An altered microbiome in urban coyotes mediates relationships between anthropogenic diet and poor health
1.
Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).
ADS CAS PubMed Article Google Scholar
2.
Ellis, E. C., Goldewijk, K. K., Siebert, S., Lightman, D. & Ramankutty, N. Anthropogenic transformation of the biomes, 1700 to 2000. Glob. Ecol. Biogeogr. 19, 589–606 (2010).
Google Scholar
3.
Concepción, E. D., Moretti, M., Altermatt, F., Nobis, M. P. & Obrist, M. K. Impacts of urbanisation on biodiversity: the role of species mobility, degree of specialisation and spatial scale. Oikos 124, 1571–1582 (2015).
Article Google Scholar
4.
Lowry, H., Lill, A. & Wong, B. B. M. Behavioural responses of wildlife to urban environments. Biol. Rev. 88, 537–549 (2013).
PubMed Article Google Scholar
5.
Callaghan, C. T. et al. Generalists are the most urban-tolerant of birds: a phylogenetically controlled analysis of ecological and life history traits using a novel continuous measure of bird responses to urbanization. Oikos 128, 845–858 (2019).
Article Google Scholar
6.
Ducatez, S., Sayol, F., Sol, D. & Lefebvre, L. Are urban vertebrates city specialists, artificial habitat exploiters, or environmental generalists? Integr. Comp. Biol. 58, 929–938 (2018).
PubMed Article Google Scholar
7.
Murray, M. H. et al. City sicker? A meta-analysis of wildlife health and urbanization. Front. Ecol. Environ. 17, 575–583 (2019).
Article Google Scholar
8.
Lyons, J., Mastromonaco, G., Edwards, D. B. & Schulte-Hostedde, A. I. Fat and happy in the city: eastern chipmunks in urban environments. Behav. Ecol. 28, 1464–1471 (2017).
Article Google Scholar
9.
Meillère, A. et al. Corticosterone levels in relation to trace element contamination along an urbanization gradient in the common blackbird (Turdus merula). Sci. Total Environ. 566–567, 93–101 (2016).
ADS PubMed Article CAS Google Scholar
10.
Soto-Calderón, I., Acevedo-Garcés, Y., Álvarez-Cardona, J., Hernandez, C. & García, G. Physiological and parasitological implications of living in a city: the case of the white-footed tamarin (Saguinus leucopus). Am. J. Primatol. 78, (2016).
11.
Sillero-Zubiri, C., Sukumar, R. & Treves, A. Living with wildlife: the roots of conflict and the solutions. In Key Topics in Conservation Biology (eds. MacDonald, D. & Service, K.) 255–272 (2006).
12.
Muegge, B. D. et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 332, 970–974 (2011).
ADS CAS PubMed PubMed Central Article Google Scholar
13.
Hanning, I. & Diaz-Sanchez, S. The functionality of the gastrointestinal microbiome in non-human animals. Microbiome 3, 51 (2015).
PubMed PubMed Central Article Google Scholar
14.
Tremaroli, V. & Bäckhed, F. Functional interactions between the gut microbiota and host metabolism. Nature 489, 242–249 (2012).
ADS CAS PubMed Article Google Scholar
15.
Pickard, J. M., Zeng, M. Y., Caruso, R. & Núñez, G. Gut microbiota: role in pathogen colonization, immune responses, and inflammatory disease. Immunol. Rev. 279, 70–89 (2017).
CAS PubMed PubMed Central Article Google Scholar
16.
Mockler, B. K., Kwong, W. K., Moran, N. A. & Koch, H. Microbiome structure influences infection by the parasite Crithidia bombi in bumble bees. Appl. Environ. Microbiol. 84, e02335-e2417 (2018).
PubMed PubMed Central Article Google Scholar
17.
Suzuki, T. A. Links between natural variation in the microbiome and host fitness in wild mammals. Integr. Comp. Biol. 57, 756–769 (2017).
CAS PubMed Article Google Scholar
18.
Kirchoff, N. S., Udell, M. A. & Sharpton, T. J. The gut microbiome correlates with conspecific aggression in a small population of rescued dogs (Canis familiaris). PeerJ 7, e6103 (2019).
PubMed PubMed Central Article CAS Google Scholar
19.
Walter, J. Ecological role of lactobacilli in the gastrointestinal tract: implications for fundamental and biomedical research. Appl. Environ. Microbiol. 74, 4985–4996 (2008).
CAS PubMed PubMed Central Article Google Scholar
20.
Teyssier, A. et al. Inside the guts of the city: urban-induced alterations of the gut microbiota in a wild passerine. Sci. Total Environ. 612, 1276–1286 (2018).
ADS CAS PubMed Article Google Scholar
21.
Murray, M. H. et al. Gut microbiome shifts with urbanization and potentially facilitates a zoonotic pathogen in a wading bird. PLoS ONE 15, 1–16 (2020).
Google Scholar
22.
Phillips, J. N., Berlow, M. & Derryberry, E. P. The effects of landscape urbanization on the gut microbiome: an exploration into the gut of urban and rural white-crowned sparrows. Front. Ecol. Evol. 6, 148 (2018).
Article Google Scholar
23.
Teyssier, A. et al. Diet contributes to urban-induced alterations in gut microbiota: experimental evidence from a wild passerine. Proc. R. Soc. B Biol. Sci. 287, (2020).
24.
Stothart, M. R., Palme, R. & Newman, A. E. M. It’s what’s on the inside that counts: stress physiology and the bacterial microbiome of a wild urban mammal. Proc. R. Soc. B Biol. Sci. 286, (2019).
25.
Becker, C. G., Longo, A. V., Haddad, C. F. B. & Zamudio, K. R. Land cover and forest connectivity alter the interactions among host, pathogen and skin microbiome. Proc. R. Soc. B Biol. Sci. 284, 20170582 (2017).
Article Google Scholar
26.
Bestion, E. et al. Climate warming reduces gut microbiota diversity in a vertebrate ectotherm. Nat. Ecol. Evol. 1, 0161 (2017).
Article Google Scholar
27.
Barelli, C. et al. Habitat fragmentation is associated to gut microbiota diversity of an endangered primate: implications for conservation. Sci. Rep. 5, 14862 (2015).
ADS CAS PubMed PubMed Central Article Google Scholar
28.
Trevelline, B. K., Fontaine, S. S., Hartup, B. K. & Kohl, K. D. Conservation biology needs a microbial renaissance: a call for the consideration of host-associated microbiota in wildlife management practices. Proc. R. Soc. B Biol. Sci. 286, (2019).
29.
Nelson, T. M., Rogers, T. L., Carlini, A. R. & Brown, M. V. Diet and phylogeny shape the gut microbiota of Antarctic seals: a comparison of wild and captive animals. Environ. Microbiol. 15, 1132–1145 (2013).
CAS PubMed Article Google Scholar
30.
Wasimuddin, et al. Gut microbiomes of free-ranging and captive Namibian cheetahs: diversity, putative functions and occurrence of potential pathogens. Mol. Ecol. 26, 5515–5527 (2017).
CAS PubMed Article Google Scholar
31.
Amato, K. R. et al. Evolutionary trends in host physiology outweigh dietary niche in structuring primate gut microbiomes. ISME J. 13, 576–587 (2019).
CAS PubMed Article Google Scholar
32.
Gehrt, S. D. & Riley, S. P. D. Coyotes (Canis latrans). in Urban Carnivores: Ecology, Conflict, and Conservation (eds. Gehrt, S. D., Riley, S. P. D. & Cypher, B. L.) 79–95 (2010).
33.
Breck, S. W., Poessel, S. A., Mahoney, P. & Young, J. K. The intrepid urban coyote: a comparison of bold and exploratory behavior in coyotes from urban and rural environments. Sci. Rep. 9, 2104 (2019).
ADS PubMed PubMed Central Article CAS Google Scholar
34.
Gier, H. T. Coyotes in Kansas. (1968).
35.
Murray, M. H. et al. Greater consumption of protein-poor anthropogenic food by urban relative to rural coyotes increases diet breadth and potential for human-wildlife conflict. Ecography 38, 001–008 (2015).
Article Google Scholar
36.
Massolo, A., Liccioli, S., Budke, C. & Klein, C. Echinococcus multilocularis in North America: the great unknown. Parasite 21, 73 (2014).
PubMed PubMed Central Article Google Scholar
37.
Murray, M. H., Edwards, M. A., Abercrombie, B. & St. Clair, C. C. Poor health is associated with use of anthropogenic resources in an urban carnivore. Proc. R. Soc. B Biol. Sci. 282, 20150009 (2015).
38.
Murray, M. H., Hill, J., Whyte, P. & St. Clair, C. C. Urban compost attracts coyotes, contains toxins, and may promote disease in urban-adapted wildlife. Ecohealth 13, 285–292 (2016).
39.
Luong, L. T., Chambers, J. L., Moizis, A., Stock, T. & St. Clair, C. Helminth parasites and zoonotic risk associated with urban coyotes (Canis latrans) in Alberta, Canada. J. Helminthol. 94, e25 (2020).
40.
Corbin, E. et al. Spleen mass as a measure of immune strength in mammals. Mamm. Rev. 38, 108–115 (2008).
Article Google Scholar
41.
Newsome, S. D., Ralls, K., Van Horn Job, C., Fogel, M. L. & Cypher, B. L. Stable isotopes evaluate exploitation of anthropogenic foods by the endangered San Joaquin kit fox (Vulpes macrotis mutica). J. Mammol. 91, 1313–1321 (2010).
42.
Huot, J., Poulle, M. & Crate, M. Evaluation of several indices for assessment of coyote (Canis latrans) body composition. Can. J. Zool. 73, 1620–1624 (1995).
Article Google Scholar
43.
Tucker, C. M. et al. A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biol. Rev. 92, 698–715 (2016).
PubMed Article Google Scholar
44.
Reese, A. T. & Dunn, R. R. Drivers of microbiome biodiversity: a review of general rules, feces, and ignorance. MBio 9, e01294-e1318 (2018).
PubMed PubMed Central Article Google Scholar
45.
Pilla, R. & Suchodolski, J. S. The role of the canine gut microbiome and metabolome in health and gastrointestinal disease. Front. Vet. Sci. 6, 498 (2020).
PubMed PubMed Central Article Google Scholar
46.
Conlon, M. A. & Bird, A. R. The impact of diet and lifestyle on gut microbiota and human health. Nutrition 7, 17–44 (2015).
Google Scholar
47.
Makki, K., Deehan, E. C., Walter, J. & Bäckhed, F. The impact of dietary fiber on gut microbiota in host health and disease. Cell Host Microbe 23, 705–715 (2018).
CAS PubMed Article Google Scholar
48.
Schnorr, S. L. et al. Gut microbiome of the Hadza hunter-gatherers. Nat. Commun. 5, 3654 (2014).
ADS CAS PubMed PubMed Central Article Google Scholar
49.
Vieco-Saiz, N. et al. Benefits and inputs from lactic acid bacteria and their bacteriocins as alternatives to antibiotic growth promoters during food-animal production. Front. Microbiol. 10, 1–17 (2019).
Article Google Scholar
50.
Karasov, W. H. & Douglas, A. E. Comparative digestive physiology. Comp. Physiol. 3, 741–783 (2013).
Google Scholar
51.
Wang, T. et al. Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME J. 6, 320–329 (2012).
CAS PubMed Article Google Scholar
52.
AlShawaqfeh, M. K. et al. A dysbiosis index to assess microbial changes in fecal samples of dogs with chronic inflammatory enteropathy. FEMS Microbiol. Ecol. 93, 1–8 (2017).
Article CAS Google Scholar
53.
Beldomenico, P. M. & Begon, M. Disease spread, susceptibility and infection intensity: vicious circles? Trends Ecol. Evol. 25, 21–27 (2010).
PubMed Article Google Scholar
54.
Newsome, S. D., Garbe, H. M., Wilson, E. C. & Gehrt, S. D. Individual variation in anthropogenic resource use in an urban carnivore. Oecologia 178, 115–128 (2015).
ADS PubMed Article Google Scholar
55.
Henderson, G. et al. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci. Rep. 5, 14567 (2015).
CAS PubMed PubMed Central Article Google Scholar
56.
Brennan, C. A. & Garrett, W. S. Fusobacterium nucleatum – symbiont, opportunist and oncobacterium. Nat. Rev. Microbiol. 17, 156–166 (2019).
CAS PubMed PubMed Central Article Google Scholar
57.
Bermingham, E. N., Maclean, P., Thomas, D. G., Cave, N. J. & Young, W. Key bacterial families (Clostridiaceae, Erysipelotrichaceae and Bacteroidaceae) are related to the digestion of protein and energy in dogs. PeerJ 5, e3019 (2017).
PubMed PubMed Central Article CAS Google Scholar
58.
Alessandri, G. et al. Metagenomic dissection of the canine gut microbiota: insights into taxonomic, metabolic and nutritional features. Environ. Microbiol. 21, 1331–1343 (2019).
CAS PubMed Article Google Scholar
59.
Schmidt, M. et al. The fecal microbiome and metabolome differs between dogs fed Bones and Raw Food (BARF) diets and dogs fed commercial diets. PLoS ONE 13, e0201279 (2018).
PubMed PubMed Central Article CAS Google Scholar
60.
Sandri, M., Dal Monego, S., Conte, G., Sgorlon, S. & Stefanon, B. Raw meat based diet influences faecal microbiome and end products of fermentation in healthy dogs. BMC Vet. Res. 13, 1–11 (2017).
Google Scholar
61.
Moon, C. D., Cookson, A. L., Young, W., Maclean, P. H. & Bermingham, E. N. Metagenomic insights into the roles of Proteobacteria in the gastrointestinal microbiomes of healthy dogs and cats. Microbiologyopen 7, e677 (2018).
Article Google Scholar
62.
Wu, X. et al. Analysis and comparison of the wolf microbiome under different environmental factors using three different data of next generation sequencing. Sci. Rep. 7, 11332 (2017).
ADS PubMed PubMed Central Article CAS Google Scholar
63.
Wang, B. & Wang, X.-L. Species diversity of fecal microbial flora in Canis lupus familiaris infected with canine parvovirus. Vet. Microbiol. 237, 108390 (2019).
PubMed Article Google Scholar
64.
Chen, L. et al. NLRP12 attenuates colon inflammation by maintaining colonic microbial diversity and promoting protective commensal bacterial growth. Nat. Immunol. 18, 541–551 (2017).
PubMed PubMed Central Article CAS Google Scholar
65.
Martínez, I. et al. Gut microbiome composition is linked to whole grain-induced immunological improvements. ISME J. 7, 269–280 (2013).
PubMed Article CAS Google Scholar
66.
Liu, Y. et al. Splenectomy leads to amelioration of altered gut microbiota and metabolome in liver cirrhosis patients. Front. Microbiol. 9, 1–13 (2018).
Article Google Scholar
67.
Demas, G. E., Zysling, D. A., Beechler, B. R., Muehlenbein, M. P. & French, S. S. Beyond phytohaemagglutinin: assessing vertebrate immune function across ecological contexts. J. Anim. Ecol. 80, 710–730 (2011).
PubMed Article Google Scholar
68.
Sugden, S. A., St. Clair, C. C. & Stein, L. Y. Individual and site-specific variation in a biogeographical profile of the coyote intestinal microbiota. Microb. Ecol. (2020).
69.
David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).
ADS CAS PubMed Article Google Scholar
70.
Leung, J. M., Graham, A. L. & Knowles, S. C. L. Parasite-microbiota interactions with the vertebrate gut: synthesis through an ecological lens. Front. Microbiol. 9, 843 (2018).
PubMed PubMed Central Article Google Scholar
71.
Ezenwa, V. O., Gerardo, N. M., Inouye, D. W., Medina, M. & Xavier, J. B. Animal behavior and the microbiome. Science 338, 198–199 (2012).
ADS CAS PubMed Article Google Scholar
72.
Stewart, R. E. A., Stewart, B. E., Stirling, I. & Street, E. Counts of growth layer groups in cementum and dentine in ringed seals. Mar. Mammal Sci. 12, 383–401 (1996).
Article Google Scholar
73.
Linhart, S. B. & Knowlton, F. F. Determining age of coyotes by tooth cementum layers. J. Wildl. Manage. 31, 362–365 (1967).
Article Google Scholar
74.
Jahren, A. H. & Kraft, R. A. Carbon and nitrogen stable isotopes in fast food: signatures of corn and confinement. Proc. Natl. Acad. Sci. 105, 17855–17860 (2008).
ADS CAS PubMed Article Google Scholar
75.
Parnell, A. C. simmr: a stable isotope mixing model. (2019).
76.
Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. 108, 4516–4522 (2011).
ADS CAS PubMed Article Google Scholar
77.
Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).
Article Google Scholar
78.
Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6, 226 (2018).
PubMed PubMed Central Article Google Scholar
79.
Trachsel, D., Deplazes, P. & Mathis, A. Identification of taeniid eggs in the faeces from carnivores based on multiplex PCR using targets in mitochondrial DNA. Parasitology 134, 911–920 (2007).
CAS PubMed Article Google Scholar
80.
R Core Team. R: A language and environment for statistical computing. (2019).
81.
Chao, A. et al. Rarefaction and extrapolation of phylogenetic diversity. Methods Ecol. Evol. 6, 380–388 (2015).
Article Google Scholar
82.
Kembel, S. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).
CAS Article Google Scholar
83.
Giam, X. & Olden, J. D. Quantifying variable importance in a multimodel inference framework. Methods Ecol. Evol. 7, 388–397 (2016).
Article Google Scholar
84.
Cade, B. S. Model averaging and muddled multimodel inferences. Ecology 96, 2370–2382 (2015).
PubMed Article Google Scholar
85.
Fernandes, A., Macklaim, J. M., Linn, T., Reid, G. & Gloor, G. B. ANOVA-like differential expression (ALDEx) analysis for mixed population RNA-Seq. PLoS ONE 8, e67019 (2013).
ADS CAS PubMed PubMed Central Article Google Scholar More