Bumble bees in landscapes with abundant floral resources have lower pathogen loads
1.
Potts, S. G. et al. Safeguarding pollinators and their values to human well-being. Nature 540, 220–229 (2016).
ADS CAS PubMed Article Google Scholar
2.
Potts, S. G. et al. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 25, 345–353 (2010).
PubMed Article Google Scholar
3.
Cameron, S. A. & Sadd, B. M. Global trends in bumble bee health. Annu. Rev. Entomol. 65, 209–232 (2020).
CAS PubMed Article Google Scholar
4.
Goulson, D., Nicholls, E., Botías, C. & Rotheray, E. L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347, 1255957 (2015).
PubMed Article CAS Google Scholar
5.
Steffan-Dewenter, I., Münzenberg, U., Bürger, C., Thies, C. & Tscharntke, T. Scale-dependent effects of landscape context on three pollinator guilds. Ecology 83, 1421–1432 (2002).
Article Google Scholar
6.
Winfree, R., Aguilar, R., Vázquez, D. P., LeBuhn, G. & Aizen, M. A. A meta-analysis of bees’ responses to anthropogenic disturbance. Ecology 90, 2068–2076 (2009).
PubMed Article Google Scholar
7.
Grozinger, C. M. & Flenniken, M. L. Bee viruses: Ecology, pathogenicity, and impacts. Annu. Rev. Entomol. 64, 205–226 (2019).
CAS PubMed Article Google Scholar
8.
Cameron, S. A. et al. Patterns of widespread decline in North American bumble bees. Proc. R. Soc. B Biol. Sci. 108, 662–667 (2011).
CAS Google Scholar
9.
Tokarev, Y. S. et al. A formal redefinition of the genera Nosema and Vairimorpha (Microsporidia: Nosematidae) and reassignment of species based on molecular phylogenetics. J. Invertebr. Pathol. 169, 107279 (2020).
CAS PubMed Article Google Scholar
10.
Levitt, A. L. et al. Cross-species transmission of honey bee viruses in associated arthropods. Virus Res. 176, 232–240 (2013).
CAS PubMed Article Google Scholar
11.
Radzevičiūtė, R. et al. Replication of honey bee-associated RNA viruses across multiple bee species in apple orchards of Georgia, Germany and Kyrgyzstan. J. Invertebr. Pathol. 146, 14–23 (2017).
PubMed Article CAS Google Scholar
12.
Fürst, M. A., McMahon, D. P., Osborne, J. L., Paxton, R. J. & Brown, M. J. F. Disease associations between honeybees and bumblebees as a threat to wild pollinators. Nature 506, 364–366 (2014).
ADS PubMed PubMed Central Article CAS Google Scholar
13.
Dolezal, A. G. et al. Honey bee viruses in wild bees: Viral prevalence, loads, and experimental inoculation. PLoS ONE 11, 11 (2016).
Google Scholar
14.
Douglas, M. R., Sponsler, D. B., Lonsdorf, E. V. & Grozinger, C. M. County-level analysis reveals a rapidly shifting landscape of insecticide hazard to honey bees (Apis mellifera) on US farmland. Sci. Rep. 10, 1–11 (2020).
Article CAS Google Scholar
15.
Blacquiere, T., Smagghe, G., Van Gestel, C. A. & Mommaerts, V. Neonicotinoids in bees: A review on concentrations, side-effects and risk assessment. Ecotoxicology 21, 973–992 (2012).
CAS PubMed PubMed Central Article Google Scholar
16.
Aliouane, Y. et al. Subchronic exposure of honeybees to sublethal doses of pesticides: effects on behavior. Environ. Toxicol. Chem. 28, 113–122 (2009).
CAS PubMed Article Google Scholar
17.
Whitehorn, P. R., O’connor, S., Wackers, F. L. & Goulson, D. Neonicotinoid pesticide reduces bumble bee colony growth and queen production. Science 336, 351–352 (2012).
ADS CAS PubMed Article Google Scholar
18.
Soroye, P., Newbold, T. & Kerr, J. Climate change contributes to widespread declines among bumble bees across continents. Science 367, 685–688 (2020).
ADS CAS PubMed Article Google Scholar
19.
Dolezal, A. G. & Toth, A. L. Feedbacks between nutrition and disease in honey bee health. Curr. Opin. Insect Sci. 26, 114–119 (2018).
PubMed Article Google Scholar
20.
DeGrandi-Hoffman, G. & Chen, Y. Nutrition, immunity and viral infections in honey bees. Curr. Opin. Insect Sci. 10, 170–176 (2015).
PubMed Article Google Scholar
21.
DeGrandi-Hoffman, G., Chen, Y., Huang, E. & Huang, M. H. The effect of diet on protein concentrcation, hypopharyngeal gland development and virus load in worker honey bees (Apis mellifera L.). J. Insect Physiol. 56, 1184–1191 (2010).
CAS PubMed Article Google Scholar
22.
Di Pasquale, G. et al. Influence of pollen nutrition on honey bee health: Do pollen quality and diversity matter?. PLoS ONE 8, 8 (2013).
Google Scholar
23.
Manley, R., Boots, M. & Wilfert, L. Condition-dependent virulence of slow bee paralysis virus in Bombus terrestris: Are the impacts of honeybee viruses in wild pollinators underestimated?. Oecologia 184, 305–315 (2017).
ADS PubMed PubMed Central Article Google Scholar
24.
Ricigliano, V. A. et al. Honey bee colony performance and health are enhanced by apiary proximity to US Conservation Reserve Program (CRP) lands. Sci. Rep. 9, 1–11 (2019).
CAS Article Google Scholar
25.
O’Neal, S. T., Anderson, T. D. & Wu-Smart, J. Y. Interactions between pesticides and pathogen susceptibility in honey bees. Curr. Opin. Insect Sci. 26, 57–62 (2018).
PubMed Article Google Scholar
26.
Di Prisco, G. V. et al. Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honey bees. Proc. Natl. Acad. Sci. 110, 18466–18471 (2013).
ADS PubMed Article CAS Google Scholar
27.
O’Neal, S. T., Swale, D. R. & Anderson, T. D. ATP-sensitive inwardly rectifying potassium channel regulation of viral infections in honey bees. Sci. Rep. 7, 8668 (2017).
ADS PubMed PubMed Central Article CAS Google Scholar
28.
Fine, J. D., Cox-Foster, D. L. & Mullin, C. A. An inert pesticide adjuvant synergizes viral pathogenicity and mortality in honey bee larvae. Sci. Rep. 7, 40499 (2017).
ADS CAS PubMed PubMed Central Article Google Scholar
29.
Pettis, J. S., Johnson, J. & Dively, G. Pesticide exposure in honey bees results in increased levels of the gut pathogen Nosema. Naturwissenschaften 99, 153–158 (2012).
ADS CAS PubMed PubMed Central Article Google Scholar
30.
Pettis, J. S., Lichtenberg, E. M., Andree, M., Stitzinger, J. & Rose, R. Crop pollination exposes honey bees to pesticides which alters their susceptibility to the gut pathogen Nosema ceranae. PLoS ONE 8, e70182 (2013).
ADS CAS PubMed PubMed Central Article Google Scholar
31.
McArt, S. H., Fersch, A. A., Milano, N. J., Truitt, L. L. & Böröczky, K. High pesticide risk to honey bees despite low focal crop pollen collection during pollination of a mass blooming crop. Sci. Rep. 7, 46554 (2017).
ADS CAS PubMed PubMed Central Article Google Scholar
32.
McArt, S. H., Koch, H., Irwin, R. E. & Adler, L. S. Arranging the bouquet of disease: Floral traits and the transmission of plant and animal pathogens. Ecol. Lett. 17, 624–636 (2014).
PubMed Article Google Scholar
33.
Piot, N. et al. Establishment of wildflower fields in poor quality landscapes enhances micro-parasite prevalence in wild bumble bees. Oecologia 189, 149–158 (2019).
ADS PubMed Article Google Scholar
34.
Bailes, E. J. et al. Host density drives viral, but not trypanosome, transmission in a key pollinator. Proc. R. Soc. B Biol. Sci. 287, 20191969 (2020).
Article Google Scholar
35.
Singh, R. et al. RNA viruses in hymenopteran pollinators: Evidence of inter-taxa virus transmission via pollen and potential impact on non-Apis hymenopteran species. PLoS ONE 5, e14357 (2010).
ADS CAS PubMed PubMed Central Article Google Scholar
36.
Manley, R., Boots, M. & Wilfert, L. Emerging viral disease risk to pollinating insects: Ecological, evolutionary and anthropogenic factors. J. Appl. Ecol. 52, 331–340 (2015).
CAS PubMed PubMed Central Article Google Scholar
37.
Meeus, I., Pisman, M., Smagghe, G. & Piot, N. Interaction effects of different drivers of wild bee decline and their influence on host–pathogen dynamics. Curr. Opin. Insect Sci. 26, 136–141 (2018).
PubMed Article Google Scholar
38.
Huang, Z. Pollen nutrition affects honey bee stress resistance. Terr. Arthropod. Rev. 5, 175–189 (2012).
Article Google Scholar
39.
Smart, M., Pettis, J., Rice, N., Browning, Z. & Spivak, M. Linking measures of colony and individual honey bee health to survival among apiaries exposed to varying agricultural land use. PLoS ONE 11, 3 (2016).
Google Scholar
40.
Danihlík, J., Aronstein, K. & Petřivalský, M. Antimicrobial peptides: a key component of honey bee innate immunity: Physiology, biochemistry, and chemical ecology. J. Apic. Res. 54, 123–136 (2015).
Article Google Scholar
41.
Meeus, I., Brown, M. J., De Graaf, D. C. & Smagghe, G. U. Y. Effects of invasive parasites on bumble bee declines. Conserv. Biol. 25, 662–671 (2011).
PubMed Article Google Scholar
42.
Vaudo, A. D., Tooker, J. F., Grozinger, C. M. & Patch, H. M. Bee nutrition and floral resource restoration. Curr. Opin. Insect Sci. 10, 133–141 (2015).
PubMed Article Google Scholar
43.
Sánchez-Bayo, F. et al. Are bee diseases linked to pesticides?—A brief review. Environ. Int. 89, 7–11 (2016).
PubMed Article CAS Google Scholar
44.
Beck, M. A. & Levander, O. A. Host nutritional status and its effect on a viral pathogen. J. Infect. Dis. 182, 93–96 (2000).
Article Google Scholar
45.
Hing, S., Narayan, E. J., Thompson, R. A. & Godfrey, S. S. The relationship between physiological stress and wildlife disease: Consequences for health and conservation. Wildl. Res. 43, 51–60 (2016).
Article Google Scholar
46.
Graystock, P., Goulson, D. & Hughes, W. O. Parasites in bloom: Flowers aid dispersal and transmission of pollinator parasites within and between bee species. Proc. R. Soc. B Biol. Sci. 282, 20151371 (2015).
Article Google Scholar
47.
Sponsler, D. B., Shump, D., Richardson, R. T. & Grozinger, C. M. Characterizing the floral resources of a North American metropolis using a honey bee foraging assay. Ecosphere 11, e03102 (2020).
Article Google Scholar
48.
Williams, N. M., Regetz, J. & Kremen, C. Landscape-scale resources promote colony growth but not reproductive performance of bumble bees. Ecology 93, 1049–1058 (2012).
PubMed Article Google Scholar
49.
Steffan-Dewenter, I. & Tscharntke, T. Resource overlap and possible competition between honey bees and wild bees in central Europe. Oecologia 122, 288–296 (2000).
ADS CAS PubMed Article Google Scholar
50.
Tehel, A., Brown, M. J. & Paxton, R. J. Impact of managed honey bee viruses on wild bees. Curr. Opin. Virol. 19, 16–22 (2016).
PubMed Article Google Scholar
51.
Sponsler, D. B. et al. Pesticides and pollinators: A socioecological synthesis. Sci. Total Environ. 662, 1012–1027 (2019).
ADS CAS PubMed Article Google Scholar
52.
McCaskill, G. L. et al. Pennsylvania’s Forests 2009 (U.S Forest Service, Washington, DC, 2009).
Google Scholar
53.
Park, M. G., Blitzer, E. J., Gibbs, J., Losey, J. E. & Danforth, B. N. Negative effects of pesticides on wild bee communities can be buffered by landscape context. Proc. R. Soc. B Biol. Sci. 282, 20150299 (2015).
Article CAS Google Scholar
54.
Koh, I. et al. Modeling the status, trends, and impacts of wild bee abundance in the United States. Proc. R. Soc. B Biol. Sci. 113, 140–145 (2016).
CAS Google Scholar
55.
Williams, P. H., Thorp, R. W., Richardson, L. L. & Colla, S. R. Bumble Bees of North America: An Identification Guide (Princeton University Press, Princeton, 2014).
Google Scholar
56.
National Research Council. Under the Weather: Climate, Ecosystems, and Infectious Disease (National Academy Press, Washington, DC, 2001).
Google Scholar
57.
Polgreen, P. M. & Polgreen, E. L. Infectious diseases, weather, and climate. Clin. Infect. Dis. 66, 815–817 (2018).
PubMed Article Google Scholar
58.
Retschnig, G., Williams, G. R., Schneeberger, A. & Neumann, P. Cold ambient temperature promotes Nosema spp. intensity in honey bees (Apis mellifera). Insects 8, 20 (2017).
PubMed Central Article PubMed Google Scholar
59.
Dalmon, A., Peruzzi, M. L., Conte, Y., Alaux, C. & Pioz, M. Temperature-driven changes in viral loads in the honey bee Apis mellifera. J. Invertebr. Pathol. 160, 87–94 (2019).
PubMed Article Google Scholar
60.
Gardner, W. A., Sutton, R. M. & Noblet, R. Persistence of Beauveria bassiana, Nomuraea rileyi, and Nosema necatrix on Soyhean Foliage. Environ. Entomol. 6, 616–618 (1977).
Article Google Scholar
61.
Neidel, V., Steyer, C. S. & C., & Hoch, G. ,. Simulation of rain enhances horizontal transmission of the microsporidium Nosema lymantriae via infective feces. J. Invertebr. Pathol. 149, 56–58 (2017).
PubMed Article Google Scholar
62.
Rangel, J. et al. Prevalence of Nosema species in a feral honey bee population: A 20-year survey. Apidologie 47, 561–571 (2017).
Article Google Scholar
63.
Leather, S. R. “Ecological Armageddon”-more evidence for the drastic decline in insect numbers. Ann. Appl. Biol. 172, 1–3 (2017).
Article Google Scholar
64.
Scheper, J. et al. Local and landscape-level floral resources explain effects of wildflower strips on wild bees across four European countries. J. Appl. Ecol. 52, 1165–1175 (2015).
Article Google Scholar
65.
Rodríguez, J. P., Brotons, L., Bustamante, J. & Seoane, J. The application of predictive modelling of species distribution to biodiversity conservation. Divers. Distrib. 13, 243–251 (2017).
Article Google Scholar
66.
Young, B. E. et al. Using citizen science data to support conservation in environmental regulatory contexts. Biol. Conserv. 237, 57–62 (2019).
Article Google Scholar
67.
Lesley, J. P. A Summary Description of the Geology of Pennsylvania (Board of Commissioners for the Geological Survey, Pennsylvania, 1892).
Google Scholar
68.
Dyer, J. Revisiting the Deciduous Forests of Eastern North America. Bioscience 56, 341–352 (2006).
Article Google Scholar
69.
Wherry, E. T., Fogg, Jr., J. M., & Wahl. H. A. Atlas of the Flora of Pennsylvania. (University of Pennsylvania, Pennsylvania, 1979).
70.
Albright, T. A. Forests of Pennsylvania, 2017. Resource Update FS-175. (U.S. Department of Agriculture, Forest Service, 2017).
71.
Wickham, J. et al. The multi-resolution land characteristics (MRLC) consortium—20 years of development and integration. Remote Sens. 6, 7424–7441 (2014).
ADS Article Google Scholar
72.
Shannon, C. E. A mathematical theory of communication. Bell Labs Tech. J. 27, 379–423 (1948).
MathSciNet MATH Article Google Scholar
73.
Plischuk, S. et al. South American native bumblebees (Hymenoptera: Apidae) infected by Nosema ceranae (Microsporidia), an emerging pathogen of honeybees (Apis mellifera). Environ. Microbiol. Rep. 1, 131–135 (2009).
PubMed Article Google Scholar
74.
Chu, C. C. & Cameron, S. A. A scientific note on Nosema bombi infection intensity among different castes within a Bombus auricomus nest. Apidologie 48, 141–143 (2017).
Article Google Scholar
75.
vanEngelsdorp, D. et al. Colony collapse disorder: A descriptive study. PLoS ONE 4, e6481–e6481 (2009).
ADS PubMed PubMed Central Article CAS Google Scholar
76.
Simmons, W. R. & Angelini, D. R. Chronic exposure to a neonicotinoid increases expression of antimicrobial peptide genes in the bumblebee Bombus impatiens. Sci. Rep. 7, 44773 (2017).
ADS CAS PubMed PubMed Central Article Google Scholar
77.
Muller, C. B. & Schmid-Hempel, P. Variation in life-history pattern in relation to worker mortality in the bumble-bee, Bombus lucorum. Funct. Ecol. 6, 48–56 (1992).
Article Google Scholar
78.
Hijmans, R. J. & van Etten, J. Raster: Geographic analysis and modeling with raster data. R package version 2.0-12. http://CRAN.R-project.org/package=raster (2012).
79.
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.r-project.org/index.html (2019).
80.
Knight, M. E. et al. Bumblebee nest density and the scale of available forage in arable landscapes. Insect Conserv. Diver. 2, 116–124 (2009).
Article Google Scholar
81.
Darvill, B., Knight, M. E. & Goulson, D. Use of genetic markers to quantify bumblebee foraging range and nest density. Oikos 107, 471–478 (2004).
Article Google Scholar
82.
Desjardins, È. C. & De Oliveira, D. Commercial bumble bee Bombus impatiens (Hymenoptera: Apidae) as a pollinator in lowbush blueberry (Ericale: Ericaceae) fields. J. Econ. Entomol. 99, 443–449 (2006).
PubMed Article Google Scholar
83.
Natural Capital Project. InVEST: Crop Pollination Model. Version 3.1.0. http://naturalcapitalproject.org/models/crop_pollination.html (2014).
84.
Kammerer, M. A., Biddinger, D. J., Joshi, N. K., Rajotte, E. G. & Mortensen, D. A. Modeling local spatial patterns of wild bee diversity in Pennsylvania apple orchards. Landsc. Ecol. 31, 2459–2469 (2016).
Article Google Scholar
85.
Johnson, D. M. & Mueller, R. The 2009 cropland data layer. Photogramm. Eng. Remote. Sens. 76, 1201–1205 (2010).
Google Scholar
86.
PRISM Climate Group. PRISM Gridded Climate Data. Oregon State University, Corvallis Oregon, USA. http://prism.oregonstate.edu (2019).
87.
Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference—A Practical Information-Theoretic Approach (Springer, New York, 2002).
Google Scholar
88.
Bates, D., Mächler, M., Bolker, B. M. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
Article Google Scholar
89.
Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, New York, 2009).
Google Scholar
90.
Sokal, R. R. & Rohlf, F. J. The Principles and Practice of Statistics in Biological Research (W.H Freeman and Company, New York, 1969).
Google Scholar More