More stories

  • in

    Seeking climate connections among the oceans’ smallest organisms

    Andrew Babbin tries to pack light for work trips. Along with the travel essentials, though, he also brings a roll each of electrical tape, duct tape, lab tape, a pack of cable ties, and some bungee cords.“It’s my MacGyver kit: You never know when you have to rig something on the fly in the field or fix a broken bag,” Babbin says.The trips Babbin takes are far out to sea, on month-long cruises, where he works to sample waters off the Pacific coast and out in the open ocean. In remote locations, repair essentials often come in handy, as when Babbin had to zip-tie a wrench to a sampling device to help it sink through an icy Antarctic lake.Babbin is an oceanographer and marine biogeochemist who studies marine microbes and the ways in which they control the cycling of nitrogen between the ocean and the atmosphere. This exchange helps maintain healthy ocean ecosystems and supports the ocean’s capacity to store carbon.By combining measurements that he takes in the ocean with experiments in his MIT lab, Babbin is working to understand the connections between microbes and ocean nitrogen, which could in turn help scientists identify ways to maintain the ocean’s health and productivity. His work has taken him to many coastal and open-ocean regions around the globe.“You really become an oceanographer and an Earth scientist to see the world,” says Babbin, who recently earned tenure as the Cecil and Ida Green Career Development Professor in MIT’s Department of Earth, Atmospheric and Planetary Sciences. “We embrace the diversity of places and cultures on this planet. To see just a small fraction of that is special.”A powerful cycleThe ocean has been a constant presence for Babbin since childhood. His family is from Monmouth County, New Jersey, where he and his twin sister grew up playing along the Jersey shore. When they were teenagers, their parents took the kids on family cruise vacations.“I always loved being on the water,” he says. “My favorite parts of any of those cruises were the days at sea, where you were just in the middle of some ocean basin with water all around you.”In school, Babbin gravitated to the sciences, and chemistry in particular. After high school, he attended Columbia University, where a visit to the school’s Earth and environmental engineering department catalyzed a realization.“For me, it was always this excitement about the water and about chemistry, and it was this pop of, ‘Oh wow, it doesn’t have to be one or the other,’” Babbin says.He chose to major in Earth and environmental engineering, with a concentration in water resources and climate risks. After graduating in 2008, Babbin returned to his home state, where he attended Princeton University and set a course for a PhD in geosciences, with a focus on chemical oceanography and environmental microbiology. His advisor, oceanographer Bess Ward, took Babbin on as a member of her research group and invited him on several month-long cruises to various parts of the eastern tropical Pacific.“I still remember that first trip,” Babbin recalls. “It was a whirlwind. Everyone else had been to sea a gazillion times and was loading the boat and strapping things down, and I had no idea of anything. And within a few hours, I was doing an experiment as the ship rocked back and forth!”Babbin learned to deploy sampling cannisters overboard, then haul them back up and analyze the seawater inside for signs of nitrogen — an essential nutrient for all living things on Earth.As it turns out, the plants and animals that depend on nitrogen to survive are unable to take it up from the atmosphere themselves. They require a sort of go-between, in the form of microbes that “fix” nitrogen, converting it from nitrogen gas to more digestible forms. In the ocean, this nitrogen fixation is done by highly specialized microbial species, which work to make nitrogen available to phytoplankton — microscopic plant-like organisms that are the foundation of the marine food chain. Phytoplankton are also a main route by which the ocean absorbs carbon dioxide from the atmosphere.Microorganisms may also use these biologically available forms of nitrogen for energy under certain conditions, returning nitrogen to the atmosphere. These microbes can also release a byproduct of nitrous oxide, which is a potent greenhouse gas that also can catalyze ozone loss in the stratosphere.Through his graduate work, at sea and in the lab, Babbin became fascinated with the cycling of nitrogen and the role that nitrogen-fixing microbes play in supporting the ocean’s ecosystems and the climate overall. A balance of nitrogen inputs and outputs sustains phytoplankton and maintains the ocean’s ability to soak up carbon dioxide.“Some of the really pressing questions in ocean biogeochemistry pertain to this cycling of nitrogen,” Babbin says. “Understanding the ways in which this one element cycles through the ocean, and how it is central to ecosystem health and the planet’s climate, has been really powerful.”In the lab and out to seaAfter completing his PhD in 2014, Babbin arrived at MIT as a postdoc in the Department of Civil and Environmental Engineering.“My first feeling when I came here was, wow, this really is a nerd’s playground,” Babbin says. “I embraced being part of a culture where we seek to understand the world better, while also doing the things we really want to do.”In 2017, he accepted a faculty position in MIT’s Department of Earth, Atmospheric and Planetary Sciences. He set up his laboratory space, painted in his favorite brilliant orange, on the top floor of the Green Building.His group uses 3D printers to fabricate microfluidic devices in which they reproduce the conditions of the ocean environment and study microbe metabolism and its effects on marine chemistry. In the field, Babbin has led research expeditions to the Galapagos Islands and parts of the eastern Pacific, where he has collected and analyzed samples of air and water for signs of nitrogen transformations and microbial activity. His new measuring station in the Galapagos is able to infer marine emissions of nitrous oxide across a large swath of the eastern tropical Pacific Ocean. His group has also sailed to southern Cuba, where the researchers studied interactions of microbes in coral reefs.Most recently, Babbin traveled to Antarctica, where he set up camp next to frozen lakes and plumbed for samples of pristine ice water that he will analyze for genetic remnants of ancient microbes. Such preserved bacterial DNA could help scientists understand how microbes evolved and influenced the Earth’s climate over billions of years.“Microbes are the terraformers,” Babbin notes. “They have been, since life evolved more than 3 billion years ago. We have to think about how they shape the natural world and how they will respond to the Anthropocene as humans monkey with the planet ourselves.”Collective actionBabbin is now charting new research directions. In addition to his work at sea and in the lab, he is venturing into engineering, with a new project to design denitrifying capsules. While nitrogen is an essential nutrient for maintaining a marine ecosystem, too much nitrogen, such as from fertilizer that runs off into lakes and streams, can generate blooms of toxic algae. Babbin is looking to design eco-friendly capsules that scrub excess anthropogenic nitrogen from local waterways. He’s also beginning the process of designing a new sensor to measure low-oxygen concentrations in the ocean. As the planet warms, the oceans are losing oxygen, creating “dead zones” where fish cannot survive. While others including Babbin have tried to map these oxygen minimum zones, or OMZs, they have done so sporadically, by dropping sensors into the ocean over limited range, depth, and times. Babbin’s sensors could potentially provide a more complete map of OMZs, as they would be deployed on wide-ranging, deep-diving, and naturally propulsive vehicles: sharks.“We want to measure oxygen. Sharks need oxygen. And if you look at where the sharks don’t go, you might have a sense of where the oxygen is not,” says Babbin, who is working with marine biologists on ways to tag sharks with oxygen sensors. “A number of these large pelagic fish move up and down the water column frequently, so you can map the depth to which they dive to, and infer something about the behavior. And my suggestion is, you might also infer something about the ocean’s chemistry.”When he reflects on what stimulates new ideas and research directions, Babbin credits working with others, in his own group and across MIT.“My best thoughts come from this collective action,” Babbin says. “Particularly because we all have different upbringings and approach things from a different perspective.”He’s bringing this collaborative spirit to his new role, as a mission director for MIT’s Climate Project. Along with Jesse Kroll, who is a professor of civil and environmental engineering and of chemical engineering, Babbin co-leads one of the project’s six missions: Restoring the Atmosphere, Protecting the Land and Oceans. Babbin and Kroll are planning a number of workshops across campus that they hope will generate new connections, and spark new ideas, particularly around ways to evaluate the effectiveness of different climate mitigation strategies and better assess the impacts of climate on society.“One area we want to promote is thinking of climate science and climate interventions as two sides of the same coin,” Babbin says. “There’s so much action that’s trying to be catalyzed. But we want it to be the best action. Because we really have one shot at doing this. Time is of the essence.” More

  • in

    David McGee named head of the Department of Earth, Atmospheric and Planetary Sciences

    David McGee, the William R. Kenan Jr. Professor of Earth and Planetary Sciences at MIT, was recently appointed head of the MIT Department of Earth, Atmospheric and Planetary Sciences (EAPS), effective Jan. 15. He assumes the role from Professor Robert van der Hilst, the Schlumberger Professor of Earth and Planetary Sciences, who led the department for 13 years.McGee specializes in applying isotope geochemistry and geochronology to reconstruct Earth’s climate history, helping to ground-truth our understanding of how the climate system responds during periods of rapid change. He has also been instrumental in the growth of the department’s community and culture, having served as EAPS associate department head since 2020.“David is an amazing researcher who brings crucial, data-based insights to aid our response to climate change,” says dean of the School of Science and the Curtis (1963) and Kathleen Marble Professor of Astrophysics Nergis Mavalvala. “He is also a committed and caring educator, providing extraordinary investment in his students’ learning experiences, and through his direction of Terrascope, one of our unique first-year learning communities focused on generating solutions to sustainability challenges.”   “I am energized by the incredible EAPS community, by Rob’s leadership over the last 13 years, and by President Kornbluth’s call for MIT to innovate effective and wise responses to climate change,” says McGee. “EAPS has a unique role in this time of reckoning with planetary boundaries — our collective path forward needs to be guided by a deep understanding of the Earth system and a clear sense of our place in the universe.”McGee’s research seeks to understand the Earth system’s response to past climate changes. Using geochemical analysis and uranium-series dating, McGee and his group investigate stalagmites, ancient lake deposits, and deep-sea sediments from field sites around the world to trace patterns of wind and precipitation, water availability in drylands, and permafrost stability through space and time. Armed with precise chronologies, he aims to shed light on drivers of historical hydroclimatic shifts and provide quantitative tests of climate model performance.Beyond research, McGee has helped shape numerous Institute initiatives focused on environment, climate, and sustainability, including serving on the MIT Climate and Sustainability Consortium Faculty Steering Committee and the faculty advisory board for the MIT Environment and Sustainability Minor.McGee also co-chaired MIT’s Climate Education Working Group, one of three working groups established under the Institute’s Fast Forward climate action plan. The group identified opportunities to strengthen climate- and sustainability-related education at the Institute, from curricular offerings to experiential learning opportunities and beyond.In April 2023, the working group hosted the MIT Symposium for Advancing Climate Education, featuring talks by McGee and others on how colleges and universities can innovate and help students develop the skills, capacities, and perspectives they’ll need to live, lead, and thrive in a world being remade by the accelerating climate crisis.“David is reimagining MIT undergraduate education to include meaningful collaborations with communities outside of MIT, teaching students that scientific discovery is important, but not always enough to make impact for society,” says van der Hilst. “He will help shape the future of the department with this vital perspective.”From the start of his career, McGee has been dedicated to sharing his love of exploration with students. He earned a master’s degree in teaching and spent seven years as a teacher in middle school and high school classrooms before earning his PhD in Earth and environmental sciences from Columbia University. He joined the MIT faculty in 2012, and in 2018 received the Excellence in Mentoring Award from MIT’s Undergraduate Advising and Academic Programming office. In 2015, he became the director of MIT’s Terrascope first-year learning community.“David’s exemplary teaching in Terrascope comes through his understanding that effective solutions must be found where science intersects with community engagement to forge ethical paths forward,” adds van der Hilst. In 2023, for his work with Terrascope, McGee received the school’s highest award, the School of Science Teaching Prize. In 2022, he was named a Margaret MacVicar Faculty Fellow, the highest teaching honor at MIT.As associate department head, McGee worked alongside van der Hilst and student leaders to promote EAPS community engagement, improve internal supports and reporting structures, and bolster opportunities for students to pursue advanced degrees and STEM careers. More

  • in

    MIT Climate and Energy Ventures class spins out entrepreneurs — and successful companies

    In 2014, a team of MIT students in course 15.366 (Climate and Energy Ventures) developed a plan to commercialize MIT research on how to move information between chips with light instead of electricity, reducing energy usage.After completing the class, which challenges students to identify early customers and pitch their business plan to investors, the team went on to win both grand prizes at the MIT Clean Energy Prize. Today the company, Ayar Labs, has raised a total of $370 million from a group including chip leaders AMD, Intel, and NVIDIA, to scale the manufacturing of its optical chip interconnects.Ayar Labs is one of many companies whose roots can be traced back to 15.366. In fact, more than 150 companies have been founded by alumni of the class since its founding in 2007.In the class, student teams select a technology or idea and determine the best path for its commercialization. The semester-long project, which is accompanied by lectures and mentoring, equips students with real-world experience in launching a business.“The goal is to educate entrepreneurs on how to start companies in the climate and energy space,” says Senior Lecturer Tod Hynes, who co-founded the course and has been teaching since 2008. “We do that through hands-on experience. We require students to engage with customers, talk to potential suppliers, partners, investors, and to practice their pitches to learn from that feedback.”The class attracts hundreds of student applications each year. As one of the catalysts for MIT spinoffs, it is also one reason a 2015 report found that MIT alumni-founded companies had generated roughly $1.9 trillion in annual revenues. If MIT were a country, that figure that would make it the 10th largest economy in the world, according to the report.“’Mens et manus’ (‘mind and hand’) is MIT’s motto, and the hands-on experience we try to provide in this class is hard to beat,” Hynes says. “When you actually go through the process of commercialization in the real world, you learn more and you’re in a better spot. That experiential learning approach really aligns with MIT’s approach.”Simulating a startupThe course was started by Bill Aulet, a professor of the practice at the MIT Sloan School of Management and the managing director of the Martin Trust Center for MIT Entrepreneurship. After serving as an advisor the first year and helping Aulet launch the class, Hynes began teaching the class with Aulet in the fall of 2008. The pair also launched the Climate and Energy Prize around the same time, which continues today and recently received over 150 applications from teams from around the world.A core feature of the class is connecting students in different academic fields. Each year, organizers aim to enroll students with backgrounds in science, engineering, business, and policy.“The class is meant to be accessible to anybody at MIT,” Hynes says, noting the course has also since opened to students from Harvard University. “We’re trying to pull across disciplines.”The class quickly grew in popularity around campus. Over the last few years, the course has had about 150 students apply for 50 spots.“I mentioned Climate and Energy Ventures in my application to MIT,” says Chris Johnson, a second-year graduate student in the Leaders for Global Operations (LGO) Program. “Coming into MIT, I was very interested in sustainability, and energy in particular, and also in startups. I had heard great things about the class, and I waited until my last semester to apply.”The course’s organizers select mostly graduate students, whom they prefer to be in the final year of their program so they can more easily continue working on the venture after the class is finished.“Whether or not students stick with the project from the class, it’s a great experience that will serve them in their careers,” says Jennifer Turliuk, the practice leader for climate and energy artificial intelligence at the Martin Trust Center for Entrepreneurship, who helped teach the class this fall.Hynes describes the course as a venture-building simulation. Before it begins, organizers select up to 30 technologies and ideas that are in the right stage for commercialization. Students can also come into the class with ideas or technologies they want to work on.After a few weeks of introductions and lectures, students form into multidisciplinary teams of about five and begin going through each of the 24 steps of building a startup described in Aulet’s book “Disciplined Entrepreneurship,” which includes things like engaging with potential early customers, quantifying a value proposition, and establishing a business model. Everything builds toward a one-hour final presentation that’s designed to simulate a pitch to investors or government officials.“It’s a lot of work, and because it’s a team-based project, your grade is highly dependent on your team,” Hynes says. “You also get graded by your team; that’s about 10 percent of your grade. We try to encourage people to be proactive and supportive teammates.”Students say the process is fast-paced but rewarding.“It’s definitely demanding,” says Sofie Netteberg, a graduate student who is also in the LGO program at MIT. “Depending on where you’re at with your technology, you can be moving very quickly. That’s the stage that I was in, which I found really engaging. We basically just had a lab technology, and it was like, ‘What do we do next?’ You also get a ton of support from the professors.”From the classroom to the worldThis fall’s final presentations took place at the headquarters of the MIT-affiliated venture firm The Engine in front of an audience of professors, investors, members of foundations supporting entrepreneurship, and more.“We got to hear feedback from people who would be the real next step for the technology if the startup gets up and running,” said Johnson, whose team was commercializing a method for storing energy in concrete. “That was really valuable. We know that these are not only people we might see in the next month or the next funding rounds, but they’re also exactly the type of people that are going to give us the questions we should be thinking about. It was clarifying.”Throughout the semester, students treated the project like a real venture they’d be working on well beyond the length of the class.“No one’s really thinking about this class for the grade; it’s about the learning,” says Netteberg, whose team was encouraged to keep working on their electrolyzer technology designed to more efficiently produce green hydrogen. “We’re not stressed about getting an A. If we want to keep working on this, we want real feedback: What do you think we did well? What do we need to keep working on?”Hynes says several investors expressed interest in supporting the businesses coming out of the class. Moving forward, he hopes students embrace the test-bed environment his team has created for them and try bold new things.“People have been very pragmatic over the years, which is good, but also potentially limiting,” Hynes says. “This is also an opportunity to do something that’s a little further out there — something that has really big potential impact if it comes together. This is the time where students get to experiment, so why not try something big?” More

  • in

    Explained: Generative AI’s environmental impact

    In a two-part series, MIT News explores the environmental implications of generative AI. In this article, we look at why this technology is so resource-intensive. A second piece will investigate what experts are doing to reduce genAI’s carbon footprint and other impacts.The excitement surrounding potential benefits of generative AI, from improving worker productivity to advancing scientific research, is hard to ignore. While the explosive growth of this new technology has enabled rapid deployment of powerful models in many industries, the environmental consequences of this generative AI “gold rush” remain difficult to pin down, let alone mitigate.The computational power required to train generative AI models that often have billions of parameters, such as OpenAI’s GPT-4, can demand a staggering amount of electricity, which leads to increased carbon dioxide emissions and pressures on the electric grid.Furthermore, deploying these models in real-world applications, enabling millions to use generative AI in their daily lives, and then fine-tuning the models to improve their performance draws large amounts of energy long after a model has been developed.Beyond electricity demands, a great deal of water is needed to cool the hardware used for training, deploying, and fine-tuning generative AI models, which can strain municipal water supplies and disrupt local ecosystems. The increasing number of generative AI applications has also spurred demand for high-performance computing hardware, adding indirect environmental impacts from its manufacture and transport.“When we think about the environmental impact of generative AI, it is not just the electricity you consume when you plug the computer in. There are much broader consequences that go out to a system level and persist based on actions that we take,” says Elsa A. Olivetti, professor in the Department of Materials Science and Engineering and the lead of the Decarbonization Mission of MIT’s new Climate Project.Olivetti is senior author of a 2024 paper, “The Climate and Sustainability Implications of Generative AI,” co-authored by MIT colleagues in response to an Institute-wide call for papers that explore the transformative potential of generative AI, in both positive and negative directions for society.Demanding data centersThe electricity demands of data centers are one major factor contributing to the environmental impacts of generative AI, since data centers are used to train and run the deep learning models behind popular tools like ChatGPT and DALL-E.A data center is a temperature-controlled building that houses computing infrastructure, such as servers, data storage drives, and network equipment. For instance, Amazon has more than 100 data centers worldwide, each of which has about 50,000 servers that the company uses to support cloud computing services.While data centers have been around since the 1940s (the first was built at the University of Pennsylvania in 1945 to support the first general-purpose digital computer, the ENIAC), the rise of generative AI has dramatically increased the pace of data center construction.“What is different about generative AI is the power density it requires. Fundamentally, it is just computing, but a generative AI training cluster might consume seven or eight times more energy than a typical computing workload,” says Noman Bashir, lead author of the impact paper, who is a Computing and Climate Impact Fellow at MIT Climate and Sustainability Consortium (MCSC) and a postdoc in the Computer Science and Artificial Intelligence Laboratory (CSAIL).Scientists have estimated that the power requirements of data centers in North America increased from 2,688 megawatts at the end of 2022 to 5,341 megawatts at the end of 2023, partly driven by the demands of generative AI. Globally, the electricity consumption of data centers rose to 460 terawatts in 2022. This would have made data centers the 11th largest electricity consumer in the world, between the nations of Saudi Arabia (371 terawatts) and France (463 terawatts), according to the Organization for Economic Co-operation and Development.By 2026, the electricity consumption of data centers is expected to approach 1,050 terawatts (which would bump data centers up to fifth place on the global list, between Japan and Russia).While not all data center computation involves generative AI, the technology has been a major driver of increasing energy demands.“The demand for new data centers cannot be met in a sustainable way. The pace at which companies are building new data centers means the bulk of the electricity to power them must come from fossil fuel-based power plants,” says Bashir.The power needed to train and deploy a model like OpenAI’s GPT-3 is difficult to ascertain. In a 2021 research paper, scientists from Google and the University of California at Berkeley estimated the training process alone consumed 1,287 megawatt hours of electricity (enough to power about 120 average U.S. homes for a year), generating about 552 tons of carbon dioxide.While all machine-learning models must be trained, one issue unique to generative AI is the rapid fluctuations in energy use that occur over different phases of the training process, Bashir explains.Power grid operators must have a way to absorb those fluctuations to protect the grid, and they usually employ diesel-based generators for that task.Increasing impacts from inferenceOnce a generative AI model is trained, the energy demands don’t disappear.Each time a model is used, perhaps by an individual asking ChatGPT to summarize an email, the computing hardware that performs those operations consumes energy. Researchers have estimated that a ChatGPT query consumes about five times more electricity than a simple web search.“But an everyday user doesn’t think too much about that,” says Bashir. “The ease-of-use of generative AI interfaces and the lack of information about the environmental impacts of my actions means that, as a user, I don’t have much incentive to cut back on my use of generative AI.”With traditional AI, the energy usage is split fairly evenly between data processing, model training, and inference, which is the process of using a trained model to make predictions on new data. However, Bashir expects the electricity demands of generative AI inference to eventually dominate since these models are becoming ubiquitous in so many applications, and the electricity needed for inference will increase as future versions of the models become larger and more complex.Plus, generative AI models have an especially short shelf-life, driven by rising demand for new AI applications. Companies release new models every few weeks, so the energy used to train prior versions goes to waste, Bashir adds. New models often consume more energy for training, since they usually have more parameters than their predecessors.While electricity demands of data centers may be getting the most attention in research literature, the amount of water consumed by these facilities has environmental impacts, as well.Chilled water is used to cool a data center by absorbing heat from computing equipment. It has been estimated that, for each kilowatt hour of energy a data center consumes, it would need two liters of water for cooling, says Bashir.“Just because this is called ‘cloud computing’ doesn’t mean the hardware lives in the cloud. Data centers are present in our physical world, and because of their water usage they have direct and indirect implications for biodiversity,” he says.The computing hardware inside data centers brings its own, less direct environmental impacts.While it is difficult to estimate how much power is needed to manufacture a GPU, a type of powerful processor that can handle intensive generative AI workloads, it would be more than what is needed to produce a simpler CPU because the fabrication process is more complex. A GPU’s carbon footprint is compounded by the emissions related to material and product transport.There are also environmental implications of obtaining the raw materials used to fabricate GPUs, which can involve dirty mining procedures and the use of toxic chemicals for processing.Market research firm TechInsights estimates that the three major producers (NVIDIA, AMD, and Intel) shipped 3.85 million GPUs to data centers in 2023, up from about 2.67 million in 2022. That number is expected to have increased by an even greater percentage in 2024.The industry is on an unsustainable path, but there are ways to encourage responsible development of generative AI that supports environmental objectives, Bashir says.He, Olivetti, and their MIT colleagues argue that this will require a comprehensive consideration of all the environmental and societal costs of generative AI, as well as a detailed assessment of the value in its perceived benefits.“We need a more contextual way of systematically and comprehensively understanding the implications of new developments in this space. Due to the speed at which there have been improvements, we haven’t had a chance to catch up with our abilities to measure and understand the tradeoffs,” Olivetti says. More

  • in

    Minimizing the carbon footprint of bridges and other structures

    Awed as a young child by the majesty of the Golden Gate Bridge in San Francisco, civil engineer and MIT Morningside Academy for Design (MAD) Fellow Zane Schemmer has retained his fascination with bridges: what they look like, why they work, and how they’re designed and built.He weighed the choice between architecture and engineering when heading off to college, but, motivated by the why and how of structural engineering, selected the latter. Now he incorporates design as an iterative process in the writing of algorithms that perfectly balance the forces involved in discrete portions of a structure to create an overall design that optimizes function, minimizes carbon footprint, and still produces a manufacturable result.While this may sound like an obvious goal in structural design, it’s not. It’s new. It’s a more holistic way of looking at the design process that can optimize even down to the materials, angles, and number of elements in the nodes or joints that connect the larger components of a building, bridge, tower, etc.According to Schemmer, there hasn’t been much progress on optimizing structural design to minimize embodied carbon, and the work that exists often results in designs that are “too complex to be built in real life,” he says. The embodied carbon of a structure is the total carbon dioxide emissions of its life cycle: from the extraction or manufacture of its materials to their transport and use and through the demolition of the structure and disposal of the materials. Schemmer, who works with Josephine V. Carstensen, the Gilbert W. Winslow Career Development Associate Professor of Civil and Environmental Engineering at MIT, is focusing on the portion of that cycle that runs through construction.In September, at the IASS 2024 symposium “Redefining the Art of Structural Design in Zurich,” Schemmer and Carstensen presented their work on Discrete Topology Optimization algorithms that are able to minimize the embodied carbon in a bridge or other structure by up to 20 percent. This comes through materials selection that considers not only a material’s appearance and its ability to get the job done, but also the ease of procurement, its proximity to the building site, and the carbon embodied in its manufacture and transport.“The real novelty of our algorithm is its ability to consider multiple materials in a highly constrained solution space to produce manufacturable designs with a user-specified force flow,” Schemmer says. “Real-life problems are complex and often have many constraints associated with them. In traditional formulations, it can be difficult to have a long list of complicated constraints. Our goal is to incorporate these constraints to make it easier to take our designs out of the computer and create them in real life.”Take, for instance, a steel tower, which could be a “super lightweight, efficient design solution,” Schemmer explains. Because steel is so strong, you don’t need as much of it compared to concrete or timber to build a big building. But steel is also very carbon-intensive to produce and transport. Shipping it across the country or especially from a different continent can sharply increase its embodied carbon price tag. Schemmer’s topology optimization will replace some of the steel with timber elements or decrease the amount of steel in other elements to create a hybrid structure that will function effectively and minimize the carbon footprint. “This is why using the same steel in two different parts of the world can lead to two different optimized designs,” he explains.Schemmer, who grew up in the mountains of Utah, earned a BS and MS in civil and environmental engineering from University of California at Berkeley, where his graduate work focused on seismic design. He describes that education as providing a “very traditional, super-strong engineering background that tackled some of the toughest engineering problems,” along with knowledge of structural engineering’s traditions and current methods.But at MIT, he says, a lot of the work he sees “looks at removing the constraints of current societal conventions of doing things, and asks how could we do things if it was in a more ideal form; what are we looking at then? Which I think is really cool,” he says. “But I think sometimes too, there’s a jump between the most-perfect version of something and where we are now, that there needs to be a bridge between those two. And I feel like my education helps me see that bridge.”The bridge he’s referring to is the topology optimization algorithms that make good designs better in terms of decreased global warming potential.“That’s where the optimization algorithm comes in,” Schemmer says. “In contrast to a standard structure designed in the past, the algorithm can take the same design space and come up with a much more efficient material usage that still meets all the structural requirements, be up to code, and have everything we want from a safety standpoint.”That’s also where the MAD Design Fellowship comes in. The program provides yearlong fellowships with full financial support to graduate students from all across the Institute who network with each other, with the MAD faculty, and with outside speakers who use design in new ways in a surprising variety of fields. This helps the fellows gain a better understanding of how to use iterative design in their own work.“Usually people think of their own work like, ‘Oh, I had this background. I’ve been looking at this one way for a very long time.’ And when you look at it from an outside perspective, I think it opens your mind to be like, ‘Oh my God. I never would have thought about doing this that way. Maybe I should try that.’ And then we can move to new ideas, new inspiration for better work,” Schemmer says.He chose civil and structural engineering over architecture some seven years ago, but says that “100 years ago, I don’t think architecture and structural engineering were two separate professions. I think there was an understanding of how things looked and how things worked, and it was merged together. Maybe from an efficiency standpoint, it’s better to have things done separately. But I think there’s something to be said for having knowledge about how the whole system works, potentially more intermingling between the free-form architectural design and the mathematical design of a civil engineer. Merging it back together, I think, has a lot of benefits.”Which brings us back to the Golden Gate Bridge, Schemmer’s longtime favorite. You can still hear that excited 3-year-old in his voice when he talks about it.“It’s so iconic,” he says. “It’s connecting these two spits of land that just rise straight up out of the ocean. There’s this fog that comes in and out a lot of days. It’s a really magical place, from the size of the cable strands and everything. It’s just, ‘Wow.’ People built this over 100 years ago, before the existence of a lot of the computational tools that we have now. So, all the math, everything in the design, was all done by hand and from the mind. Nothing was computerized, which I think is crazy to think about.”As Schemmer continues work on his doctoral degree at MIT, the MAD fellowship will expose him to many more awe-inspiring ideas in other fields, leading him to incorporate some of these in some way with his engineering knowledge to design better ways of building bridges and other structures. More

  • in

    An abundant phytoplankton feeds a global network of marine microbes

    One of the hardest-working organisms in the ocean is the tiny, emerald-tinged Prochlorococcus marinus. These single-celled “picoplankton,” which are smaller than a human red blood cell, can be found in staggering numbers throughout the ocean’s surface waters, making Prochlorococcus the most abundant photosynthesizing organism on the planet. (Collectively, Prochlorococcus fix as much carbon as all the crops on land.) Scientists continue to find new ways that the little green microbe is involved in the ocean’s cycling and storage of carbon.Now, MIT scientists have discovered a new ocean-regulating ability in the small but mighty microbes: cross-feeding of DNA building blocks. In a study appearing today in Science Advances, the team reports that Prochlorococcus shed these extra compounds into their surroundings, where they are then “cross-fed,” or taken up by other ocean organisms, either as nutrients, energy, or for regulating metabolism. Prochlorococcus’ rejects, then, are other microbes’ resources.What’s more, this cross-feeding occurs on a regular cycle: Prochlorococcus tend to shed their molecular baggage at night, when enterprising microbes quickly consume the cast-offs. For a microbe called SAR11, the most abundant bacteria in the ocean, the researchers found that the nighttime snack acts as a relaxant of sorts, forcing the bacteria to slow down their metabolism and effectively recharge for the next day.Through this cross-feeding interaction, Prochlorococcus could be helping many microbial communities to grow sustainably, simply by giving away what it doesn’t need. And they’re doing so in a way that could set the daily rhythms of microbes around the world.“The relationship between the two most abundant groups of microbes in ocean ecosystems has intrigued oceanographers for years,” says co-author and MIT Institute Professor Sallie “Penny” Chisholm, who played a role in the discovery of Prochlorococcus in 1986. “Now we have a glimpse of the finely tuned choreography that contributes to their growth and stability across vast regions of the oceans.”Given that Prochlorococcus and SAR11 suffuse the surface oceans, the team suspects that the exchange of molecules from one to the other could amount to one of the major cross-feeding relationships in the ocean, making it an important regulator of the ocean carbon cycle.“By looking at the details and diversity of cross-feeding processes, we can start to unearth important forces that are shaping the carbon cycle,” says the study’s lead author, Rogier Braakman, a research scientist in MIT’s Department of Earth, Atmospheric and Planetary Sciences (EAPS).Other MIT co-authors include Brandon Satinsky, Tyler O’Keefe, Shane Hogle, Jamie Becker, Robert Li, Keven Dooley, and Aldo Arellano, along with Krista Longnecker, Melissa Soule, and Elizabeth Kujawinski of Woods Hole Oceanographic Institution (WHOI).Spotting castawaysCross-feeding occurs throughout the microbial world, though the process has mainly been studied in close-knit communities. In the human gut, for instance, microbes are in close proximity and can easily exchange and benefit from shared resources.By comparison, Prochlorococcus are free-floating microbes that are regularly tossed and mixed through the ocean’s surface layers. While scientists assume that the plankton are involved in some amount of cross-feeding, exactly how this occurs, and who would benefit, have historically been challenging to probe; any stuff that Prochlorococcus cast away would have vanishingly low concentrations,and be exceedingly difficult to measure.But in work published in 2023, Braakman teamed up with scientists at WHOI, who pioneered ways to measure small organic compounds in seawater. In the lab, they grew various strains of Prochlorococcus under different conditions and characterized what the microbes released. They found that among the major “exudants,” or released molecules, were purines and pyridines, which are molecular building blocks of DNA. The molecules also happen to be nitrogen-rich — a fact that puzzled the team. Prochlorococcus are mainly found in ocean regions that are low in nitrogen, so it was assumed they’d want to retain any and all nitrogen-containing compounds they can. Why, then, were they instead throwing such compounds away?Global symphonyIn their new study, the researchers took a deep dive into the details of Prochlorococcus’ cross-feeding and how it influences various types of ocean microbes.They set out to study how Prochlorococcus use purine and pyridine in the first place, before expelling the compounds into their surroundings. They compared published genomes of the microbes, looking for genes that encode purine and pyridine metabolism. Tracing the genes forward through the genomes, the team found that once the compounds are produced, they are used to make DNA and replicate the microbes’ genome. Any leftover purine and pyridine is recycled and used again, though a fraction of the stuff is ultimately released into the environment. Prochlorococcus appear to make the most of the compounds, then cast off what they can’t.The team also looked to gene expression data and found that genes involved in recycling purine and pyrimidine peak several hours after the recognized peak in genome replication that occurs at dusk. The question then was: What could be benefiting from this nightly shedding?For this, the team looked at the genomes of more than 300 heterotrophic microbes — organisms that consume organic carbon rather than making it themselves through photosynthesis. They suspected that such carbon-feeders could be likely consumers of Prochlorococcus’ organic rejects. They found most of the heterotrophs contained genes that take up either purine or pyridine, or in some cases, both, suggesting microbes have evolved along different paths in terms of how they cross-feed.The group zeroed in on one purine-preferring microbe, SAR11, as it is the most abundant heterotrophic microbe in the ocean. When they then compared the genes across different strains of SAR11, they found that various types use purines for different purposes, from simply taking them up and using them intact to breaking them down for their energy, carbon, or nitrogen. What could explain the diversity in how the microbes were using Prochlorococcus’ cast-offs?It turns out the local environment plays a big role. Braakman and his collaborators performed a metagenome analysis in which they compared the collectively sequenced genomes of all microbes in over 600 seawater samples from around the world, focusing on SAR11 bacteria. Metagenome sequences were collected alongside measurements of various environmental conditions and geographic locations in which they are found. This analysis showed that the bacteria gobble up purine for its nitrogen when the nitrogen in seawater is low, and for its carbon or energy when nitrogen is in surplus — revealing the selective pressures shaping these communities in different ocean regimes.“The work here suggests that microbes in the ocean have developed relationships that advance their growth potential in ways we don’t expect,” says co-author Kujawinski.Finally, the team carried out a simple experiment in the lab, to see if they could directly observe a mechanism by which purine acts on SAR11. They grew the bacteria in cultures, exposed them to various concentrations of purine, and unexpectedly found it causes them to slow down their normal metabolic activities and even growth. However, when the researchers put these same cells under environmentally stressful conditions, they continued growing strong and healthy cells, as if the metabolic pausing by purines helped prime them for growth, thereby avoiding the effects of the stress.“When you think about the ocean, where you see this daily pulse of purines being released by Prochlorococcus, this provides a daily inhibition signal that could be causing a pause in SAR11 metabolism, so that the next day when the sun comes out, they are primed and ready,” Braakman says. “So we think Prochlorococcus is acting as a conductor in the daily symphony of ocean metabolism, and cross-feeding is creating a global synchronization among all these microbial cells.”This work was supported, in part, by the Simons Foundation and the National Science Foundation. More

  • in

    A nonflammable battery to power a safer, decarbonized future

    Lithium-ion batteries are the workhorses of home electronics and are powering an electric revolution in transportation. But they are not suitable for every application.A key drawback is their flammability and toxicity, which make large-scale lithium-ion energy storage a bad fit in densely populated city centers and near metal processing or chemical manufacturing plants.Now Alsym Energy has developed a nonflammable, nontoxic alternative to lithium-ion batteries to help renewables like wind and solar bridge the gap in a broader range of sectors. The company’s electrodes use relatively stable, abundant materials, and its electrolyte is primarily water with some nontoxic add-ons.“Renewables are intermittent, so you need storage, and to really solve the decarbonization problem, we need to be able to make these batteries anywhere at low cost,” says Alsym co-founder and MIT Professor Kripa Varanasi.The company believes its batteries, which are currently being tested by potential customers around the world, hold enormous potential to decarbonize the high-emissions industrial manufacturing sector, and they see other applications ranging from mining to powering data centers, homes, and utilities.“We are enabling a decarbonization of markets that was not possible before,” Alsym co-founder and CEO Mukesh Chatter says. “No chemical or steel plant would dare put a lithium battery close to their premises because of the flammability, and industrial emissions are a much bigger problem than passenger cars. With this approach, we’re able to offer a new path.”Helping 1 billion peopleChatter started a telecommunications company with serial entrepreneurs and longtime members of the MIT community Ray Stata ’57, SM ’58 and Alec Dingee ’52 in 1997. Since the company was acquired in 1999, Chatter and his wife have started other ventures and invested in some startups, but after losing his mother to cancer in 2012, Chatter decided he wanted to maximize his impact by only working on technologies that could reach 1 billion people or more.The problem Chatter decided to focus on was electricity access.“The intent was to light up the homes of at least 1 billion people around the world who either did not have electricity, or only got it part of the time, condemning them basically to a life of poverty in the 19th century,” Chatter says. “When you don’t have access to electricity, you also don’t have the internet, cell phones, education, etc.”To solve the problem, Chatter decided to fund research into a new kind of battery. The battery had to be cheap enough to be adopted in low-resource settings, safe enough to be deployed in crowded areas, and work well enough to support two light bulbs, a fan, a refrigerator, and an internet modem.At first, Chatter was surprised how few takers he had to start the research, even from researchers at the top universities in the world.“It’s a burning problem, but the risk of failure was so high that nobody wanted to take the chance,” Chatter recalls.He finally found his partners in Varanasi, Rensselaer Polytechnic Institute Professor Nikhil Koratkar and Rensselaer researcher Rahul Mukherjee. Varanasi, who notes he’s been at MIT for 22 years, says the Institute’s culture gave him the confidence to tackle big problems.“My students, postdocs, and colleagues are inspirational to me,” he says. “The MIT ecosystem infuses us with this resolve to go after problems that look insurmountable.”Varanasi leads an interdisciplinary lab at MIT dedicated to understanding physicochemical and biological phenomena. His research has spurred the creation of materials, devices, products, and processes to tackle challenges in energy, agriculture, and other sectors, as well as startup companies to commercialize this work.“Working at the interfaces of matter has unlocked numerous new research pathways across various fields, and MIT has provided me the creative freedom to explore, discover, and learn, and apply that knowledge to solve critical challenges,” he says. “I was able to draw significantly from my learnings as we set out to develop the new battery technology.”Alsym’s founding team began by trying to design a battery from scratch based on new materials that could fit the parameters defined by Chatter. To make it nonflammable and nontoxic, the founders wanted to avoid lithium and cobalt.After evaluating many different chemistries, the founders settled on Alsym’s current approach, which was finalized in 2020.Although the full makeup of Alsym’s battery is still under wraps as the company waits to be granted patents, one of Alsym’s electrodes is made mostly of manganese oxide while the other is primarily made of a metal oxide. The electrolyte is primarily water.There are several advantages to Alsym’s new battery chemistry. Because the battery is inherently safer and more sustainable than lithium-ion, the company doesn’t need the same safety protections or cooling equipment, and it can pack its batteries close to each other without fear of fires or explosions. Varanasi also says the battery can be manufactured in any of today’s lithium-ion plants with minimal changes and at significantly lower operating cost.“We are very excited right now,” Chatter says. “We started out wanting to light up 1 billion people’s homes, and now in addition to the original goal we have a chance to impact the entire globe if we are successful at cutting back industrial emissions.”A new platform for energy storageAlthough the batteries don’t quite reach the energy density of lithium-ion batteries, Varanasi says Alsym is first among alternative chemistries at the system-level. He says 20-foot containers of Alsym’s batteries can provide 1.7 megawatt hours of electricity. The batteries can also fast-charge over four hours and can be configured to discharge over anywhere from two to 110 hours.“We’re highly configurable, and that’s important because depending on where you are, you can sometimes run on two cycles a day with solar, and in combination with wind, you could truly get 24/7 electricity,” Chatter says. “The need to do multiday or long duration storage is a small part of the market, but we support that too.”Alsym has been manufacturing prototypes at a small facility in Woburn, Massachusetts, for the last two years, and early this year it expanded its capacity and began to send samples to customers for field testing.In addition to large utilities, the company is working with municipalities, generator manufacturers, and providers of behind-the-meter power for residential and commercial buildings. The company is also in discussion with a large chemical manufacturers and metal processing plants to provide energy storage system to reduce their carbon footprint, something they say was not feasible with lithium-ion batteries, due to their flammability, or with nonlithium batteries, due to their large space requirements.Another critical area is data centers. With the growth of AI, the demand for data centers — and their energy consumption — is set to surge.“We must power the AI and digitization revolution without compromising our planet,” says Varanasi, adding that lithium batteries are unsuitable for co-location with data centers due to flammability risks. “Alsym batteries are well-positioned to offer a safer, more sustainable alternative. Intermittency is also a key issue for electrolyzers used in green hydrogen production and other markets.”Varanasi sees Alsym as a platform company, and Chatter says Alsym is already working on other battery chemistries that have higher densities and maintain performance at even more extreme temperatures.“When you use a single material in any battery, and the whole world starts to use it, you run out of that material,” Varanasi says. “What we have is a platform that has enabled us to not just to come up with just one chemistry, but at least three or four chemistries targeted at different applications so no one particular set of materials will be stressed in terms of supply.” More

  • in

    MIT engineers make converting CO2 into useful products more practical

    As the world struggles to reduce greenhouse gas emissions, researchers are seeking practical, economical ways to capture carbon dioxide and convert it into useful products, such as transportation fuels, chemical feedstocks, or even building materials. But so far, such attempts have struggled to reach economic viability.New research by engineers at MIT could lead to rapid improvements in a variety of electrochemical systems that are under development to convert carbon dioxide into a valuable commodity. The team developed a new design for the electrodes used in these systems, which increases the efficiency of the conversion process.The findings are reported today in the journal Nature Communications, in a paper by MIT doctoral student Simon Rufer, professor of mechanical engineering Kripa Varanasi, and three others.“The CO2 problem is a big challenge for our times, and we are using all kinds of levers to solve and address this problem,” Varanasi says. It will be essential to find practical ways of removing the gas, he says, either from sources such as power plant emissions, or straight out of the air or the oceans. But then, once the CO2 has been removed, it has to go somewhere.A wide variety of systems have been developed for converting that captured gas into a useful chemical product, Varanasi says. “It’s not that we can’t do it — we can do it. But the question is how can we make this efficient? How can we make this cost-effective?”In the new study, the team focused on the electrochemical conversion of CO2 to ethylene, a widely used chemical that can be made into a variety of plastics as well as fuels, and which today is made from petroleum. But the approach they developed could also be applied to producing other high-value chemical products as well, including methane, methanol, carbon monoxide, and others, the researchers say.Currently, ethylene sells for about $1,000 per ton, so the goal is to be able to meet or beat that price. The electrochemical process that converts CO2 into ethylene involves a water-based solution and a catalyst material, which come into contact along with an electric current in a device called a gas diffusion electrode.There are two competing characteristics of the gas diffusion electrode materials that affect their performance: They must be good electrical conductors so that the current that drives the process doesn’t get wasted through resistance heating, but they must also be “hydrophobic,” or water repelling, so the water-based electrolyte solution doesn’t leak through and interfere with the reactions taking place at the electrode surface.Unfortunately, it’s a tradeoff. Improving the conductivity reduces the hydrophobicity, and vice versa. Varanasi and his team set out to see if they could find a way around that conflict, and after many months of trying, they did just that.The solution, devised by Rufer and Varanasi, is elegant in its simplicity. They used a plastic material, PTFE (essentially Teflon), that has been known to have good hydrophobic properties. However, PTFE’s lack of conductivity means that electrons must travel through a very thin catalyst layer, leading to significant voltage drop with distance. To overcome this limitation, the researchers wove a series of conductive copper wires through the very thin sheet of the PTFE.“This work really addressed this challenge, as we can now get both conductivity and hydrophobicity,” Varanasi says.Research on potential carbon conversion systems tends to be done on very small, lab-scale samples, typically less than 1-inch (2.5-centimeter) squares. To demonstrate the potential for scaling up, Varanasi’s team produced a sheet 10 times larger in area and demonstrated its effective performance.To get to that point, they had to do some basic tests that had apparently never been done before, running tests under identical conditions but using electrodes of different sizes to analyze the relationship between conductivity and electrode size. They found that conductivity dropped off dramatically with size, which would mean much more energy, and thus cost, would be needed to drive the reaction.“That’s exactly what we would expect, but it was something that nobody had really dedicatedly investigated before,” Rufer says. In addition, the larger sizes produced more unwanted chemical byproducts besides the intended ethylene.Real-world industrial applications would require electrodes that are perhaps 100 times larger than the lab versions, so adding the conductive wires will be necessary for making such systems practical, the researchers say. They also developed a model which captures the spatial variability in voltage and product distribution on electrodes due to ohmic losses. The model along with the experimental data they collected enabled them to calculate the optimal spacing for conductive wires to counteract the drop off in conductivity.In effect, by weaving the wire through the material, the material is divided into smaller subsections determined by the spacing of the wires. “We split it into a bunch of little subsegments, each of which is effectively a smaller electrode,” Rufer says. “And as we’ve seen, small electrodes can work really well.”Because the copper wire is so much more conductive than the PTFE material, it acts as a kind of superhighway for electrons passing through, bridging the areas where they are confined to the substrate and face greater resistance.To demonstrate that their system is robust, the researchers ran a test electrode for 75 hours continuously, with little change in performance. Overall, Rufer says, their system “is the first PTFE-based electrode which has gone beyond the lab scale on the order of 5 centimeters or smaller. It’s the first work that has progressed into a much larger scale and has done so without sacrificing efficiency.”The weaving process for incorporating the wire can be easily integrated into existing manufacturing processes, even in a large-scale roll-to-roll process, he adds.“Our approach is very powerful because it doesn’t have anything to do with the actual catalyst being used,” Rufer says. “You can sew this micrometric copper wire into any gas diffusion electrode you want, independent of catalyst morphology or chemistry. So, this approach can be used to scale anybody’s electrode.”“Given that we will need to process gigatons of CO2 annually to combat the CO2 challenge, we really need to think about solutions that can scale,” Varanasi says. “Starting with this mindset enables us to identify critical bottlenecks and develop innovative approaches that can make a meaningful impact in solving the problem. Our hierarchically conductive electrode is a result of such thinking.”The research team included MIT graduate students Michael Nitzsche and Sanjay Garimella,  as well as Jack Lake PhD ’23. The work was supported by Shell, through the MIT Energy Initiative. More