Holland, R. A. et al. Global impacts of energy demand on the freshwater resources of nations. Proc. Natl Acad. Sci. U.S.A. 112, E6707–E6716 (2015).
Google Scholar
Gleick, P. H. & Palaniappan, M. Peak water limits to freshwater withdrawal and use. Proc. Natl Acad. Sci. U.S.A. 107, 11155–11162 (2010).
Google Scholar
Oki, T. & Kanae, S. Global hydrological cycles and world water resources. Science. 313, 1068–1072 (2006).
Google Scholar
Postel, S. L., Daily, G. C. & Ehrlich, P. R. Human Appropriation of Renewable Fresh Water. Science. 271, 785–788 (1996).
Google Scholar
United Nations Children’s Fund (UNICEF) & World Health Organization (WHO). Progress on household drinking water, sanitation and hygiene 2000-2017. Special focus on inequalities. https://www.unicef.org/media/55276/file/Progress on drinking water, sanitation and hygiene 2019.pdf (2019).
Prüss-Ustün, A. et al. Burden of disease from inadequate water, sanitation and hygiene for selected adverse health outcomes: An updated analysis with a focus on low- and middle-income countries. Int. J. Hyg. Environ. Health 222, 765 (2019).
Caprioli, A., Morabito, S., Bruégre, H. & Oswald, E. Enterohaemorrhagic Escherichia coli: emerging issues on virulence and modes of transmission. Vet. Res. 36, 289–311 (2005).
Google Scholar
Vital, M., Fuchslin, H. P., Hammes, F. & Egli, T. Growth of Vibrio cholerae O1 Ogawa Eltor in freshwater. Microbiology 153, 1993–2001 (2007).
Google Scholar
Agudelo Higuita, N. I. & Huycke, M. M. Enterococcal Disease, Epidemiology, and Implications for Treatment. in Enterococci: From Commensals to Leading Causes of Drug Resistant Infection 47–72 (Massachusetts Eye and Ear Infirmary, 2014).
Paton, J. C. & Paton, A. W. Pathogenesis and diagnosis of Shiga toxin-producing Escherichia coli infections. Clin. Microbiol. Rev. 11, 450–479 (1998).
Google Scholar
Bellamy, W. D., Silverman, G. P., Hendricks, D. W. & Logsdon, G. S. Removing Giardia cysts with slow sand filtration. J. Am. Water Works Assoc. 77, 52–60 (1985).
Fogel, D., Isaac-Renton, J., Guasparini, R., Moorehead, W. & Removing, O. J. giardia and cryptosporidium by slow sand filtration. JAWWA, Res. Technol. 3, 77–84 (1993).
Google Scholar
Hijnen, W. A. M., Schijven, J. F., Bonné, P., Visser, A. & Medema, G. J. Elimination of viruses, bacteria and protozoan oocysts by slow sand filtration. Water Sci. Technol. 50, 147–154 (2004).
Google Scholar
Campos, L. C., Su, M. F. J., Graham, N. J. D. & Smith, S. R. Biomass development in slow sand filters. Water Res. 36, 4543–4551 (2002).
Google Scholar
Basu, O. D., Dhawan, S. & Black, K. Applications of biofiltration in drinking water treatment – a review. J. Chem. Technol. Biotechnol. 91, 585–595 (2016).
Google Scholar
Terry, L. G. & Summers, R. S. Biodegradable organic matter and rapid-rate biofilter performance: A review. Water Res. 128, 234–245 (2018).
Google Scholar
Loh, Z. Z. et al. Shifting from conventional to organic filter media in wastewater biofiltration treatment: a review. Appl. Sci. 2021, Vol. 11, Page 8650 11, 8650 (2021).
Google Scholar
Bennett, A. Drinking water: Pathogen removal from water – technologies and techniques. Filtr. Sep. 45, 14–16 (2008).
Google Scholar
Di Cristo, C., Esposito, G. & Leopardi, A. Modelling trihalomethanes formation in water supply systems. Environ. Technol. 34, 61–70 (2013).
Google Scholar
Pooi, C. K. & Ng, H. Y. Review of low-cost point-of-use water treatment systems for developing communities. npj Clean Water 2018 11 1, 11 (2018).
Google Scholar
Flemming, H.-C. et al. Biofilms: an emergent form of bacterial life. Nat. Rev. Microbiol. 14, 563–575 (2016).
Google Scholar
Fu, J. et al. Pilot investigation of two-stage biofiltration for removal of natural organic matter in drinking water treatment. Chemosphere 166, 311–322 (2017).
Google Scholar
Chen, F. et al. Kinetics of natural organic matter (NOM) removal during drinking water biofiltration using different NOM characterization approaches. Water Res. 104, 361–370 (2016).
Google Scholar
McKie, M. J., Ziv-El, M. C., Taylor-Edmonds, L., Andrews, R. C. & Kirisits, M. J. Biofilter scaling procedures for organics removal: A potential alternative to piloting. Water Res. 151, 87–97 (2019).
Google Scholar
de Vries, J. Soil filtration of wastewater effluent and the mechanism of pore clogging. J. Water Pollut. Control Fed. 44, 565–573 (1972).
Métivier, R., Bourven, I., Labanowski, J. & Guibaud, G. Interaction of erythromycin ethylsuccinate and acetaminophen with protein fraction of extracellular polymeric substances (EPS) from various bacterial aggregates. Environ. Sci. Pollut. Res. 20, 7275–7285 (2013).
Google Scholar
Writer, J. H., Barber, L. B., Ryan, J. N. & Bradley, P. M. Biodegradation and attenuation of steroidal hormones and alkylphenols by stream biofilms and sediments. Environ. Sci. Technol. 45, 4370–4376 (2011).
Google Scholar
Flemming, H.-C. Biofilms. in Encyclopedia of Life Sciences (John Wiley & Sons, Ltd, 2008). https://doi.org/10.1002/9780470015902.a0000342.pub2.
Kragh, K. N. et al. Role of multicellular aggregates in biofilm formation. MBio 7, e00237 (2016).
Google Scholar
Grumbein, S., Opitz, M. & Lieleg, O. Selected metal ions protect Bacillus subtilis biofilms from erosion †. Metallomics 6, 1441 (2014).
Google Scholar
Fu, J. et al. Removal of pharmaceuticals and personal care products by two-stage biofiltration for drinking water treatment. Sci. Total Environ. 664, 240–248 (2019).
Google Scholar
Nemani, V. A., McKie, M. J., Taylor-Edmonds, L. & Andrews, R. C. Impact of biofilter operation on microbial community structure and performance. J. Water Process Eng. 24, 35–41 (2018).
Google Scholar
Beutel, M. W. & Larson, L. Pathogen removal from urban pond outflow using rock biofilters. Ecol. Eng. 78, 72–78 (2014).
Google Scholar
Wendt, C. et al. Microbial removals by a novel biofilter water treatment system. Am. J. Trop. Med. Hyg. 92, 765–772 (2015).
Google Scholar
Granger, H. C., Stoddart, A. K. & Gagnon, G. A. Direct biofiltration for manganese removal from surface water. J. Environ. Eng. 140, 04014006 (2014).
Google Scholar
Srivastava, N. K. & Majumder, C. B. Novel biofiltration methods for the treatment of heavy metals from industrial wastewater. J. Hazard. Mater. 151, 1–8 (2008).
Google Scholar
Fu, J. et al. Removal of disinfection byproduct (DBP) precursors in water by two-stage biofiltration treatment. Water Res. 123, 224–235 (2017).
Google Scholar
McKie, M. J., Andrews, S. A. & Andrews, R. C. Conventional drinking water treatment and direct biofiltration for the removal of pharmaceuticals and artificial sweeteners: A pilot-scale approach. Sci. Total Environ. 544, 10–17 (2016).
Google Scholar
Crognale, S. et al. Biological As(III) oxidation in biofilters by using native groundwater microorganisms. Sci. Total Environ. 651, 93–102 (2019).
Google Scholar
Klayman, B. J., Volden, P. A., Stewart, P. S. & Camper, A. K. Escherichia coli O157:H7 requires colonizing partner to adhere and persist in a capillary flow cell. Environ. Sci. Technol. 43, 2105–2111 (2009).
Google Scholar
Bauman, W. J., Nocker, A., Jones, W. L. & Camper, A. K. Retention of a model pathogen in a porous media biofilm. Biofouling 25, 229–240 (2009).
Google Scholar
Nocker, A., Burr, M. & Camper, A. Pathogens in water and biofilms. In Microbiology of waterborne diseases: microbiological aspects and risks: Second Edition 3–32 (Academic Press, 2013). https://doi.org/10.1016/B978-0-12-415846-7.00001-9.
Li, J., McLellan, S. & Ogawa, S. Accumulation and fate of green fluorescent labeled Escherichia coli in laboratory-scale drinking water biofilters. Water Res. 40, 3023–3028 (2006).
Google Scholar
Rendueles, O. & Ghigo, J.-M. Mechanisms of competition in biofilm communities. Microbiol. Spectr. 3, 1–14 (2015).
Hibbing, M. E., Fuqua, C., Parsek, M. R. & Peterson, S. B. Bacterial competition: Surviving and thriving in the microbial jungle. Nat. Rev. Microbiol. 8, 15–25 (2010).
Google Scholar
Aoki, S. K. et al. A widespread family of polymorphic contact-dependent toxin delivery systems in bacteria. Nature 468, 439–442 (2010).
Google Scholar
MacIntyre, D. L., Miyata, S. T., Kitaoka, M. & Pukatzki, S. The Vibrio cholerae type VI secretion system displays antimicrobial properties. Proc. Natl Acad. Sci. U.S.A. 107, 19520–19524 (2010).
Google Scholar
Ławniczak, Ł., Marecik, R. & Chrzanowski, Ł. Contributions of biosurfactants to natural or induced bioremediation. Appl. Microbiol. Biotechnol. 97, 2327 (2013).
Google Scholar
Cornforth, D. M. & Foster, K. R. Competition sensing: the social side of bacterial stress responses. Nat. Rev. Microbiol. 2013 114 11, 285–293 (2013).
Google Scholar
Legnani, P., Leoni, E., Rapuano, S., Turin, D. & Valenti, C. Survival and growth of Pseudomonas aeruginosa in natural mineral water: a 5-year study. Int. J. Food Microbiol. 53, 153–158 (1999).
Google Scholar
Moll, D. M., Summers, R. S., Fonseca, A. C. & Matheis, W. Impact of temperature on drinking water biofilter performance and microbial community structure. Environ. Sci. Technol. 33, 2377–2382 (1999).
Google Scholar
Hozalski, R. M., Bouwer, E. J. & Goel, S. Removal of natural organic matter (NOM) from drinking water supplies by ozone-biofiltration. Water Sci. Technol. 40, 157–163 (1999).
Google Scholar
Schmidt, K. D., Tümmler, B. & Römling, U. Comparative genome mapping of Pseudomonas aeruginosa PAO with P. aeruginosa C, which belongs to a major clone in cystic fibrosis patients and aquatic habitats. J. Bacteriol. 178, 85 (1996).
Google Scholar
Nigaud, Y. et al. Biofilm-induced modifications in the proteome of Pseudomonas aeruginosa planktonic cells. Biochim. Biophys. Acta – Proteins Proteom. 1804, 957–966 (2010).
Google Scholar
Von Ohle, C. et al. Real-time microsensor measurement of local metabolic activities in ex vivo dental biofilms exposed to sucrose and treated with chlorhexidine. Appl. Environ. Microbiol. 76, 2326 (2010).
Google Scholar
Nescerecka, A., Juhna, T. & Hammes, F. Identifying the underlying causes of biological instability in a full-scale drinking water supply system. Water Res. 135, 11–21 (2018).
Google Scholar
Prest, E. I., Hammes, F., Kötzsch, S., Van Loosdrecht, M. C. M. & Vrouwenvelder, J. S. A systematic approach for the assessment of bacterial growth-controlling factors linked to biological stability of drinking water in distribution systems. Water Sci. Technol. Water Supply 16, 865–880 (2016).
Google Scholar
Liang, K., Sobsey, M. & Stauber, C. E. Improving Household Drinking Water Quality: Use of Biosand Filter in Cambodia. https://scholarworks.gsu.edu/iph_facpub (2010).
Fabiszewski De Aceituno, A. M., Stauber, C. E., Walters, A. R., Meza Sanchez, R. E. & Sobsey, M. D. A randomized controlled trial of the plastic-housing biosand filter and its impact on diarrheal disease in Copan, Honduras. Am. J. Trop. Med. Hyg. 86, 913–921 (2012).
Google Scholar
Miettinen, I. T., Vartiainen, T. & Martikainen, P. J. Phosphorus and bacterial growth in drinking water. Appl. Environ. Microbiol. 63, 3242–3245 (1997).
Google Scholar
Keinänen, M. M. et al. The microbial community structure of drinking water biofilms can be affected by phosphorus availability. Appl. Environ. Microbiol. 68, 434–439 (2002).
Google Scholar
United Nations (UN). Transforming Our World: The 2030 Agenda for Sustainable Development. in A New Era in Global Health 529–567, https://doi.org/10.1891/9780826190123.ap02 (2018).
Serra, M. O. D. E. & Schnitzer, M. Extraction of humic acid by alkali and chelating resin. Can. J. Soil Sci. 52, 365–374 (1972).
Google Scholar
Smith, E. J., Davison, W. & Hamilton-Taylor, J. Methods for preparing synthetic freshwaters. Water Res. 36, 1286–1296 (2002).
Google Scholar
Sobsey, M. D. Managing Water in the Home: Accelerated Health Gains from Improved Water Supply Water, Sanitation and Health Department of Protection of the Human Environment World Health Organization Geneva. https://apps.who.int/iris/bitstream/handle/10665/67319/WHO_SDE_WSH_02.07.pdf?sequence=1&isAllowed=y (2002).
Carratalà, A. et al. Solar disinfection of viruses in polyethylene terephthalate bottles. Appl. Environ. Microbiol. 82, 279–288 (2016).
Attisani, M. Can solar technology generate clean water for developing nations? Renew. Energy Focus 17, 138–139 (2016).
Chaidez, C. et al. Point-of-use Unit Based on Gravity Ultrafiltration Removes Waterborne Gastrointestinal Pathogens from Untreated Water Sources in Rural Communities. Wilderness Environ. Med. 27, 379–385 (2016).
Clayton, G. E., Thorn, R. M. S. & Reynolds, D. M. Development of a novel off-grid drinking water production system integrating electrochemically activated solutions and ultrafiltration membranes. J. Water Process Eng. 30, 100480 (2017).
Baig, S. A., Mahmood, Q., Nawab, B., Shafqat, M. N. & Pervez, A. Improvement of drinking water quality by using plant biomass through household biosand filter – A decentralized approach. Ecol. Eng. 37, 1842–1848 (2011).
Source: Resources - nature.com