Myzorhynchus series of Anopheles mosquitoes as potential vectors of Plasmodium bubalis in Thailand
Templeton, T. J., Martinsen, E., Kaewthamasorn, M. & Kaneko, O. The rediscovery of malaria parasites of ungulates. Parasitology 143, 1501–1508. https://doi.org/10.1017/S0031182016001141 (2016).Article 
 PubMed 
 Google Scholar 
 Sheather, A. A malaria parasite in the blood of a buffalo. J. Comp. Pathol. Ther. 32, 80026–80027 (1919).Article 
 Google Scholar 
 Templeton, T. J. et al. Ungulate malaria parasites. Sci. Rep. 6, 23230. https://doi.org/10.1038/srep23230 (2016).ADS 
 CAS 
 Article 
 PubMed 
 PubMed Central 
 Google Scholar 
 Kandel, R. C. et al. First report of malaria parasites in water buffalo in Nepal. Vet. Parasitol. Reg. Stud. Rep. 18, 100348. https://doi.org/10.1016/j.vprsr.2019.100348 (2019).Article 
 Google Scholar 
 Garnham, P. & Edeson, J. Two new malaria parasites of the Malayan mousedeer. Riv. Malariol. 41, 1–8 (1962).CAS 
 PubMed 
 Google Scholar 
 Hoo, C. & Sandosham, A. The early forms of Hepatocystis fieldi and Plasmodium traguli in the Malayan mouse-deer Tragulus javanicus. Med. J. Malays. 22, 299–301 (1968).
 Google Scholar 
 de Mello, F.d., Paes, S. Sur une plasmodiae du sang des chèvres. Cr. Séanc. Soc. Biol. 88, 829–830 (1923).Kaewthamasorn, M. et al. Genetic homogeneity of goat malaria parasites in Asia and Africa suggests their expansion with domestic goat host. Sci. Rep. 8, 5827. https://doi.org/10.1038/s41598-018-24048-0 (2018).ADS 
 CAS 
 Article 
 PubMed 
 PubMed Central 
 Google Scholar 
 Rattanarithikul, R. H., Bruce, A., Harbach, R. E., Panthusiri, P. & Coleman, R. E. Illustrated keys to the mosquitoes of Thailand IV. Anopheles. Southeast Asian J Trop Med Public Health. 37 (2006).Walter Reed Biosystematics Unit. 2021. Systematic catalogue of Culicidae. http://mosquitocatalog.org. Last accessed on 20/09/2021.Sinka, M. E. et al. The dominant Anopheles vectors of human malaria in the Asia-Pacific region: occurrence data, distribution maps and bionomic précis. Parasit. Vectors. 4, 89. https://doi.org/10.1186/1756-3305-4-89 (2011).Article 
 PubMed 
 PubMed Central 
 Google Scholar 
 Syafruddin, D. et al. Malaria prevalence in Nias District, North Sumatra Province, Indonesia. Malar. J. 6, 116. https://doi.org/10.1186/1475-2875-6-116 (2007).Article 
 PubMed 
 PubMed Central 
 Google Scholar 
 Vantaux, A. et al. Anopheles ecology, genetics and malaria transmission in northern Cambodia. Sci. Rep. 11, 6458. https://doi.org/10.1038/s41598-021-85628-1 (2021).ADS 
 CAS 
 Article 
 PubMed 
 PubMed Central 
 Google Scholar 
 Manguin, S., Garros, C., Dusfour, I., Harbach, R. & Coosemans, M. Bionomics, taxonomy, and distribution of the major malaria vector taxa of Anopheles subgenus Cellia in Southeast Asia: An updated review. Infect. Genet. Evol. 8, 489–503. https://doi.org/10.1016/j.meegid.2007.11.004 (2008).CAS 
 Article 
 PubMed 
 Google Scholar 
 Paredes-Esquivel, C., Donnelly, M. J., Harbach, R. E. & Townson, H. A molecular phylogeny of mosquitoes in the Anopheles barbirostris Subgroup reveals cryptic species: implications for identification of disease vectors. Mol. Phylogenet. Evol. 50, 141–151. https://doi.org/10.1016/j.ympev.2008.10.011 (2009).CAS 
 Article 
 PubMed 
 Google Scholar 
 Sungvornyothin, S., Garros, C., Chareonviriyaphap, T. & Manguin, S. How reliable is the humeral pale spot for identification of cryptic species of the Minimus Complex?. J. Am. Mosq. Control. Assoc. 22, 185–191. https://doi.org/10.2987/8756-971X(2006)22[185:HRITHP]2.0.CO;2 (2006).Article 
 PubMed 
 Google Scholar 
 Brosseau, L. et al. A multiplex PCR assay for the identification of five species of the Anopheles barbirostris complex in Thailand. Parasite. Vectors. 12, 223. https://doi.org/10.1186/s13071-019-3494-8 (2019).Article 
 Google Scholar 
 Taai, K. & Harbach, R. E. Systematics of the Anopheles barbirostris species complex (Diptera: Culicidae: Anophelinae) in Thailand. Zool. J. Linn. Soc. 174, 244–264. https://doi.org/10.1111/zoj.12236 (2015).Article 
 Google Scholar 
 Dahan-Moss, Y. et al. Member species of the Anopheles gambiae complex can be misidentified as Anopheles leesoni. Malar. J. 19, 1–9. https://doi.org/10.1186/s12936-020-03168-x (2020).CAS 
 Article 
 Google Scholar 
 De Ang, J. X., Yaman, K., Kadir, K. A., Matusop, A. & Singh, B. New vectors that are early feeders for Plasmodium knowlesi and other simian malaria parasites in Sarawak, Malaysian Borneo. Sci. Rep. https://doi.org/10.1038/s41598-021-86107-3 (2021).Article 
 PubMed 
 PubMed Central 
 Google Scholar 
 Van Bortel, W. et al. Confirmation of Anopheles varuna in Vietnam, previously misidentified and mistargeted as the malaria vector Anopheles minimus. Am. J. Trop. Med. Hyg. 65, 729–732. https://doi.org/10.4269/ajtmh.2001.65.729 (2001).Article 
 PubMed 
 Google Scholar 
 Wharton, R., Eyles, D. E., Warren, M., Moorhouse, D. & Sandosham, A. Investigations leading to the identification of members of the Anopheles umbrosus group as the probable vectors of mouse deer malaria. Bull. World. Health. Organ. 29, 357 (1963).CAS 
 PubMed 
 PubMed Central 
 Google Scholar 
 Boundenga, L. et al. Haemosporidian parasites of antelopes and other vertebrates from Gabon, Central Africa. PLoS ONE 11, e0148958. https://doi.org/10.1371/journal.pone.0148958 (2016).CAS 
 Article 
 PubMed 
 PubMed Central 
 Google Scholar 
 Martinsen, E. S. et al. Hidden in plain sight: Cryptic and endemic malaria parasites in North American white-tailed deer (Odocoileus virginianus). Sci. Adv. 2, e1501486. https://doi.org/10.1126/sciadv.1501486 (2016).ADS 
 CAS 
 Article 
 PubMed 
 PubMed Central 
 Google Scholar 
 Garnham, P. C. C. Malaria Parasites and Other Haemosporidia (Blackwell Sci. Pub, 1966).
 Google Scholar 
 Nguyen, A. H. L., Tiawsirisup, S. & Kaewthamasorn, M. Low level of genetic diversity and high occurrence of vector-borne protozoa in water buffaloes in Thailand based on 18S ribosomal RNA and mitochondrial cytochrome b genes. Infect. Genet. Evol. 82, 104304. https://doi.org/10.1016/j.meegid.2020.104304 (2020).CAS 
 Article 
 PubMed 
 Google Scholar 
 Hebert, P. D., Cywinska, A. & Ball, S. L. Biological identifications through DNA barcodes. Proc. R. Soc. Lond. B Biol. Sci. 270, 313–321. https://doi.org/10.1098/rspb.2002.2218 (2003).CAS 
 Article 
 Google Scholar 
 Cywinska, A., Hunter, F. & Hebert, P. D. Identifying Canadian mosquito species through DNA barcodes. Med. Vet. Entomol. 20, 413–424. https://doi.org/10.1111/j.1365-2915.2006.00653.x (2006).CAS 
 Article 
 PubMed 
 Google Scholar 
 Ogola, E. O., Chepkorir, E., Sang, R. & Tchouassi, D. P. A previously unreported potential malaria vector in a dry ecology of Kenya. Parasites Vectors 12, 80. https://doi.org/10.1186/s13071-019-3332-z (2019).Article 
 PubMed 
 PubMed Central 
 Google Scholar 
 Maquart, P.-O., Fontenille, D., Rahola, N., Yean, S. & Boyer, S. Checklist of the mosquito fauna (Diptera, Culicidae) of Cambodia. Parasite 28, 60. https://doi.org/10.1051/parasite/2021056 (2021).Article 
 PubMed 
 PubMed Central 
 Google Scholar 
 Saeung, A. et al. Geographic distribution and genetic compatibility among six karyotypic forms of Anopheles peditaeniatus (Diptera: Culicidae) in Thailand. Trop. Biomed. 29, 613–625 (2012).CAS 
 PubMed 
 Google Scholar 
 Tainchum, K., Kongmee, M., Manguin, S., Bangs, M. J. & Chareonviriyaphap, T. Anopheles species diversity and distribution of the malaria vectors of Thailand. Trends Parasitol. 31, 109–119. https://doi.org/10.1016/j.pt.2015.01.004 (2015).Article 
 PubMed 
 Google Scholar 
 Chookaew, S. et al. Anopheles species composition in malaria high-risk areas in Ranong Province. Dis. Cont. J. 46, 483–493. https://doi.org/10.14456/dcj.2020.45 (2020).Article 
 Google Scholar 
 Reid, J. A. The Anopheles barbirostris group (Diptera, Culicidae). Bull. Entomol. Res. 53, 1–57 (1962).Article 
 Google Scholar 
 Harrison, B. A. & Scanlon, J. E. Medical entomology studies–II. The subgenus Anopheles in Thailand (Diptera: Culicidae). Contributions of the American Entomological Institute (Ann Arbor) 12 (1): iv + 1–iv 307 (1975).Wang, Y., Xu, J. & Ma, Y. Molecular characterization of cryptic species of Anopheles barbirostris van der Wulp in China. Parasite Vectors 7, 592. https://doi.org/10.1186/s13071-014-0592-5 (2014).CAS 
 Article 
 Google Scholar 
 Wang, G. et al. An evaluation of the suitability of COI and COII gene variation for reconstructing the phylogeny of, and identifying cryptic species in, anopheline mosquitoes (Diptera Culicidae). Mitochondrial DNA Part A. 28, 769–777. https://doi.org/10.1080/24701394.2016.1186665 (2017).CAS 
 Article 
 Google Scholar 
 Davidson, J. R. et al. Molecular analysis reveals a high diversity of Anopheles species in Karama, West Sulawesi, Indonesia. Parasite Vectors https://doi.org/10.1186/s13071-020-04252-6 (2020).Article 
 Google Scholar 
 Beebe, N. W. DNA barcoding mosquitoes: advice for potential prospectors. Parasitology 145(5), 622–633. https://doi.org/10.1017/S0031182018000343 (2018).CAS 
 Article 
 PubMed 
 Google Scholar 
 Gunathilaka, N. Illustrated key to the adult female Anopheles (Diptera: Culicidae) mosquitoes of Sri Lanka. Appl. Entomol. Zool. 52, 69–77. https://doi.org/10.1007/s13355-016-0455-y (2017).Article 
 PubMed 
 Google Scholar 
 WHO. Pictorial identification key of important disease vectors in the WHO South-East Asia Region. https://apps.who.int/iris/handle/10665/332202 (accessed 20 August 2021).Rigg, C. A., Hurtado, L. A., Calzada, J. E. & Chaves, L. F. Malaria infection rates in Anopheles albimanus (Diptera: Culicidae) at Ipetí-Guna, a village within a region targeted for malaria elimination in Panamá. Infect. Genet. Evol. 69, 216–223. https://doi.org/10.1016/j.meegid.2019.02.003 (2019).Article 
 PubMed 
 Google Scholar 
 Torres-Cosme, R. et al. Natural malaria infection in anophelines vectors and their incrimination in local malaria transmission in Darién, Panama. PLoS ONE 16, e0250059. https://doi.org/10.1371/journal.pone.0250059 (2021).CAS 
 Article 
 PubMed 
 PubMed Central 
 Google Scholar 
 Beebe, N. W. & Saul, A. Discrimination of all Members of the Anopheles punctulatus complex by polymerase chain reaction-restriction fragment length polymorphism analysis. Am. J. Trop. Med. Hyg. 53, 478–481. https://doi.org/10.4269/ajtmh.1995.53.478 (1995).CAS 
 Article 
 PubMed 
 Google Scholar 
 Perkins, S. L. & Schall, J. J. A molecular phylogeny of malaria parasites recovered from cytochrome b gene sequences. J. Parasitol. 88, 972–978. https://doi.org/10.1645/0022-3395(2002)088[0972:AMPOMP]2.0.CO;2 (2002).CAS 
 Article 
 PubMed 
 Google Scholar 
 Snounou, G. et al. High sensitivity of detection of human malaria parasites by the use of nested polymerase chain reaction. Mol. Biochem. Parasitol. 61, 315–320. https://doi.org/10.1016/0166-6851(93)90077-b (1993).CAS 
 Article 
 PubMed 
 Google Scholar 
 Hall, T. A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic. Acids. Symp. Ser. 41, 95–98 (1999).CAS 
 Google Scholar 
 Schoener, E. et al. Avian Plasmodium in Eastern Austrian mosquitoes. Malar. J. 16, 389. https://doi.org/10.1186/s12936-017-2035-1 (2017).Article 
 PubMed 
 PubMed Central 
 Google Scholar 
 Ventim, R. et al. Avian malaria infections in western European mosquitoes. Parasitol. Res. 111, 637–645. https://doi.org/10.1007/s00436-012-2880-3 (2012).Article 
 PubMed 
 Google Scholar 
 Huelsenbeck, J. P. & Ronquist, F. MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17, 754–755 (2001).CAS 
 Article 
 Google Scholar 
 Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using tracer 1.7. Syst. Biol. 67, 901–904 (2018).CAS 
 Article 
Google Scholar More
 
 
