. 2009;3:209–15.CAS 
    Article 

    Google Scholar 
    Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60.CAS 
    Article 

    Google Scholar 
    Minoche AE, Dohm JC, Himmelbauer H Evaluation of genomic high-throughput sequencing data generated on Illumina HiSeq and Genome Analyzer systems. Genome Biol. 2011;12.Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol. 2017;13:1–22.Article 

    Google Scholar 
    Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9. Available from: https://doi.org/10.1038/nmeth.1923.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Eren AM, Esen OC, Quince C, Vineis JH, Morrison HG, Sogin ML, et al. Anvi’o: An advanced analysis and visualization platformfor’omics data. PeerJ. 2015;2015:1–29.
    Google Scholar 
    Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M, Edalatmand A, et al. CARD 2020: Antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 2020;48:D517–25.CAS 
    Article 

    Google Scholar 
    Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, Reddy TBK, et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat Biotechnol. 2017;35:725–31.CAS 
    Article 

    Google Scholar 
    Menzel P, Ng KL, Krogh A Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat Commun. 2016;7.Ramirez SM, Tolmasky EM. Aminoglycoside modifing enzymes. Drug Resist Updat. 2011;13:151–71. Available from: https://doi.org/10.1016/j.drup.2010.08.003.CAS 
    Article 

    Google Scholar 
    Ben Y, Fu C, Hu M, Liu L, Wong MH, Zheng C. Human Health Risk Assessment of Antibiotic Resistance Associated with Antibiotic Residues in the Environment: A Review. Environ Res. 2018;169:483–93. https://www.sciencedirect.com/science/article/pii/S0013935118304298.Article 

    Google Scholar 
    Bengtsson-Palme J, Larsson DGJ. Concentrations of antibiotics predicted to select for resistant bacteria: Proposed limits for environmental regulation. Environ Int. 2016;86:140–9. https://doi.org/10.1016/j.envint.2015.10.015.CAS 
    Article 
    PubMed 

    Google Scholar 
    Sultan I, Rahman S, Jan AT, Siddiqui MT, Mondal AH, Haq QMR Antibiotics, Resistome and Resistance Mechanisms: A Bacterial Perspective. Front Microbiol. 2018;9(September). Available from: https://www.frontiersin.org/article/10.3389/fmicb.2018.02066/fullCasin I, Bordon F, Bertin P, Coutrot A, Podglajen I, Brasseur R, et al. Aminoglycoside 6’-N-acetyltransferase variants of the Ib type with altered substrate profile in clinical isolates of Enterobacter cloacae and Citrobacter freundii. Antimicrob Agents Chemother. 1998;42:209–15.CAS 
    Article 

    Google Scholar 
    Berendonk TU, Manaia CM, Merlin C, Fatta-Kassinos D, Cytryn E, Walsh F, et al. Tackling antibiotic resistance: the environmental framework. Nat Rev Microbiol. 2015;13:310–7.CAS 
    Article 

    Google Scholar 
    Chow LKM, Ghaly TM, Gillings MR. A survey of sub-inhibitory concentrations of antibiotics in the environment. J Environ Sci (China). 2021;99:21–7. https://doi.org/10.1016/j.jes.2020.05.030.Article 

    Google Scholar 
    Gillings MR. Class 1 integrons as invasive species. Curr Opin Microbiol. 2017;38:10–5. https://doi.org/10.1016/j.mib.2017.03.002.CAS 
    Article 
    PubMed 

    Google Scholar 
    Ma L, Li AD, Yin XL, Zhang T. The prevalence of integrons as the carrier of antibiotic resistance genes in natural and man-made environments. Environ Sci Technol. 2017;51:5721–8.CAS 
    Article 

    Google Scholar 
    Gillings M, Boucher Y, Labbate M, Holmes A, Krishnan S, Holley M, et al. The evolution of class 1 integrons and the rise of antibiotic resistance. J Bacteriol. 2008;190:5095–100.CAS 
    Article 

    Google Scholar 
    Bürgmann H, Frigon D, Gaze WH, Manaia CM, Pruden A, Singer AC, et al. Water and sanitation: An essential battlefront in the war on antimicrobial resistance. FEMS Microbiol Ecol. 2018;94.Pena-Miller R, Laehnemann D, Jansen G, Fuentes-Hernandez A, Rosenstiel P, Schulenburg H, et al. When the most potent combination of antibiotics selects for the greatest bacterial load: the smile-frown transition. PLoS Biol. 2013;11:14–6.Article 

    Google Scholar  More

  • in

    Diel activity patterns of two distinct populations of Aedes aegypti in Miami, FL and Brownsville, TX

    Our results show that the average diel activity patterns of Ae. aegypti populations in both Miami, FL and in Brownsville, TX were very similar; they both had two peaks, one in the early morning and the other in the evening, and the average host-seeking peaks are between 7:00 and 8:00 and between 19:00 and 20:00 (Fig. 4). Similar observations were previously reported by several investigators3,4,10,11,12 and the bimodal diel activity pattern is the most frequently reported for Ae. aegypti populations worldwide. However, variations between peak activity have been detected between populations. In East Africa, for instance, Trpis et al.3 reported peak activity at 7:00 and at 19:00, whereas McClelland10 reported peak activity two or three hours after sunrise (9:00 or 10:00) and one or two hours before sunset (17:00 or 16:00). Similarly, in the United States, Smith et al.7 observed a bimodal diel activity pattern for Ae. aegypti, but the evening peak was earlier, between 17:00 and 19:00. Despite these variations, the spacing of the peaks is similar in all these studies despite the fact that these studies were conducted in ecologically and climatically diverse locations.The activity patterns observed at site 3 in Brownsville (Fig. 2) and at site 1 in Miami (Fig. 1) were trimodal. In Brownsville, the trimodal activity peaks were between 6:30 and 7:30, 9:30 and 10:30, and 18:30 and 19:30 (Fig. 2), and in Miami the trimodal peaks were between 7:00 and 8:00, 9:00 and 10:00 and between 19:00 and 20:00 (Fig. 1). Interestingly, the timing of the third peak was similar in both Brownsville site 3 and Miami site 1 suggesting similar underlying factors despite geographic distance, different ecology, and different climate. Brownsville, Texas, is in the Lower Rio Grande Alluvial Floodplain ecoregion. The climate is humid subtropical and urbanization has removed most of the indigenous palm trees and floodplain forests vegetation (https://www.epa.gov/sites/default/files/2018-05/documents/brownsvilletx.pdf). Miami is in the Tropical Florida Ecoregion. Similar to Brownsville, Texas, urbanization and agriculture has replaced most of the indigenous Pine Rockland vegetation. Trimodal biting patterns for Ae. aegypti have been observed before in Trinidad by Chadee and Martinez4, but the middle peak was observed at 11:00 which is half an hour to an hour later than what we observed in Miami and Brownsville, respectively (Figs. 1 and 2). While the morning and evening peaks coincide with human outdoor activity, the middle peak occurs during high heat conditions and the factors that lead to this peak or its importance in the epidemiology of Ae. aegypti-borne arboviral diseases are currently not known. The studies by McClelland13 observed multiple activity peaks in an East African population of Ae. aegypti. The significance of the different activity patterns to the epidemiology of Ae. aegypti-borne arboviral diseases are currently unknown and we think they need more investigation especially since Ae. aegypti-borne arboviral infections have been rising in the recent past14,15.We observed that the host-seeking activity peaks were consistent between 5:45 and 7:30 and between 18:00 and 20:45 (Figs. 1 and 2). These observations are important in planning and conducting control operations directed at the adult Ae. aegypti female populations. During the 2016 Zika outbreak, there was no specific information on the host-seeking activity patterns of Ae. aegypti in Miami Dade County and the adulticide treatment implemented as part of an integrated approach targeted the morning activity16. The integrated approach effectively reduced the vector population and interrupted the transmission of the Zika virus; however, it highlighted the need for site-specific information on the diel activity patterns of Ae. aegypti in Miami Dade County in particular and the CONUS in general. There have been sporadic Ae. aegypti-borne arboviral disease outbreaks in Miami Dade County, FL and the city of Brownsville, TX17,18,19,20,21, in the future we will be better prepared to conduct effective adulticide applications with the current knowledge of the diel activity patterns of Ae. aegypti in these areas. Furthermore, we are now better equipped to educate the public on how to minimize exposure to Ae. aegypti-borne arboviral diseases by avoiding outdoor activities during peak biting activity periods.In our studies, we used BG-Sentinel 2 traps and monitored them every hour, twenty-four hours a day over 96 h, a method with some similarities to that used by Smith et al.7. In the past, diel biting activity studies were carried out using human landing catches following the methods primarily established by Haddow22. To our knowledge, only two studies have previously used sampling procedures not based on human landing catches to study the biting activity patterns of Ae. aegypti; the study by Ortega-Lopez et al.6 used mosquito electrocuting traps, and the study by Smith et al.7 used a mechanical rotator mosquito trap. In the present study, the use of BG-Sentinel II traps had the advantage that it was specifically designed to capture female host-seeking Ae. aegypti8,9. In addition, attached BG-Counter devices can keep track of the number of mosquitoes captured per specified unit time and environmental conditions, and store the information in a cloud server. However, the BG-Sentinel 2 traps collected a wide variety of mosquito species, (Table 1), and to keep track of specific species captured each hour, we had to monitor them every hour.Overall, we present data on the diel activity of Ae. aegypti populations in two cities in the southern United States. In both cities the activity patterns were bimodal; there were peaks of activity in the mornings and the evenings. The significance of these observations is that these peaks can be targeted to improve the effectiveness of adulticide treatments aimed at controlling Ae. aegypti adult populations. Using BG-Sentinel 2 traps eliminates individual variations associated with human landing catches and the associated danger of infections from wild mosquitoes especially during ongoing outbreaks. More

  • in

    An integrative re-evaluation of Typhlatya shrimp within the karst aquifer of the Yucatán Peninsula, Mexico

    Bauer-Gottwein, P. et al. Review: The Yucatán Peninsula karst aquifer, Mexico. Hydrogeol. J. 19, 507–524 (2011).ADS 

    Google Scholar 
    Back, W., Hanshaw, B. B., Herman, J. S. & van Driel, J. N. Differential dissolution of a Pleistocene reef in the ground-water mixing zone of coastal Yucatan, Mexico. Geology 14, 137–140 (1986).ADS 

    Google Scholar 
    Coke, J. G. Underwater caves of the Yucatan Peninsula. In Encyclopedia of Caves (ed. Coke, J. G.) (Elsevier, 2019).
    Google Scholar 
    Smart, P. L. et al. Cave development on the Caribbean coast of the Yucatan Peninsula, Quintana Roo, Mexico. In Perspectives on Karst Geomorphology, Hydrology, and Geochemistry—A Tribute Volume to Derek C. Ford and William B. White Vol. 404 (eds Harmon, R. S. & Wicks, C. M.) (Geological Society of America, 2006).
    Google Scholar 
    Moore, W. S. The subterranean estuary: A reaction zone of ground water and sea water. Mar. Chem. 65, 111 (1999).CAS 

    Google Scholar 
    Moore, W. S. & Joye, S. B. Saltwater intrusion and submarine groundwater discharge: Acceleration of biogeochemical reactions in changing coastal aquifers. Front. Earth Sci. https://doi.org/10.3389/feart.2021.600710 (2021).Article 

    Google Scholar 
    Beddows, P. A., Smart, P. L., Whitaker, F. F. & Smith, S. L. Decoupled fresh-saline groundwater circulation of a coastal carbonate aquifer: Spatial patterns of temperature and specific electrical conductivity. J. Hydrol. 346, 18–32 (2007).ADS 

    Google Scholar 
    Perry, E., Velazquez-Oliman, G. & Marin, L. The Hydrogeochemistry of the Karst aquifer system of the northern Yucatan Peninsula, Mexico. Int. Geol. Rev. 44, 191 (2002).
    Google Scholar 
    Kovacs, S. E. et al. Hurricane ingrid and tropical storm hanna’s effects on the salinity of the coastal aquifer, Quintana Roo, Mexico. J. Hydrol. 551, 703 (2017).ADS 

    Google Scholar 
    Schmitter-Soto, J. J. et al. Hydrogeochemical and biological characteristics of cenotes in the Yucatan Peninsula (SE Mexico). Hydrobiologia 467, 215–228 (2002).CAS 

    Google Scholar 
    Brankovits, D. et al. Methane-and dissolved organic carbon-fueled microbial loop supports a tropical subterranean estuary ecosystem. Nat. Commun. 8, 1–3 (2017).ADS 
    CAS 

    Google Scholar 
    Bishop, R. E. et al. ‘Anchialine’ redefined as a subterranean estuary in a crevicular or cavernous geological setting. J. Crustac. Biol. 35, 511–514 (2015).
    Google Scholar 
    Angyal, D., Simões, N. & Mascaró, M. Uptaded checklist, historical overview and illustrated guide to the stygobiont Malacostraca (Arthropoda: Crustacea) species of Yucatan (Mexico). Subterran. Biol. 36, 83–108 (2020).
    Google Scholar 
    Angyal, D. et al. New distribution records of subterranean crustaceans from cenotes in Yucatan (Mexico). ZooKeys 911, 21–49 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Álvarez, F., Iliffe, T. M., Benítez, S., Brankovits, D. & Villalobos, J. L. New records of anchialine fauna from the Yucatan Peninsula, Mexico. Check List 11, 1–10 (2015).
    Google Scholar 
    van Hengstum, P. J., Cresswell, J. N., Milne, G. A. & Iliffe, T. M. Development of anchialine cave habitats and karst subterranean estuaries since the last ice age. Sci. Rep. 9, 1–10 (2019).
    Google Scholar 
    Holthuis, L. Caridean shrimps found in land-locked saltwater pools at four Indo-West Pacific localities (Sinai Peninsula, Funafuti Atoll, Maui and Hawaii Islands), with the description of one new genus and four new species. Zool. Verhandelingen 128, 1–48 (1973).
    Google Scholar 
    Iliffe, T. M. & Kornicker, L. S. Worldwide diving discoveries of living fossil animals from the depths of anchialine and marine caves. Smithson. Contrib. Mar. Sci. https://doi.org/10.5479/si.01960768.38.1 (2009).Article 

    Google Scholar 
    Calderón-Gutiérrez, F. et al. Mexican anchialine fauna—With emphasis in the high biodiversity cave El Aerolito. Reg. Stud. Mar. Sci. 9, 43–55 (2017).
    Google Scholar 
    Creaser, E. P. Crustaceans from Yucatan. In The Cenotes of Yucatan. A Zoological and Hydrografic Survey (eds Pearse, A. S. et al.) 117–132 (Carnegie Institution of Washington, 1936).
    Google Scholar 
    Botello, A. et al. Historical biogeography and phylogeny of Typhlatya cave shrimps (Decapoda: Atyidae) based on mitochondrial and nuclear data. J. Biogeogr. 40, 594–607 (2013).
    Google Scholar 
    Jurado-Rivera, J. A. et al. Phylogenetic evidence that both ancient vicariance and dispersal have contributed to the biogeographic patterns of anchialine cave shrimps. Sci. Rep. 7, 1–11 (2017).CAS 

    Google Scholar 
    SEMARNAT. Norma Oficial Mexicana NOM-059-SEMARNAT-2010, Protección eigera—Especies nativas de México de flora y fauna silvestres—Categorías de riesgo y especificaciones para su eigera, eigera o cambio—Lista de especies en riesgo. Diario Oficial de la Federación (2010).Hobbs, H. H. III. & Hobbs, H. H. Jr. On the troglobitic shrimps of the Yucatan Peninsula, Mexico (Decapoda: Atyidae and Palaemonidae). Smithson. Contrib. Zool. 240, 1–23 (1976).
    Google Scholar 
    Álvarez, F., Iliffe, T. M. & Villalobos, J. L. New species of the genus Typhlatya (Decapoda: Atyidae) from anchialine caves in Mexico, the Bahamas, and Honduras. J. Crustac. Biol. 25, 81–94 (2005).
    Google Scholar 
    Chace, F. A. & Manning, R. B. Two new caridean shrimps, one representing a new family, from marine pools on Ascension Island (Crustacea: Decapoda: Natantia). Smithson. Contrib. Zool. https://doi.org/10.5479/si.00810282.131 (1972).Article 

    Google Scholar 
    Buhay, J. E. & Crandall, K. A. Taxonomic revision of cave crayfish in the Genus Cambarus, subgenus Aviticambarus (Decapoda: Cambaridae) with descriptions of two new species, C. speleocoopi and C. laconensis, endemic to Alabama, U.S.A.. J. Crustac. Biol. 29, 121 (2009).
    Google Scholar 
    Juan, C., Guzik, M. T., Jaume, D. & Cooper, S. J. B. Evolution in caves: Darwin’s “wrecks of ancient life” in the molecular era. Mol. Ecol. 19, 3865–3880 (2010).PubMed 

    Google Scholar 
    Zakšek, V., Sket, B. & Trontelj, P. Phylogeny of the cave shrimp Troglocaris: Evidence of a young connection between Balkans and Caucasus. Mol. Phylogenet. Evol. 42, 223–235 (2007).PubMed 

    Google Scholar 
    Hunter, R. L., Webb, M. S., Iliffe, T. M. & Alvarado Bremer, J. R. Phylogeny and historical biogeography of the cave-adapted shrimp genus Typhlatya (Atyidae) in the Caribbean Sea and western Atlantic. J. Biogeogr. 35, 65–75 (2008).
    Google Scholar 
    von Rintelen, K. et al. Drawn to the dark side: A molecular phylogeny of freshwater shrimps (Crustacea: Decapoda: Caridea: Atyidae) reveals frequent cave invasions and challenges current taxonomic hypotheses. Mol. Phylogenet. Evol. 63, 82–96 (2012).
    Google Scholar 
    Bracken, H. D., de Grave, S. & Felder, D. L. Phylogeny of the infraorder caridea based on mitochondrial and nuclear genes (Crustacea). In Decapod Crustacean Phylogenetics (eds Martin, J. W. et al.) (Taylor and Francis/CRC Press, 2009).
    Google Scholar 
    Porter, M. L., Pérez-Losada, M. & Crandall, K. A. Model-based multi-locus estimation of decapod phylogeny and divergence times. Mol. Phylogenet. Evol. 37, 355 (2005).CAS 
    PubMed 

    Google Scholar 
    Webb, M. S. Intraspecific Relationships Among the Stygobitic Shrimp, Typhlatya mitchelli, by Analyzing Sequence Data from Mitochondrial DNA (Texas A&M University, 2003).
    Google Scholar 
    Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J. & Wheeler, D. L. GenBank. Nucleic Acids Res. 36, D25 (2007).PubMed 
    PubMed Central 

    Google Scholar 
    Bridge, P. D., Roberts, P. J., Spooner, B. M. & Panchal, G. On the unreliability of published DNA sequences. New Phytol. 160, 43 (2003).CAS 
    PubMed 

    Google Scholar 
    Fritz, U., Vargas-Ramírez, M. & Široký, P. Phylogenetic position of Pelusios williamsi and a critique of current GenBank procedures (Reptilia: Testudines: Pelomedusidae). Amphibia-Reptilia 33, 150 (2012).
    Google Scholar 
    Li, X. et al. Detection of potential problematic Cytb gene sequences of fishes in GenBank. Front. Genet. 9, 30 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Tixier, M.-S., Hernandes, F. A., Guichou, S. & Kreiter, S. The puzzle of DNA sequences of Phytoseiidae (Acari: Mesostigmata) in the public GenBank database. Invertebr. Syst. 25, 389–406 (2011).CAS 

    Google Scholar 
    Vilgalys, R. Taxonomic misidentification in public DNA databases. New Phytol. 160, 4–5 (2003).CAS 
    PubMed 

    Google Scholar 
    Chavez-Diaz, J. M. Variación genética de las especies del genero Typhlatya (Decapoda: Atyidae) en sistemas aquilinos de la eigera de Yucatán, Mexico.Kambesis, P. N. & Coke, J. G. Overview of the controls on Eogenetic Cave and Karst development in Quintana Roo, Mexico. In Coastal Karst Landforms, Coastal Research Library Vol. 5 (eds Lace, M. & Mylroie, J.) (Springer, 2013).
    Google Scholar 
    Benítez, S., Illife, T. M., Quiroz-Martínez, B. & Álvarez, F. How is the anchialine fauna distributed within a cave? A study of the Ox Bel Ha System, Yucatan Peninsula, Mexico. Subterr. Biol. 31, 15–28 (2019).
    Google Scholar 
    Chávez-Solís, E. M., Rosas, C., Rodriguez Fuentes, G. & Mascaró, M. Ecophysiology of cave shrimps (Atyidae: Typhlatya); linking salinity tolerance with distribution patterns in anchialine caves of the Yucatan Peninusla. (In prep).Chávez-Solís, E. M., Solís, C., Simões, N. & Mascaró, M. Distribution patterns, carbon sources and niche partitioning in cave shrimps (Atyidae: Typhlatya). Sci. Rep. 10, 1–16 (2020).
    Google Scholar 
    Sanz, S. & Platvoet, D. New perspectives on the evolution of the genus Typhlatya (Crustacea). Contrib. Zool. 65, 79 (1995).
    Google Scholar 
    Jugovic, J., Prevorčnik, S., Blejec, A. & Sket, B. Morphological differentiation in the cave shrimps Troglocaris (Crustacea: Decapoda: Atyidae) of the Dinaric karst—A consequence of geographical isolation or adaptation?. J. Zool. Syst. Evol. Res. 49, 185–195 (2011).
    Google Scholar 
    Sarda, F. & Demestre, M. Shortening of the Rostrum and Rostral Variability in Aristeus antennatus (Risso, 1816) (Decapoda: Aristeidae). J. Crustac. Biol. 9, 570–577 (1989).
    Google Scholar 
    Martin, J. W. & Wicksten, M. K. Review and redescription of the freshwater atyid shrimp Genus Syncaris Holmes, 1900, in California. J. Crustac. Biol. 24, 447 (2004).
    Google Scholar 
    Chace, F. A. Jr. A new cave shrimp from Cuba. Proc. N. Engl. Zoöl. Club 19, 99–102 (1942).
    Google Scholar 
    Buden, D. W. & Fleder, D. L. Cave shrimps in the Caicos Islands. Proc. Biol. Soc. Wash. 90, 108–115 (1975).
    Google Scholar 
    van Hengstum, P. J., Reinhardt, E. G., Beddows, P. A. & Gabriel, J. J. Environmental reconstruction of a Mexican flooded cave system: Evidence for climate—Forced changes to the local freshwater lens. Quat. Sci. Rev. 29, 2788–2798 (2010).ADS 

    Google Scholar 
    van Hengstum, P. J., Scott, D. B., Gröcke, D. R. & Charette, M. A. Sea level controls sedimentation and environments in coastal caves and sinkholes. Mar. Geol. 286, 35–50 (2011).ADS 

    Google Scholar 
    Gabriel, J. J. et al. Palaeoenvironmental evolution of cenote Aktun Ha (Carwash) on the Yucatan Peninsula, Mexico and its response to eigera sea-level rise. J. Paleolimnol. 42, 199–213 (2009).ADS 

    Google Scholar 
    Moritsch, M. M., Pakes, M. J. & Lindberg, D. R. How might sea level change affect arthropod biodiversity in anchialine caves: A comparison of Remipedia and Atyidae taxa (Arthropoda: Altocrustacea)?. Org. Divers. Evol. 14, 225–235 (2014).
    Google Scholar 
    Mejía-Ortíz, L. M., Pakes, J., Zarza-González, E., Hartnoll, R. G. & López-Mejía, M. Morphological adaptations to anchialine environments in species of five shrimp families (Barbouria yanezi, Agostocaris bozanici, Procaris eigera, Calliasmata nohochi and Typhlatya pearsei). Crustaceana 86(5), 578–593 (2013).
    Google Scholar 
    Pindell, J. L. et al. A plate-kinematic framework for models of Caribbean evolution. Tectonophysics 155, 121 (1988).ADS 

    Google Scholar 
    Pitman, W. C. III., Cande, S. C., LaBrecque, J. & Pindell, J. L. Fragmentation of Gondwana: The separation of Africa from South America. In Biological Relationships Between Africa and South America (ed. Goldblatt, P.) 15–34 (Yale University Press, 1993).
    Google Scholar 
    Chakrabarty, P. Systematics and historical biogeography of Greater Antillean Cichlidae. Mol. Phylogenet. Evol. 39, 619–627 (2006).PubMed 

    Google Scholar 
    Gonzalez, B. C. et al. Genetic spatial structure of an anchialine cave annelid indicates connectivity within—But not between—Islands of the Great Bahama Bank. Mol. Phylogenet. Evol. 109, 259 (2017).PubMed 

    Google Scholar 
    Sommer, M. Late Cretaceous to Miocene Tectonic Reconstruction of the Northwestern Caribbean: Regional Analysis of Cuban Geology (Universität Greifswald, 2009).
    Google Scholar 
    Ramos, E. L. Geological summary of the Yucatan Peninsula. In The Gulf of Mexico and the Caribbean (eds Nairn, A. E. M. & Stehli, F. G.) (Springer, 1975).
    Google Scholar 
    Hart, C. W., Manning, R. B. & Iliffe, T. M. The fauna of Atlantic marine caves: Evidence of dispersal by sea floor spreading while maintaining ties to deep waters. Proc. Biol. Soc. Wash 98, 288–292 (1985).
    Google Scholar 
    Craft, J. D. et al. Islands under islands: The phylogeography and evolution of Halocaridina rubra Holthuis, 1963 (Crustacean: Decapoda: Atyidae) in the Hawaiian archipelago. Limnol. Oceanogr. 53, 675 (2008).ADS 

    Google Scholar 
    Vázquez-Domínguez, E. & Arita, H. T. The Yucatan peninsula: Biogeographical history 65 million years in the making. Ecography 33(2), 212–2019 (2010).
    Google Scholar 
    Quintana Roo Speleological Survey (2022). https://caves.org/project/qrss/qrlong.htm.Sommer, M. Late Cretaceous to Miocene tectonic reconstruction of the northwestern Caribbean: regional analysis of Cuban geology. Universität Greifswald. (2009).Gold, D. P. et al. The biostratigraphic record of Cretaceous to Paleogene tectono-eustatic relative sea-level change in Jamaica. J. S. Am. Earth Sci. https://doi.org/10.1016/j.jsames.2018.06.011 (2018).Article 

    Google Scholar 
    Suárez-Morales, E. Historical biogeography and distribution of the freshwater calanoid copepods (Crustacea: Copepoda) of the Yucatan Peninsula Mexico. J. Biogeogr. 30, 1851 (2003).
    Google Scholar 
    Suarez-Morales, E., Reid, J. W., Fiers, F. & Iliffe, T. M. Historical biogeography and distribution of the freshwater cyclopine copepods (Copepoda, Cyclopoida, Cyclopinae) of the Yucatan Peninsula, Mexico. J. Biogeogr. 31, 1051 (2004).
    Google Scholar 
    Arroyave, J., Martinez, C. M., Martínez-Oriol, F. H., Sosa, E. & Alter, S. E. Regional-scale aquifer hydrogeology as a driver of phylogeographic structure in the Neotropical catfish Rhamdia guatemalensis (Siluriformes: Heptapteridae) from cenotes of the Yucatán Peninsula, Mexico. Freshw. Biol. 66, 332–348 (2021).CAS 

    Google Scholar 
    Guimarais, M. et al. The conservational state of coastal ecosystems on the mexican caribbean coast: Environmental guidelines for their management. Sustainability 13, 2738 (2021).
    Google Scholar 
    Hillebrand, H., Jacob, U. & Leslie, H. M. Integrative research perspectives on marine conservation. Philos. Trans. R. Soc. B 375, 20190444 (2020).
    Google Scholar 
    Price, S. A. & Schmitz, L. A promising future for integrative biodiversity research: an increased role of scale-dependency and functional biology. Philos. Trans. R. Soc. B 371, 20150228 (2016).CAS 

    Google Scholar 
    IUCN 2021. The IUCN Red List of Threatened Species. Version 2021-1 (2021). https://www.iucnredlist.org.Kantun Manzano, C., Arcega-Cabrera, F., Derrien, M., Noreña-Barroso, E. & Herrera-Silveira, J. Submerged groundwater discharges as source of fecal material in protected karstic coastal areas. Geofluids 2018, 1–11 (2018).
    Google Scholar 
    Arcega-Cabrera, F., Velázquez-Tavera, N., Fargher, L., Derrien, M. & Noreña-Barroso, E. Fecal sterols, seasonal variability, and probable sources along the ring of cenotes, Yucatan, Mexico. J. Contam. Hydrol. 168, 41 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Brown, A. L., Reinhardt, E. G., van Hengstum, P. J. & Pilarczyk, J. E. A Coastal Yucatan Sinkhole records intense hurricane events. J. Coast. Res. 294, 418 (2014).
    Google Scholar 
    Graillot, D. et al. Coupling groundwater modeling and biological indicators for identifying river/aquifer exchanges. Springerplus. https://doi.org/10.1186/2193-1801-3-68 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Parmar, T. K., Rawtani, D. & Agrawal, Y. K. Bioindicators: The natural indicator of environmental pollution. Front. Life Sci. 9, 110 (2016).CAS 

    Google Scholar 
    Scheffer, M., Carpenter, S. R., Dakos, V. & van Nes, E. H. Generic indicators of ecological resilience: Inferring the chance of a critical transition. Annu. Rev. Ecol. Evol. Syst. 46, 145 (2015).
    Google Scholar 
    Devitt, T. J., Wright, A. M., Cannatella, D. C. & Hillis, D. M. Species delimitation in endangered groundwater salamanders: Implications for aquifer management and biodiversity conservation. Proc. Natl. Acad. Sci. 116(7), 2624 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Montagna, P. A., Palmer, T. A. & Pollack, J. Hydrological Changes and Estuarine Dynamics. Springerbriefs in Environmental Science Vol. 8 (Springer, 2013).
    Google Scholar 
    Kearse, M. et al. Geneious basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Vaidya, G., Lohman, D. J. & Meier, R. SequenceMatrix: Concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27, 171 (2011).PubMed 

    Google Scholar 
    Katoh, K. & Toh, H. Parallelization of the MAFFT multiple sequence alignment program. Bioinformatics 26, 1899 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Miller, M. A., Pfeiffer, W. & Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In 2010 Gateway Computing Environments Workshop (GCE) (2010). https://doi.org/10.1109/GCE.2010.5676129.Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32(1), 268–274 (2015).CAS 

    Google Scholar 
    Ronquist, F. et al. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using tracer 1.7. Syst. Biol. 67, 901 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rambaut, A. FigTree v1.4.3 (2009). http://tree.bio.ed.ac.uk/software/figtree/.Bouckaert, R. et al. BEAST 2: A software platform for bayesian evolutionary analysis. PLoS Comput. Biol. 10(4), e1003537 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Neall, V. E. & Trewick, S. A. The age and origin of the Pacific islands: A geological overview. Philos. Trans. R. Soc. B Biol. Sci. 363, 3293 (2008).
    Google Scholar 
    Revell, L. J. Phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217 (2012).
    Google Scholar 
    Paradis, E. & Schliep, K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pennell, M. W. et al. geiger v2.0: An expanded suite of methods for fitting macroevolutionary models to phylogenetic trees. Bioinformatics 30, 2216 (2014).CAS 
    PubMed 

    Google Scholar 
    Rstudio Team. Rstudio: Integrated Development for R (Rstudio, 2020).
    Google Scholar 
    Bollback, J. P. SIMMAP: Stochastic character mapping of discrete traits on phylogenies. BMC Bioinform. https://doi.org/10.1186/1471-2105-7-88 (2006).Article 

    Google Scholar 
    QGIS Development Team. Open Source Geospatial Foundation Project (QGIS Geographic Information System, 2020).
    Google Scholar 
    Fujisawa, T. & Barraclough, T. G. Delimiting species using single-locus data and the generalized mixed yule coalescent approach: A revised method and evaluation on simulated data sets. Syst. Biol. 62, 707–724 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Kapli, P. et al. Multi-rate Poisson tree processes for single-locus species delimitation under maximum likelihood and Markov chain Monte Carlo. Bioinformatics 33, 1630–1638 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bouckaert, R. & Drummond, A. bModelTest: Bayesian phylogenetic site model averaging and model comparison. BMC Evol. Biol. 17, 42 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Ezard, T., Fujisawa, T. & Barraclough, T. G. Splits: Species’ Limits by Threshold Statistics. R Package Version 1.11: r29 (2009) More

  • in

    Microbes contribute to setting the ocean carbon flux by altering the fate of sinking particulates

    Martin, J. H., Knauer, G. A., Karl, D. M. & Broenkow, W. W. VERTEX: carbon cycling in the northeast Pacific. Deep Sea Res. Part A. Oceanographic Res. Pap. 34, 267–285 (1987).CAS 

    Google Scholar 
    Gloege, L., McKinley, G. A., Mouw, C. B. & Ciochetto, A. B. Global evaluation of particulate organic carbon flux parameterizations and implications for atmospheric pCO2. Glob. Biogeochemical Cycles 31, 1192–1215 (2017).ADS 
    CAS 

    Google Scholar 
    Guidi, L. et al. A new look at ocean carbon remineralization for estimating deepwater sequestration. Glob. Biogeochemical Cycles 29, 1044–1059 (2015).ADS 
    CAS 

    Google Scholar 
    Marsay, C. M. et al. Attenuation of sinking particulate organic carbon flux through the mesopelagic ocean. PNAS 112, 1089–1094 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Omand, M. M., Govindarajan, R., He, J. & Mahadevan, A. Sinking flux of particulate organic matter in the oceans: Sensitivity to particle characteristics. Sci. Rep. 10, 5582 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aumont, O. et al. Variable reactivity of particulate organic matter in a global ocean biogeochemical model. Biogeosciences 14, 2321–2341 (2017).ADS 
    CAS 

    Google Scholar 
    DeVries, T., Liang, J.-H. & Deutsch, C. A mechanistic particle flux model applied to the oceanic phosphorus cycle. Biogeosciences 11, 5381–5398 (2014).ADS 

    Google Scholar 
    DeVries, T. & Weber, T. The export and fate of organic matter in the ocean: new constraints from combining satellite and oceanographic tracer observations. Glob. Biogeochemical Cycles 31, 535–555 (2017).ADS 
    CAS 

    Google Scholar 
    Kriest, I. & Oschlies, A. On the treatment of particulate organic matter sinking in large-scale models of marine biogeochemical cycles. Biogeosciences 5, 55–72 (2008).ADS 
    CAS 

    Google Scholar 
    Lutz, M., Dunbar, R. & Caldeira, K. Regional variability in the vertical flux of particulate organic carbon in the ocean interior. Glob. Biogeochemical Cycles 16, 11-1–11-18 (2002).
    Google Scholar 
    Pavia, F. J. et al. Shallow particulate organic carbon regeneration in the South Pacific Ocean. PNAS 116, 9753–9758 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Weber, T., Cram, J. A., Leung, S. W., DeVries, T. & Deutsch, C. Deep ocean nutrients imply large latitudinal variation in particle transfer efficiency. Proc. Natl Acad. Sci. USA 113, 8606–8611 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cael, B. B. & Bisson, K. Particle flux parameterizations: quantitative and mechanistic similarities and differences. Front. Mar. Sci. 5, (2018).Cael, B. B. & White, A. E. Sinking versus suspended particle size distributions in the North Pacific Subtropical Gyre. Geophys. Res. Lett. 47, e2020GL087825 (2020).ADS 

    Google Scholar 
    Lam, P. J., Doney, S. C. & Bishop, J. K. B. The dynamic ocean biological pump: Insights from a global compilation of particulate organic carbon, CaCO3, and opal concentration profiles from the mesopelagic. Global Biogeochemical Cycles 25, (2011).Cram, J. A. et al. The role of particle size, ballast, temperature, and oxygen in the sinking flux to the deep sea. Glob. Biogeochemical Cycles 32, 858–876 (2018).ADS 
    CAS 

    Google Scholar 
    Boyd, P. W., Claustre, H., Levy, M., Siegel, D. A. & Weber, T. Multi-faceted particle pumps drive carbon sequestration in the ocean. Nature 568, 327–335 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Boeuf, D. et al. Biological composition and microbial dynamics of sinking particulate organic matter at abyssal depths in the oligotrophic open ocean. PNAS 116, 11824–11832 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grabowski, E., Letelier, R. M., Laws, E. A. & Karl, D. M. Coupling carbon and energy fluxes in the North Pacific Subtropical Gyre. Nat. Commun. 10, 1895 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Karl, D. M., Knauer, G. A. & Martin, J. H. Downward flux of particulate organic matter in the ocean: a particle decomposition paradox. Nature 332, 438–441 (1988).ADS 

    Google Scholar 
    Karl, D. M., Church, M. J., Dore, J. E., Letelier, R. M. & Mahaffey, C. Predictable and efficient carbon sequestration in the North Pacific Ocean supported by symbiotic nitrogen fixation. PNAS 109, 1842–1849 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Church, M. J. et al. Production and diversity of microorganisms associated with sinking particles in the subtropical North Pacific Ocean. Limnol. Oceanogr. 66, 3255–3270 (2021).ADS 
    CAS 

    Google Scholar 
    Briggs, N., Dall’Olmo, G. & Claustre, H. Major role of particle fragmentation in regulating biological sequestration of CO2 by the oceans. Science 367, 791–793 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Cho, B. C. & Azam, F. Major role of bacteria in biogeochemical fluxes in the ocean’s interior. Nature 332, 441–443 (1988).ADS 
    CAS 

    Google Scholar 
    Giering, S. L. C. et al. Reconciliation of the carbon budget in the ocean’s twilight zone. Nature 507, 480–483 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Bianchi, D., Weber, T. S., Kiko, R. & Deutsch, C. Global niche of marine anaerobic metabolisms expanded by particle microenvironments. Nat. Geosci. 11, 263–268 (2018).ADS 
    CAS 

    Google Scholar 
    Cavan, E. L., Henson, S. A. & Boyd, P. W. The sensitivity of subsurface microbes to ocean warming accentuates future declines in particulate carbon export. Front. Ecol. Evol. 6, (2019).McDonnell, A. M. P. & Buesseler, K. O. Variability in the average sinking velocity of marine particles. Limnol. Oceanogr. 55, 2085–2096 (2010).ADS 

    Google Scholar 
    Bendtsen, J., Hilligsøe, K. M., Hansen, J. L. S. & Richardson, K. Analysis of remineralisation, lability, temperature sensitivity and structural composition of organic matter from the upper ocean. Prog. Oceanogr. 130, 125–145 (2015).ADS 

    Google Scholar 
    Steinberg, D. K. et al. Bacterial vs. zooplankton control of sinking particle flux in the ocean’s twilight zone. Limnol. Oceanogr. 53, 1327–1338 (2008).ADS 

    Google Scholar 
    Alcolombri, U. et al. Sinking enhances the degradation of organic particles by marine bacteria. Nat. Geosci. 1–6 https://doi.org/10.1038/s41561-021-00817-x (2021).Biddanda, B. & Pomeroy, L. Microbial aggregation and degradation of phytoplankton-derived detritus in seawater. I. Microbial succession. Mar. Ecol. Prog. Ser. 42, 79–88 (1988).ADS 

    Google Scholar 
    Dilling, L. & Alldredge, A. L. Fragmentation of marine snow by swimming macrozooplankton: a new process impacting carbon cycling in the sea. Deep Sea Res. Part I: Oceanographic Res. 47, 1227–1245 (2000).ADS 
    CAS 

    Google Scholar 
    Buesseler, K. O. & Boyd, P. W. Shedding light on processes that control particle export and flux attenuation in the twilight zone of the open ocean. Limnol. Oceanogr. 54, 1210–1232 (2009).ADS 
    CAS 

    Google Scholar 
    Burd, A. B. & Jackson, G. A. Particle aggregation. Annu. Rev. Mar. Sci. 1, 65–90 (2009).ADS 

    Google Scholar 
    Romero‐Romero, S. et al. Deep zooplankton rely on small particles when particle fluxes are low. Limnol. Oceanogr. Lett. 5, 410–416 (2020).
    Google Scholar 
    Maas, A. E. et al. Migratory zooplankton excreta and its influence on prokaryotic communities. Front. Mar. Sci. 0, (2020).Möller, K. O. et al. Marine snow, zooplankton and thin layers: indications of a trophic link from small-scale sampling with the Video Plankton Recorder. Mar. Ecol. Prog. Ser. 468, 57–69 (2012).ADS 

    Google Scholar 
    Karakaş, G. et al. Impact of particle aggregation on vertical fluxes of organic matter. Prog. Oceanogr. 83, 331–341 (2009).ADS 

    Google Scholar 
    Cavan, E. L., Trimmer, M., Shelley, F. & Sanders, R. Remineralization of particulate organic carbon in an ocean oxygen minimum zone. Nat. Commun. 8, 1–9 (2017).
    Google Scholar 
    Datta, M. S., Sliwerska, E., Gore, J., Polz, M. F. & Cordero, O. X. Microbial interactions lead to rapid micro-scale successions on model marine particles. Nat. Commun. 7, 11965 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kiørboe, T., Tang, K., Grossart, H.-P. & Ploug, H. Dynamics of microbial communities on marine snow aggregates: colonization, growth, detachment, and grazing mortality of attached bacteria. Appl. Environ. Microbiol. 69, 3036–3047 (2003).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grossart, H.-P., Kiørboe, T., Tang, K. & Ploug, H. Bacterial colonization of particles: growth and interactions. Appl Environ. Microbiol 69, 3500–3509 (2003).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Enke, T. N., Leventhal, G. E., Metzger, M., Saavedra, J. T. & Cordero, O. X. Microscale ecology regulates particulate organic matter turnover in model marine microbial communities. Nat. Commun. 9, 2743 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kirchman, D. L. Growth Rates of Microbes in the Oceans. Annu. Rev. Mar. Sci. 8, 285–309 (2016).ADS 

    Google Scholar 
    Ebrahimi, A., Schwartzman, J. & Cordero, O. X. Cooperation and spatial self-organization determine rate and efficiency of particulate organic matter degradation in marine bacteria. PNAS https://doi.org/10.1073/pnas.1908512116 (2019).Agusti, S. et al. Ubiquitous healthy diatoms in the deep sea confirm deep carbon injection by the biological pump. Nat. Commun. 6, 1–8 (2015).
    Google Scholar 
    Tamburini, C. et al. Effects of hydrostatic pressure on microbial alteration of sinking fecal pellets. Deep Sea Res. Part II: Topical Stud. Oceanogr. 56, 1533–1546 (2009).ADS 
    CAS 

    Google Scholar 
    Tamburini, C., Garcin, J., Ragot, M. & Bianchi, A. Biopolymer hydrolysis and bacterial production under ambient hydrostatic pressure through a 2000 m water column in the NW Mediterranean. Deep Sea Res. Part II Topical Stud. Oceanogr. 49, 2109–2123 (2002).ADS 
    CAS 

    Google Scholar 
    Tamburini, C., Boutrif, M., Garel, M., Colwell, R. R. & Deming, J. W. Prokaryotic responses to hydrostatic pressure in the ocean – a review. Environ. Microbiol. 15, 1262–1274 (2013).CAS 
    PubMed 

    Google Scholar 
    Lambert, B. S., Fernandez, V. I. & Stocker, R. Motility drives bacterial encounter with particles responsible for carbon export throughout the ocean. Limnol. Oceanogr. Lett. 4, 113–118 (2019).
    Google Scholar 
    Ploug, H. & Grossart, H.-P. Bacterial growth and grazing on diatom aggregates: respiratory carbon turnover as a function of aggregate size and sinking velocity. Limnol. Oceanogr. 45, 1467–1475 (2000).ADS 
    CAS 

    Google Scholar 
    Enke, T. N. et al. Modular assembly of polysaccharide-degrading marine microbial communities. Curr. Biol. 29, 1528–1535.e6 (2019).CAS 
    PubMed 

    Google Scholar 
    Kaul, R. B., Kramer, A. M., Dobbs, F. C. & Drake, J. M. Experimental demonstration of an Allee effect in microbial populations. Biol. Lett. 12, 20160070 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Kiørboe, T., Ploug, H. & Thygesen, U. H. Fluid motion and solute distribution around sinking aggregates I: Small-scale fluxes and heterogeneity of nutrients in the pelagic environment. Mar. Ecol. – Prog. Ser. 211, 1–13 (2001).ADS 

    Google Scholar 
    Kiørboe, T. & Jackson, G. A. Marine snow, organic solute plumes, and optimal chemosensory behavior of bacteria. Limnol. Oceanogr. 46, 1309–1318 (2001).ADS 

    Google Scholar 
    Baumas, C. M. J. et al. Mesopelagic microbial carbon production correlates with diversity across different marine particle fractions. The ISME Journal 1–14 https://doi.org/10.1038/s41396-020-00880-z (2021).Mestre, M. et al. Spatial variability of marine bacterial and archaeal communities along the particulate matter continuum. Mol. Ecol. 26, 6827–6840 (2017).CAS 
    PubMed 

    Google Scholar 
    Mislan, K. A. S., Stock, C. A., Dunne, J. P. & Sarmiento, J. L. Group behavior among model bacteria influences particulate carbon remineralization depths. J. Mar. Res. 72, 183–218(36) (2014).
    Google Scholar 
    Iversen, M. H., Nowald, N., Ploug, H., Jackson, G. A. & Fischer, G. High resolution profiles of vertical particulate organic matter export off Cape Blanc, Mauritania: Degradation processes and ballasting effects. Deep Sea Res. Part I: Oceanographic Res. Pap. 57, 771–784 (2010).ADS 
    CAS 

    Google Scholar 
    Ilyina, T. et al. Global ocean biogeochemistry model HAMOCC: Model architecture and performance as component of the MPI-Earth system model in different CMIP5 experimental realizations. J. Adv. Modeling Earth Syst. 5, 287–315 (2013).ADS 

    Google Scholar 
    Garber, J. H. Laboratory study of nitrogen and phosphorus remineralization during the decomposition of coastal plankton and seston. Estuar., Coast. Shelf Sci. 18, 685–702 (1984).ADS 
    CAS 

    Google Scholar 
    Zakem, E. J., Cael, B. B. & Levine, N. M. A unified theory for organic matter accumulation. PNAS https://doi.org/10.1101/2020.09.25.314021 (2021).Sunagawa, S. et al. Structure and function of the global ocean microbiome. Science 348, (2015).Alldredge, A. The carbon, nitrogen and mass content of marine snow as a function of aggregate size. Deep Sea Res. Part I: Oceanographic Res. Pap. 45, 529–541 (1998).ADS 
    CAS 

    Google Scholar 
    Zakem, E. J. et al. Ecological control of nitrite in the upper ocean. Nat. Commun. 9, 1206 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boyd, P. W. et al. Transformations of biogenic particulates from the pelagic to the deep ocean realm. Deep Sea Res. Part II: Topical Stud. Oceanogr. 46, 2761–2792 (1999).ADS 
    CAS 

    Google Scholar 
    Schmidt, S., Chou, L. & Hall, I. R. Particle residence times in surface waters over the north-western Iberian Margin: comparison of pre-upwelling and winter periods. J. Mar. Syst. 32, 3–11 (2002).
    Google Scholar 
    Schmidt, M. W. I. et al. Persistence of soil organic matter as an ecosystem property. Nature 478, 49–56 (2011).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Lehmann, J. et al. Persistence of soil organic carbon caused by functional complexity. Nat. Geosci. 13, 529–534 (2020).ADS 
    CAS 

    Google Scholar 
    Dittmar, T. et al. Enigmatic persistence of dissolved organic matter in the ocean. Nat. Rev. Earth Environ. 2, 570–583 (2021).ADS 
    CAS 

    Google Scholar 
    Poff, K. E., Leu, A. O., Eppley, J. M., Karl, D. M. & DeLong, E. F. Microbial dynamics of elevated carbon flux in the open ocean’s abyss. PNAS 118, (2021).Pelve, E. A., Fontanez, K. M. & DeLong, E. F. Bacterial Succession on Sinking Particles in the Ocean’s Interior. Front. Microbiol. 8, (2017).Boscolo-Galazzo, F. et al. Temperature controls carbon cycling and biological evolution in the ocean twilight zone. Science 371, 1148–1152 (2021).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Riley, J. S. et al. The relative contribution of fast and slow sinking particles to ocean carbon export. Global Biogeochemical Cycles 26, (2012).Guidi, L. et al. Plankton networks driving carbon export in the oligotrophic ocean. Nature 532, 465–470 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Steinberg, D. K. et al. Overview of the US JGOFS Bermuda Atlantic Time-series Study (BATS): a decade-scale look at ocean biology and biogeochemistry. Deep Sea Res. Part II: Topical Stud. Oceanogr. 48, 1405–1447 (2001).ADS 
    CAS 

    Google Scholar 
    Conte, M. H., Dickey, T. D., Weber, J. C., Johnson, R. J. & Knap, A. H. Transient physical forcing of pulsed export of bioreactive material to the deep Sargasso Sea. Deep Sea Res. Part I: Oceanographic Res. Pap. 50, 1157–1187 (2003).ADS 
    CAS 

    Google Scholar 
    Smith, K. L., Ruhl, H. A., Huffard, C. L., Messié, M. & Kahru, M. Episodic organic carbon fluxes from surface ocean to abyssal depths during long-term monitoring in NE Pacific. Proc. Natl Acad. Sci. USA 115, 12235–12240 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Alkire, M. B. et al. Estimates of net community production and export using high-resolution, Lagrangian measurements of O2, NO3−, and POC through the evolution of a spring diatom bloom in the North Atlantic. Deep Sea Res. Part I: Oceanographic Res. Pap. 64, 157–174 (2012).ADS 
    CAS 

    Google Scholar 
    Briggs, N. et al. High-resolution observations of aggregate flux during a sub-polar North Atlantic spring bloom. Deep Sea Res. Part I: Oceanographic Res. Pap. 58, 1031–1039 (2011).ADS 

    Google Scholar 
    Talmy, D. et al. An empirical model of carbon flow through marine viruses and microzooplankton grazers. Environ. Microbiol. 21, 2171–2181 (2019).CAS 
    PubMed 

    Google Scholar 
    Kostadinov, T. S., Milutinović, S., Marinov, I. & Cabré, A. Carbon-based phytoplankton size classes retrieved via ocean color estimates of the particle size distribution. Ocean Sci. 12, 561–575 (2016).ADS 
    CAS 

    Google Scholar 
    Jin, X., Gruber, N., Dunne, J. P., Sarmiento, J. L. & Armstrong, R. A. Diagnosing the contribution of phytoplankton functional groups to the production and export of particulate organic carbon, CaCO3, and opal from global nutrient and alkalinity distributions. Global Biogeochemical Cycles 20, (2006).Mouw, C. B., Barnett, A., McKinley, G. A., Gloege, L. & Pilcher, D. Phytoplankton size impact on export flux in the global ocean. Glob. Biogeochemical Cycles 30, 1542–1562 (2016).ADS 
    CAS 

    Google Scholar  More

  • in

    Native range estimates for red-listed vascular plants

    Millennium Ecosystem Assessment. Ecosystems and Human Well-being: Biodiversity Synthesis. (World Resources Institute, 2005).Moran, D. & Kanemoto, K. Identifying species threat hotspots from global supply chains. Nat. Ecol. Evol. 1, 0023 (2017).
    Google Scholar 
    Newbold, T. Future effects of climate and land-use change on terrestrial vertebrate community diversity under different scenarios. Proc. R. Soc. B Biol. Sci. 285, 20180792 (2018).
    Google Scholar 
    Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Newbold, T. et al. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science (80-.). 353, 288–291 (2016).ADS 
    CAS 

    Google Scholar 
    Verones, F., Moran, D., Stadler, K., Kanemoto, K. & Wood, R. Resource footprints and their ecosystem consequences. Sci. Rep. 7, 40743 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    United Nations. Transforming our World: the 2030 Agenda for Sustainable Development. A/RES/70/1 (United Nations, 2015).Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science (80-.). 366, eaax3100 (2019).Lenzen, M. et al. International trade drives biodiversity threats in developing nations. Nature 486, 109–112 (2012).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Hellweg, S. & Milà i Canals, L. Emerging approaches, challenges and opportunities in life cycle assessment. Science (80-.). 344, 1109–1113 (2014).ADS 
    CAS 

    Google Scholar 
    Chaudhary, A. & Brooks, T. M. National Consumption and Global Trade Impacts on Biodiversity. World Dev. 121, 178–187 (2019).
    Google Scholar 
    Pereira, H. M., Ziv, G. & Miranda, M. Countryside Species-Area Relationship as a Valid Alternative to the Matrix-Calibrated Species-Area Model. Conserv. Biol. 28, 874–876 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Lomolino, M. V & Heaney, L. R. Frontiers of Biogeography: New Directions in the Geography of Nature. (Sinauer Associates Inc. Publishers, 2004).World Wildlife Fund. WildFinder: Online database of species distributions. http://www.worldwildlife.org/WildFinder (2006).BirdLife International. IUCN Red List for birds. http://www.birdlife.org (2019).IUCN. The IUCN Red List of Threatened Species. Version 2021-1 https://www.iucnredlist.org (2021).Curran, M. et al. Toward Meaningful End Points of Biodiversity in Life Cycle Assessment. Environ. Sci. Technol. 45, 70–79 (2011).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Woods, J. S. et al. Ecosystem quality in LCIA: status quo, harmonization, and suggestions for the way forward. Int. J. Life Cycle Assess. 23, 1995–2006 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Modell. 190, 231–259 (2006).
    Google Scholar 
    Merow, C., Smith, M. J. & Silander, J. A. A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography (Cop.). 36, 1058–1069 (2013).
    Google Scholar 
    Araújo, M. B. et al. Standards for distribution models in biodiversity assessments. Sci. Adv. 5, eaat4858 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zurell, D. et al. A standard protocol for reporting species distribution models. Ecography (Cop.). 43, 1261–1277 (2020).
    Google Scholar 
    Brummitt, R. K., Pando, F., Hollis, S. & Brummitt, N. A. World Geographical Scheme for Recording Plant Distributions. International Working Group on Taxonomic Databases (TDWG) https://www.tdwg.org/standards/wgsrpd/ (2001).GBIF. The Global Biodiversity Information Facility: What is GBIF? https://www.gbif.org/what-is-gbif (2021).Phillips, S. J., Dudík, M. & Schapire, R. E. Maxent software for modeling species niches and distributions (Version 3.4.0). http://biodiversityinformatics.amnh.org/open_source/maxent/ (2016).Phillips, S. J., Dudík, M. & Schapire, R. E. A maximum entropy approach to species distribution modeling. Proc. Twenty-first Int. Conf. Mach. Learn. 655–662 (2004).Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: an open-source release of Maxent. Ecography (Cop.). 40, 887–893 (2017).
    Google Scholar 
    Reddy, S. & Dávalos, L. M. Geographical sampling bias and its implications for conservation priorities in Africa. J. Biogeogr. 30, 1719–1727 (2003).
    Google Scholar 
    Hortal, J., Jiménez-Valverde, A., Gómez, J. F., Lobo, J. M. & Baselga, A. Historical bias in biodiversity inventories affects the observed environmental niche of the species. Oikos 117, 847–858 (2008).
    Google Scholar 
    Isaac, N. J. B. & Pocock, M. J. O. Bias and information in biological records. Biol. J. Linn. Soc. 115, 522–531 (2015).
    Google Scholar 
    Feeley, K. J. & Silman, M. R. Keep collecting: accurate species distribution modelling requires more collections than previously thought. Divers. Distrib. 17, 1132–1140 (2011).
    Google Scholar 
    Radosavljevic, A. & Anderson, R. P. Making better Maxent models of species distributions: complexity, overfitting and evaluation. J. Biogeogr. 41, 629–643 (2014).
    Google Scholar 
    ter Steege, H. et al. Hyperdominance in the Amazonian Tree Flora. Science (80-.). 342, 1243092 (2013).
    Google Scholar 
    Kuipers, K. J. J., Hellweg, S. & Verones, F. Potential Consequences of Regional Species Loss for Global Species Richness: A Quantitative Approach for Estimating Global Extinction Probabilities. Environ. Sci. Technol. 53, 4728–4738 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Gade, A. L., Hauschild, M. Z. & Laurent, A. Globally differentiated effect factors for characterising terrestrial acidification in life cycle impact assessment. Sci. Total Environ. 761, 143280 (2021).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Géron, C. et al. Urban alien plants in temperate oceanic regions of Europe originate from warmer native ranges. Biol. Invasions 23, 1765–1779 (2021).
    Google Scholar 
    Mair, L. et al. A metric for spatially explicit contributions to science-based species targets. Nat. Ecol. Evol. 5, 836–844 (2021).PubMed 

    Google Scholar 
    Bachman, S., Moat, J., Hill, A., de la Torre, J. & Scott, B. Supporting Red List threat assessments with GeoCAT: geospatial conservation assessment tool. Zookeys 150, 117–126 (2011).
    Google Scholar 
    Cardoso, P. red – an R package to facilitate species red list assessments according to the IUCN criteria. Biodivers. Data J. 5, e20530 (2017).
    Google Scholar 
    Lee, C. K. F., Keith, D. A., Nicholson, E. & Murray, N. J. Redlistr: tools for the IUCN Red Lists of ecosystems and threatened species in R. Ecography (Cop.). 42, 1050–1055 (2019).
    Google Scholar 
    Bachman, S., Walker, B., Barrios, S., Copeland, A. & Moat, J. Rapid Least Concern: towards automating Red List assessments. Biodivers. Data J. 8 (2020).POWO. Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. http://www.plantsoftheworldonline.org/ (2021).Chamberlain, S. et al. taxize: Taxonomic information from around the web. R package version 0.9.98. https://github.com/ropensci/taxize (2020).R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria https://www.r-project.org/ (2021).ITIS. Integrated Taxonomic Information System. https://www.itis.gov/ (2021).Wickham, H. rvest: Easily Harvest (Scrape) Web Pages. R package version 0.3.5. https://cran.r-project.org/package=rvest (2019).Desmet, P. & Page, R. WGSRPD. GitHub repository https://github.com/tdwg/wgsrpd (2018).Chamberlain, S. et al. rgbif: Interface to the Global Biodiversity Information Facility API. R package version 3.6.0. https://cran.r-project.org/package=rgbif (2021).GBIF. GBIF Occurrence Download. https://doi.org/10.15468/dl.uvd56q (2021).Winkler, K., Fuchs, R., Rounsevell, M. & Herold, M. Global land use changes are four times greater than previously estimated. Nat. Commun. 12, 2501 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sippel, S., Meinshausen, N., Fischer, E. M., Székely, E. & Knutti, R. Climate change now detectable from any single day of weather at global scale. Nat. Clim. Chang. 10, 35–41 (2020).ADS 

    Google Scholar 
    Hijmans, R. J. raster: Geographic Data Analysis and Modeling. R package version 3.0-7. https://cran.r-project.org/package=raster (2019).Hernandez, P. A., Graham, C. H., Master, L. L. & Albert, D. L. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography (Cop.). 29, 773–785 (2006).
    Google Scholar 
    Pearson, R. G., Raxworthy, C. J., Nakamura, M. & Townsend Peterson, A. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J. Biogeogr. 34, 102–117 (2006).
    Google Scholar 
    Phillips, S. J. & Dudík, M. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography (Cop.). 31, 161–175 (2008).
    Google Scholar 
    Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57 (2011).
    Google Scholar 
    Anderson, R. P. & Raza, A. The effect of the extent of the study region on GIS models of species geographic distributions and estimates of niche evolution: preliminary tests with montane rodents (genus Nephelomys) in Venezuela. J. Biogeogr. 37, 1378–1393 (2010).
    Google Scholar 
    Själander, M., Jahre, M., Tufte, G. & Reissmann, N. EPIC: An Energy-Efficient, High-Performance GPGPU Computing Research Infrastructure. arXiv 1–4 (2019).Hijmans, R. J., Phillips, S., Leathwick, J. & Elith, J. dismo: Species Distribution Modeling. R package version 1.1-4. https://cran.r-project.org/package=dismo (2017).Muscarella, R. et al. ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol. Evol. 5, 1198–1205 (2014).
    Google Scholar 
    Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Karger, D. N. et al. Data from: Climatologies at high resolution for the earth’s land surface areas. Dryad, Dataset https://doi.org/10.5061/dryad.kd1d4 (2018).ESA. Land Cover CCI Product User Guide Version 2. Tech. Rep. http://maps.elie.ucl.ac.be/CCI/viewer/download.php (2017).Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B. & Anderson, R. P. spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography (Cop.). 38, 541–545 (2015).
    Google Scholar 
    Akaike, H. Information Theory and an Extension of the Maximum Likelihood Principle. in 2nd International Symposium on Information Theory (eds. Petrov, B. N. & Csaki, F.) 267–281 (Akademia Kiado, 1973).Hurvich, C. M. & Tsai, C.-L. Regression and time series model selection in small samples. Biometrika 76, 297–307 (1989).MathSciNet 
    MATH 

    Google Scholar 
    Sugiura, N. Further analysts of the data by akaike’ s information criterion and the finite corrections. Commun. Stat. – Theory Methods 7, 13–26 (1978).MATH 

    Google Scholar 
    Morales, N. S., Fernández, I. C. & Baca-González, V. MaxEnt’s parameter configuration and small samples: are we paying attention to recommendations? A systematic review. PeerJ 5, e3093 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Shcheglovitova, M. & Anderson, R. P. Estimating optimal complexity for ecological niche models: A jackknife approach for species with small sample sizes. Ecol. Modell. 269, 9–17 (2013).
    Google Scholar 
    Warren, D. L. & Seifert, S. N. Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol. Appl. 21, 335–342 (2011).PubMed 

    Google Scholar 
    Moran, P. A. P. Notes on Continuous Stochastic Phenomena. Biometrika 37, 17 (1950).MathSciNet 
    CAS 
    MATH 

    Google Scholar 
    Borgelt, J., Sicacha-Parada, J., Skarpaas, O. & Verones, F. Native range estimates for red-listed vascular plants. Dryad, Dataset https://doi.org/10.5061/dryad.qbzkh18h9 (2022).Sing, T., Sander, O., Beerenwinkel, N. & Lengauer, T. ROCR: visualizing classifier performance in R. Bioinformatics 21, 3940–3941 (2005).CAS 
    PubMed 

    Google Scholar 
    Grau, J., Grosse, I. & Keilwagen, J. PRROC: computing and visualizing precision-recall and receiver operating characteristic curves in R. Bioinformatics 31, 2595–2597 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hosmer, D. W., Lemeshow, S. & Sturdivant, R. X. Applied Logistic Regression. The Statistician 45 (Wiley, 2013).Lobo, J. M., Jiménez-Valverde, A. & Real, R. AUC: a misleading measure of the performance of predictive distribution models. Glob. Ecol. Biogeogr. 17, 145–151 (2008).
    Google Scholar 
    Sofaer, H. R., Hoeting, J. A. & Jarnevich, C. S. The area under the precision‐recall curve as a performance metric for rare binary events. Methods Ecol. Evol. 10, 565–577 (2019).
    Google Scholar 
    Meyer, C., Weigelt, P. & Kreft, H. Multidimensional biases, gaps and uncertainties in global plant occurrence information. Ecol. Lett. 19, 992–1006 (2016).PubMed 

    Google Scholar 
    Caudullo, G., Welk, E. & San-Miguel-Ayanz, J. Chorological maps for the main European woody species. Data Br. 12, 662–666 (2017).
    Google Scholar 
    Rivers, M. C. Laburnum anagyroides. The IUCN Red List of Threatened Species 2017: e.T79919483A79919650 https://doi.org/10.2305/IUCN.UK.2017-3.RLTS.T79919483A79919650.en (2017).Botanic Gardens Conservation International Group & IUCN SSC Global Tree Specialist. Terminalia macrostachya. The IUCN Red List of Threatened Species 2019: e.T150118895A150118897 https://doi.org/10.2305/IUCN.UK.2019-3.RLTS.T150118895A150118897.en (2019).Heil, K., Terry, M. & Corral-Díaz, R. Mammillaria grahamii (amended version of 2013 assessment). The IUCN Red List of Threatened Species 2017: e.T152723A121546147 https://doi.org/10.2305/IUCN.UK.2017-3.RLTS.T152723A121546147.en (2017).Brooker, M. & Kleinig, D. Field Guide to Eucalypts. (Bloomings Books, 2006).Koopman, M. M. A synopsis of the Malagasy endemic genus Megistostegium Hochr. (Hibisceae, Malvaceae). Adansonia 33, 101–113 (2011).
    Google Scholar 
    World Conservation Monitoring Centre. Memecylon elegantulum. The IUCN Red List of Threatened Species 1998: e.T32597A9713234 https://doi.org/10.2305/IUCN.UK.1998.RLTS.T32597A9713234.en (1998).Landrum, L. R. A revision of the Psidium salutare complex (Myrtaceae). SIDA, Contrib. to Bot. 20, 1449–1469 (2003).
    Google Scholar 
    Tropical Plants Database. Ken Fern. tropical.theferns.info https://tropical.theferns.info/viewtropical.php?id=Psidium+salutare (2021).Bernal, R., Gradstein, S. R. & Celis, M. Siparuna conica S.S.Renner & Hausner. Catálogo de plantas y líquenes de Colombia http://catalogoplantasdecolombia.unal.edu.co (2015).Renner, S. S. & Hausner, G. New Species of Siparuna (Monimiaceae) II. Seven New Species from Ecuador and Colombia. Missouri Bot. Gard. Press 6, 103–116 (1996).
    Google Scholar 
    Melendo, M., Giménez, E., Cano, E., Mercado, F. G. & Valle, F. The endemic flora in the south of the Iberian Peninsula: taxonomic composition, biological spectrum, pollination, reproductive mode and dispersal. Flora – Morphol. Distrib. Funct. Ecol. Plants 198, 260–276 (2003).
    Google Scholar 
    Chari, L. D., Martin, G. D., Steenhuisen, S.-L., Adams, L. D. & Clark, V. R. Biology of Invasive Plants 1. Pyracantha angustifolia (Franch.) C.K. Schneid. Invasive Plant Sci. Manag. 13, 120–142 (2020).
    Google Scholar 
    Sasidharan, N. Amomum pterocarpum Thwaites. India Biodiversity Portal https://indiabiodiversity.org/species/show/258864#habitat-and-distribution (2013).Contu, S. Amomum pterocarpum. The IUCN Red List of Threatened Species 2013: e.T44393013A44450020 https://doi.org/10.2305/IUCN.UK.2013-1.RLTS.T44393013A44450020.en (2013).Babyrose Devi, N., Das, A. & Singh, P. Amomum Pterocarpum (Zingiberaceae): a new record in the flora of Manipur. Int. J. Adv. Res. 6, 546–549 (2018).
    Google Scholar 
    Jetz, W., Sekercioglu, C. H. & Watson, J. E. M. Ecological correlates and conservation implications of overestimating species geographic ranges. Conserv. Biol. 22, 110–9 (2008).PubMed 

    Google Scholar 
    Gibbs, D. & Khela, S. Magnolia pugana. The IUCN Red List of Threatened Species 2014: e.T194806A2363344 https://doi.org/10.2305/IUCN.UK.2014-1.RLTS.T194806A2363344.en (2014).Sayer, C. Vallesia glabra. The IUCN Red List of Threatened Species 2015: e.T62543A72668627 https://doi.org/10.2305/IUCN.UK.2015-2.RLTS.T62543A72668627.en (2015).Sánchez Gómez, P., Stevens, D., Fennane, M., Gardner, M. & Thomas, P. Tetraclinis articulata. The IUCN Red List of Threatened Species 2011: e.T30318A9534227 https://doi.org/10.2305/IUCN.UK.2011-2.RLTS.T30318A9534227.en (2011).Article 

    Google Scholar 
    Stritch, L., Roy, S., Shaw, K. & Wilson, B. Corylus cornuta (errata version published in 2017). The IUCN Red List of Threatened Species 2016: e.T194448A115337731 https://doi.org/10.2305/IUCN.UK.2016-1.RLTS.T194448A2336319.en (2016).Olson, D. M. et al. Terrestrial ecoregions of the world: A new map of life on Earth. Bioscience 51, 933–938 (2001).
    Google Scholar 
    Rivers, M. C. Cotoneaster cambricus. The IUCN Red List of Threatened Species 2017: e.T102827479A102827485 https://doi.org/10.2305/IUCN.UK.2017-3.RLTS.T102827479A102827485.en (2017).RStudio Team. RStudio: Integrated Development Environment for R. RStudio, PBC, Boston, MA http://www.rstudio.com/ (2021).Bivand, R., Keitt, T. & Rowlingson, B. rgdal: Bindings for the ‘Geospatial’ Data Abstraction Library. https://cran.r-project.org/package=rgdal (2019).Bivand, R. & Lewin-Koh, N. maptools: Tools for Handling Spatial Objects. R package version 0.9-5. https://cran.r-project.org/package=maptools/ (2019).Bivand, R. & Rundel, C. rgeos: Interface to Geometry Engine – Open Source (‘GEOS’). R package version 0.5-1. https://cran.r-project.org/package=rgeos (2019).Bivand, R. S., Pebesma, E. & Gómez-Rubio, V. Applied Spatial Data Analysis with R. (Springer New York, 2013).Phillips, S. J. & Elith, J. POC plots: calibrating species distribution models with presence-only data. Ecology 91, 2476–2484 (2010).PubMed 

    Google Scholar 
    Hurlbert, A. H. & Jetz, W. Species richness, hotspots, and the scale dependence of range maps in ecology and conservation. Proc. Natl. Acad. Sci. 104, 13384–13389 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jetz, W., McPherson, J. M. & Guralnick, R. P. Integrating biodiversity distribution knowledge: toward a global map of life. Trends Ecol. Evol. 27, 151–159 (2012).PubMed 

    Google Scholar  More