Cryptic terrestrial fungus-like fossils of the early Ediacaran Period
1.
Kenrick, P., Wellman, C. H., Schneider, H. & Edgecombe, G. D. A timeline for terrestrialization: consequences for the carbon cycle in the Palaeozoic. Philos. Trans. R. Soc. B 367, 519–536 (2012).
Article Google Scholar
2.
Kennedy, M., Droser, M., Mayer, L. M., Pevear, D. & Mrofka, D. Late Precambrian oxygenation; inception of the clay mineral factory. Science 311, 1446–1449 (2006).
ADS CAS PubMed Article Google Scholar
3.
Naranjo-Ortiz, M. A. & Gabaldón, T. Fungal evolution: major ecological adaptations and evolutionary transitions. Biol. Rev. 94, 1443–1476 (2019).
PubMed Article Google Scholar
4.
Heckman, D. S. et al. Molecular evidence for the early colonization of land by fungi and plants. Science 293, 1129–1133 (2001).
CAS PubMed Article Google Scholar
5.
Lutzoni, F. et al. Contemporaneous radiations of fungi and plants linked to symbiosis. Nat. Commun. 9, 5451 (2018).
ADS CAS PubMed PubMed Central Article Google Scholar
6.
Chang, Y. et al. Phylogenomic analyses indicate that early fungi evolved digesting cell walls of algal ancestors of land plants. Genome Biol. Evol. 7, 1590–1601 (2015).
CAS PubMed PubMed Central Article Google Scholar
7.
Taylor, T. N., Krings, M. & Taylor, E. L. Fossil Fungi. 1st edn (Academic Press, 2015).
8.
Berbee, M. L. et al. Genomic and fossil windows into the secret lives of the most ancient fungi. Nat. Rev. Microbiol. 18, 717–730 (2020).
Google Scholar
9.
Bengtson, S. et al. Fungus-like mycelial fossils in 2.4-billion-year-old vesicular basalt. Nat. Ecol. Evol. 1, 0141 (2017).
Article Google Scholar
10.
Loron, C. C. et al. Early fungi from the Proterozoic era in Arctic Canada. Nature 570, 232–235 (2019).
ADS CAS PubMed Article Google Scholar
11.
Bonneville, S. et al. Molecular identification of fungi microfossils in a Neoproterozoic shale rock. Sci. Adv. 6, eaax7599 (2020).
ADS CAS PubMed PubMed Central Article Google Scholar
12.
Butterfield, N. J. Probable Proterozoic fungi. Paleobiology 31, 165–182 (2005).
Article Google Scholar
13.
Yuan, X., Xiao, S. & Taylor, T. N. Lichen-like symbiosis 600 million years ago. Science 308, 1017–1020 (2005).
ADS CAS PubMed Article Google Scholar
14.
Smith, M. R. Cord-forming Palaeozoic fungi in terrestrial assemblages. Bot. J. Linn. Soc. 180, 452–460 (2016).
Article Google Scholar
15.
Krings, M., Harper, C. J. & Taylor, E. L. Fungi and fungal interactions in the Rhynie chert: a review of the evidence, with the description of Perexiflasca tayloriana gen. et sp. nov. Philos. Trans. R. Soc. B 373, 20160500 (2018).
Article Google Scholar
16.
Condon, D. et al. U-Pb ages from the Neoproterozoic Doushantuo Formation, China. Science 308, 95–98 (2005).
ADS CAS PubMed Article PubMed Central Google Scholar
17.
Zhou, C., Huyskens, M. H., Lang, X., Xiao, S. & Yin, Q.-Z. Calibrating the terminations of Cryogenian global glaciations. Geology 47, 251–254 (2019).
ADS CAS Article Google Scholar
18.
Jiang, G., Kennedy, M. J., Christie-Blick, N., Wu, H. & Zhang, S. Stratigraphy, sedimentary structures, and textures of the late Neoproterozoic Doushantuo cap carbonate in South China. J. Sediment. Res. 76, 978–995 (2006).
ADS CAS Article Google Scholar
19.
Hoffman, P. F. & Macdonald, F. A. Sheet-crack cements and early regression in Marinoan (635 Ma) cap dolostones: regional benchmarks of vanishing ice-sheets? Earth Planet. Sci. Lett. 300, 374–384 (2010).
ADS CAS Article Google Scholar
20.
Gan, T. et al. Miniature paleo-speleothems from the earliest Ediacaran (635 Ma) Doushantuo cap dolostone in South China and their implications for terrestrial ecosystems. EarthArXiv, https://doi.org/10.31223/osf.io/srkcp (2019).
21.
Zhou, C., Bao, H., Peng, Y. & Yuan, X. Timing the deposition of 17O-depleted barite at the aftermath of Nantuo glacial meltdown in South China. Geology 38, 903–906 (2010).
ADS CAS Article Google Scholar
22.
Zhou, G., Luo, T., Zhou, M., Xing, L. & Gan, T. A ubiquitous hydrothermal episode recorded in the sheet-crack cements of a Marinoan cap dolostone of South China: implication for the origin of the extremely 13C-depleted calcite cement. J. Asian Earth Sci. 134, 63–71 (2017).
ADS Article Google Scholar
23.
Muscente, A. D., Czaja, A. D., Tuggle, J., Winkler, C. & Xiao, S. Manganese oxides resembling microbial fabrics and their implications for recognizing inorganically preserved microfossils. Astrobiology 18, 249–258 (2018).
ADS CAS PubMed Article Google Scholar
24.
García-Ruiz, J. M. et al. Self-assembled silica-carbonate structures and detection of ancient microfossils. Science 302, 1194 (2003).
ADS PubMed Article CAS Google Scholar
25.
Rouillard, J., García-Ruiz, J. M., Gong, J. & van Zuilen, M. A. A morphogram for silica-witherite biomorphs and its application to microfossil identification in the early earth rock record. Geobiology 16, 279–296 (2018).
CAS PubMed PubMed Central Article Google Scholar
26.
Hofmann, B. A., Farmer, J. D., Blanckenburg, F. V. & Fallick, A. E. Subsurface filamentous fabrics: an evaluation of origins based on morphological and geochemical criteria, with implications for exopaleontology. Astrobiology 8, 87–117 (2008).
ADS CAS PubMed Article Google Scholar
27.
Rasmussen, B. Filamentous microfossils in a 3,235-million-year-old volcanogenic massive sulphide deposit. Nature 405, 676–679 (2000).
ADS CAS PubMed Article Google Scholar
28.
Schopf, J. W. et al. Sulfur-cycling fossil bacteria from the 1.8-Ga Duck Creek Formation provide promising evidence of evolution’s null hypothesis. Proc. Natl Acad. Sci. USA 112, 2087–2092 (2015).
ADS CAS PubMed Article Google Scholar
29.
Teske, A. & Nelson, D. C. in The Prokaryotes: Volume 6: Proteobacteria: Gamma Subclass (eds Dworkin, M. et al.) 784–810 (Springer, 2006).
30.
Zhou, X. et al. Biogenic iron-rich filaments in the quartz veins in the uppermost Ediacaran Qigebulake Formation, Aksu area, northwestern Tarim Basin, China: implications for iron oxidizers in subseafloor hydrothermal systems. Astrobiology 15, 523–537 (2015).
ADS CAS PubMed Article Google Scholar
31.
Thurston, E. L. & Ingram, L. O. Morphology and fine structure of Fischerella ambigua. J. Phycol. 7, 203–210 (1971).
Google Scholar
32.
Iyengar, M. O. P. & Desikachary, T. V. Mastigocladopsis jogensis gen. et sp. nov., a new member of the stigonemataceæ. Proc. Ind. Acad. Sci. B 24, 55–59 (1946).
Google Scholar
33.
Komárek, J. Cyanoprokaryota: 3. Teil/Part 3: Heterocytous Genera. (Springer Spektrum, 2013).
34.
Castenholz, R. W. in Bergey’s Manual of Systematic Bacteriology (eds Boone, et al.) 473–599 (Springer, 2001).
35.
Bartley, J. K. Actualistic taphonomy of cyanobacteria: implications for the Precambrian fossil record. Palaios 11, 571–586 (1996).
ADS Article Google Scholar
36.
Bold, H. C. & Wynne, M. J. Introduction to the Algae: Structure and Reproduction. (Prentice-Hall, 1978).
37.
Butterfield, N. J. A vaucheriacean alga from the middle Neoproterozoic of Spitsbergen: implications for the evolution of Proterozoic eukaryotes and the Cambrian explosion. Paleobiology 30, 231–252 (2004).
Article Google Scholar
38.
Tang, Q., Pang, K., Yuan, X. & Xiao, S. A one-billion-year-old multicellular chlorophyte. Nat. Ecol. Evol. 4, 543–549 (2020).
PubMed Article Google Scholar
39.
Leliaert, F. & Coppejans, E. A revision of Cladophoropsis Børgesen (Siphonocladales, Chlorophyta). Phycologia 45, 657–679 (2006).
Article Google Scholar
40.
Zhao, Z.-J., Zhu, H., Hu, Z.-Y. & Liu, G.-X. Occurrence of true branches in Rhizoclonium (Cladophorales, Ulvophyceae) and the reinstatement of Rhizoclonium pachydermum Kjellman. Phytotaxa 166, 273–284 (2014).
Article Google Scholar
41.
Entwisle, T. J. A monograph of Vaucheria (Vaucheriaceae, Chrysophyta) in south-eastern mainland Australia. Aust. Syst. Bot. 1, 1–77 (1988).
Article Google Scholar
42.
Boo, S. M. & Cho, T. O. The Morphology of Griffithsia tomo-yamadae Okamura (Ceramiaceae, Rhodophyta): a little-known species from the northeast Pacific. Bot. Mar. 44, 109–118 (2001).
Article Google Scholar
43.
Ferrer, N. C. & Caceres, E. J. Spirogyra salmonispora sp. nov. (Zygnematophyceae, Chiorophyta), a new freshwater species of the section Conjugata. Arch. Protistenk. 146, 101–105 (1995).
Article Google Scholar
44.
Li, Q., Chen, X., Jiang, Y. & Jiang, C. in Actinobacteria: Basics and Biotechnological Applications (eds Dhanasekaran, D. & Jiang, Y.) 59–86 (IntechOpen, 2016).
45.
Goodfellow, M. et al. Bergey’s Manual of Systematic Bacteriology: Volume Five The Actinobacteria, Part A and B. (Springer-Verlag, 2012).
46.
Erikson, D. The morphology, cytology, and taxonomy of the Actinomycetes. Annu. Rev. Microbiol. 3, 23–54 (1949).
Article Google Scholar
47.
Gregory, K. F. Hyphal anastomosis and cytological aspects of Streptomyces scabies. Can. J. Microbiol. 2, 649–655 (1956).
Article Google Scholar
48.
Higgins, M. L. & Silvey, J. K. G. Slide culture observations of two freshwater Actinomycetes. Trans. Am. Micros. Soc. 85, 390–398 (1966).
CAS Article Google Scholar
49.
Spatafora, J. W. et al. A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108, 1028–1046 (2016).
CAS PubMed PubMed Central Article Google Scholar
50.
O’Donnell, K. L. Zygomycetes in Culture. (Department of Botany, University of Georgia, 1979).
51.
Fischer, M. S. & Glass, N. L. Communicate and fuse: how filamentous fungi establish and maintain an interconnected mycelial network. Front. Microbiol. 10, 619 (2019).
PubMed PubMed Central Article Google Scholar
52.
Webster, J. in Introduction to Fungi (3rd Edn.) (eds Webster, J. & Weber, R.) 165–225 (Cambridge University Press, 2007).
53.
Drake, H. et al. Anaerobic consortia of fungi and sulfate reducing bacteria in deep granite fractures. Nat. Commun. 8, 55 (2017).
ADS PubMed PubMed Central Article CAS Google Scholar
54.
Bengtson, S. et al. Deep-biosphere consortium of fungi and prokaryotes in Eocene subseafloor basalts. Geobiology 12, 489–496 (2014).
CAS PubMed Article Google Scholar
55.
Ivarsson, M. et al. Fossilized fungi in subseafloor Eocene basalts. Geology 40, 163–166 (2012).
ADS CAS Article Google Scholar
56.
Northup, D. et al. Biological investigations in Lechuguilla Cave. NSS Bull. 56, 54–63 (1994).
Google Scholar
57.
Duane, M. J. Unusual preservation of crustaceans and microbial colonies in a vadose zone, northwest Morocco. Lethaia 36, 21–32 (2003).
Article Google Scholar
58.
Kretzschmar, M. Fossile pilze in eisen-stromatolithen von warstein (rheinisches schiefergebirge). Facies 7, 237–259 (1982).
Article Google Scholar
59.
Nieves-Rivera, Á. M., Santos-Flores, C. J., Dugan, F. M. & Miller, T. E. Guanophilic fungi in three caves of southwestern Puerto Rico. Int. J. Speleol. 38, 61–70 (2009).
Article Google Scholar
60.
Nováková, A. Microscopic fungi isolated from the Domica Cave system (Slovak Karst National Park, Slovakia). A review. Int. J. Speleol. 38, 71–82 (2009).
Article Google Scholar
61.
Popović, S. et al. Cyanobacteria, algae and microfungi present in biofilm from Božana Cave (Serbia). Int. J. Speleol. 44, 141–149 (2015).
Article Google Scholar
62.
Schopf, J. W. Microflora of the Bitter Springs Formation, late Precambrian, central Australia. J. Paleontol. 42, 651–688 (1968).
Google Scholar
63.
Strother, P. K. Systematics and evolutionary significance of some new cryptospores from the Cambrian of eastern Tennessee, USA. Rev. Palaeobot. Palynol. 227, 28–41 (2016).
Article Google Scholar
64.
Prave, A. R. Life on land in the Proterozoic: evidence from the Torridonian rocks of northwest Scotland. Geology 30, 811–814 (2002).
ADS Article Google Scholar
65.
Blank, C. E. Origin and early evolution of photosynthetic eukaryotes in freshwater environments: reinterpreting Proterozoic paleobiology and biogeochemical processes in light of trait evolution. J. Phycol. 49, 1040–1055 (2013).
CAS PubMed Article Google Scholar
66.
Sánchez-Baracaldo, P., Raven, J. A., Pisani, D. & Knoll, A. H. Early photosynthetic eukaryotes inhabited low-salinity habitats. Proc. Natl. Acad. Sci. USA 114, E7737–E7745 (2017).
PubMed Article CAS Google Scholar
67.
Föllmi, K. B. The phosphorus cycle, phosphogenesis and marine phosphate-rich deposits. Earth Sci. Rev. 40, 55–124 (1996).
ADS Article Google Scholar
68.
Sahoo, S. K. et al. Ocean oxygenation in the wake of the Marinoan glaciation. Nature 489, 546–549 (2012).
ADS CAS PubMed Article Google Scholar
69.
Guo, Z., Peng, X., Czaja, A. D., Chen, S. & Ta, K. Cellular taphonomy of well-preserved Gaoyuzhuang microfossils: a window into the preservation of ancient cyanobacteria. Precambrian Res. 304, 88–98 (2018).
ADS CAS Article Google Scholar
70.
Czaja, A. D., Beukes, N. J. & Osterhout, J. T. Sulfur-oxidizing bacteria prior to the Great Oxidation Event from the 2.52 Ga Gamohaan Formation of South Africa. Geology 44, 983–986 (2016).
ADS CAS Article Google Scholar
71.
Pang, K. et al. The nature and origin of nucleus-like intracellular inclusions in Paleoproterozoic eukaryote microfossils. Geobiology 11, 499–510 (2013).
CAS PubMed Google Scholar
72.
Zhang, J. et al. Improved precision and spatial resolution of sulfur isotope analysis using NanoSIMS. J. Anal. Spectrom. 20, 1934–1943 (2014).
CAS Article Google Scholar
73.
Chen, L. et al. Extreme variation of sulfur isotopic compositions in pyrite from the Qiuling sediment-hosted gold deposit, West Qinling orogen, central China: an in situ SIMS study with implications for the source of sulfur. Mineral. Depos. 50, 643–656 (2015).
ADS CAS Article Google Scholar
74.
Roberts, N. M. W. & Walker, R. J. U-Pb geochronology of calcite-mineralized faults: absolute timing of rift-related fault events on the northeast Atlantic margin. Geology 44, 531–534 (2016).
ADS CAS Article Google Scholar
75.
Roberts, N. M. W. et al. A calcite reference material for LA-ICP-MS U-Pb geochronology. Geochem. Geophys. Geosyst. 18, 2807–2814 (2017).
ADS CAS Article Google Scholar
76.
Hu, Z. et al. Signal enhancement in laser ablation ICP-MS by addition of nitrogen in the central channel gas. J. Anal. Spectrom. 23, 1093–1101 (2008).
CAS Article Google Scholar
77.
Liu, Y. et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chin. Sci. Bull. 55, 1535–1546 (2010).
CAS Article Google Scholar
78.
Zhang, Y. & Yuan, X. New data on multicellular thallophytes and fragments of cellular tissues from late Proterozoic phosphate rocks, South China. Lethaia 25, 1–18 (1992).
Article Google Scholar
79.
Nie, W., Ma, D., Pan, J., Zhou, J. & Wu, K. δ13C excursions of phosphorite-bearing rocks in Neoproterozoic-Early Cambrian interval in Guizhou, South China: implications for palaeoceanic evolutions. J. Nanjing Univ. Nat. Sci. 42, 257–268 (2006).
CAS Google Scholar
80.
Barfod, G. H. et al. New Lu-Hf and Pb-Pb age constraints on the earliest animal fossils. Earth Planet. Sci. Lett. 201, 203–212 (2002).
ADS CAS Article Google Scholar
81.
Igisu, M. et al. Micro-FTIR spectroscopic signatures of bacterial lipids in Proterozoic microfossils. Precambrian Res. 173, 19–26 (2009).
ADS CAS Article Google Scholar
82.
Wang, X.-H. Interfacial electrochemistry of pyrite oxidation and flotation: II. FTIR studies of xanthate adsorption on pyrite surfaces in neutral pH solutions. J. Colloid Interface Sci. 171, 413–428 (1995).
ADS CAS Article Google Scholar
83.
Igisu, M. et al. FTIR microspectroscopy of Ediacaran phosphatized microfossils from the Doushantuo Formation, Weng’an, South China. Gondwana Res. 25, 1120–1138 (2014).
ADS CAS Article Google Scholar
84.
Beyssac, O., Goffé, B., Chopin, C. & Rouzaud, J. N. Raman spectra of carbonaceous material in metasediments: a new geothermometer. J. Metamorphic. Geol. 20, 859–871 (2002).
ADS CAS Article Google Scholar
85.
Turcotte, S. B. et al. Application of Raman spectroscopy to metal-sulfide surface analysis. Appl. Opt. 32, 935–938 (1993).
ADS CAS PubMed Article Google Scholar More
