More stories

  • in

    Study shows a link between obesity and what’s on local restaurant menus

    For many years, health experts have been concerned about “food deserts,” places where residents lack good nutritional options. Now, an MIT-led study of three major global cities uses a new, granular method to examine the issue, and concludes that having fewer and less nutritional eating options nearby correlates with obesity and other health outcomes.Rather than just mapping geographic areas, the researchers examined the dietary value of millions of food items on roughly 30,000 restaurant menus and derived a more precise assessment of the connection between neighborhoods and nutrition.“We show that what is sold in a restaurant has a direct correlation to people’s health,” says MIT researcher Fabio Duarte, co-author of a newly published paper outlining the study’s results. “The food landscape matters.”The open-access paper, “Data-driven nutritional assessment of urban food landscapes: insights from Boston, London, Dubai,” was published this week in Nature: Scientific Reports.The co-authors are Michael Tufano, a PhD student at Wageningen University, in the Netherlands; Duarte, associate director of MIT’s Senseable City Lab, which uses data to study cities as dynamic systems; Martina Mazzarello, a postdoc at the Senseable City Lab; Javad Eshtiyagh, a research fellow at the Senseable City Lab; Carlo Ratti, professor of the practice and director of the Senseable City Lab; and Guido Camps, a senior researcher at Wageningen University.Scanning the menuTo conduct the study, the researchers examined menus from Boston, Dubai, and London, in the summer of 2023, compiling a database of millions of items available through popular food-delivery platforms. The team then evaluated the food items as rated by the USDA’s FoodData Central database, an information bank with 375,000 kinds of food products listed. The study deployed two main metrics, the Meal Balance Index, and the Nutrient-Rich Foods Index.The researchers examined about 222,000 menu items from over 2,000 restaurants in Boston, about 1.6 million menu items from roughly 9,000 restaurants in Dubai, and about 3.1 million menu items from about 18,000 restaurants in London. In Boston, about 71 percent of the items were in the USDA database; in Dubai and London, that figure was 42 percent and 56 percent, respectively.The team then rated the nutritional value of the items appearing on menus, and correlated the food data with health-outcome data from Boston and London. In London, they found a clear correlation between neighborhood menu offerings and obesity, or the lack thereof; with a slightly less firm correlation in Boston. Areas with food options that include a lot of dietary fibers, sometimes along with fruits and vegetables, tend to have better health data.In Dubai, the researchers did not have the same types of health data available but did observe a strong correlation between rental prices and the nutritional value of neighborhood-level food, suggesting that wealthier residents have better nourishment options.“At the item level, when we have less nutritional food, we see more cases of obsesity,” Tufano says. “It’s true that not only do we have more fast food in poor neighborhoods, but the nutritional value is not the same.”Re-mapping the food landscapeBy conducting the study in this fashion, the scholars added a layer of analysis to past studies of food deserts. While past work has broken ground by identifying neighborhoods and areas lacking good food access, this research makes a more comprehensive assessment of what people consume. The research moves toward evaluating the complex mix of food available in any given area, which can be true even of areas with more limited options.“We were not satisfied with this idea that if you only have fast food, it’s a food desert, but if you have a Whole Foods, it’s not,” Duarte says. “It’s not necessarily like that.”For the Senseable City Lab researchers, the study is a new technique further enabling them to understand city dynamics and the effects of the urban environment on health. Past lab studies have often focused on issues such as urban mobility, while extending to matters such as mobility and air pollution, among other topics.Being able to study food and health at the neighborhood level, though, is still another example of the ways that data-rich spheres of life can be studied in close detail.“When we started working on cities and data, the data resolution was so low,” Ratti says. “Today the amount of data is so immense we see this great opportunity to look at cities and see the influence of the urban environment as a big determinant of health. We see this as one of the new frontiers of our lab. It’s amazing how we can now look at this very precisely in cities.” More

  • in

    MIT chemists boost the efficiency of a key enzyme in photosynthesis

    During photosynthesis, an enzyme called rubisco catalyzes a key reaction — the incorporation of carbon dioxide into organic compounds to create sugars. However, rubisco, which is believed to be the most abundant enzyme on Earth, is very inefficient compared to the other enzymes involved in photosynthesis.MIT chemists have now shown that they can greatly enhance a version of rubisco found in bacteria from a low-oxygen environment. Using a process known as directed evolution, they identified mutations that could boost rubisco’s catalytic efficiency by up to 25 percent.The researchers now plan to apply their technique to forms of rubisco that could be used in plants to help boost their rates of photosynthesis, which could potentially improve crop yields.“This is, I think, a compelling demonstration of successful improvement of a rubisco’s enzymatic properties, holding out a lot of hope for engineering other forms of rubisco,” says Matthew Shoulders, the Class of 1942 Professor of Chemistry at MIT.Shoulders and Robert Wilson, a research scientist in the Department of Chemistry, are the senior authors of the new study, which appears this week in the Proceedings of the National Academy of Sciences. MIT graduate student Julie McDonald is the paper’s lead author.Evolution of efficiencyWhen plants or photosynthetic bacteria absorb energy from the sun, they first convert it into energy-storing molecules such as ATP. In the next phase of photosynthesis, cells use that energy to transform a molecule known as ribulose bisphosphate into glucose, which requires several additional reactions. Rubisco catalyzes the first of those reactions, known as carboxylation. During that reaction, carbon from CO2 is added to ribulose bisphosphate.Compared to the other enzymes involved in photosynthesis, rubisco is very slow, catalyzing only one to 10 reactions per second. Additionally, rubisco can also interact with oxygen, leading to a competing reaction that incorporates oxygen instead of carbon — a process that wastes some of the energy absorbed from sunlight.“For protein engineers, that’s a really attractive set of problems because those traits seem like things that you could hopefully make better by making changes to the enzyme’s amino acid sequence,” McDonald says.Previous research has led to improvement in rubisco’s stability and solubility, which resulted in small gains in enzyme efficiency. Most of those studies used directed evolution — a technique in which a naturally occurring protein is randomly mutated and then screened for the emergence of new, desirable features.This process is usually done using error-prone PCR, a technique that first generates mutations in vitro (outside of the cell), typically introducing only one or two mutations in the target gene. In past studies on rubisco, this library of mutations was then introduced into bacteria that grow at a rate relative to rubisco activity. Limitations in error-prone PCR and in the efficiency of introducing new genes restrict the total number of mutations that can be generated and screened using this approach. Manual mutagenesis and selection steps also add more time to the process over multiple rounds of evolution.The MIT team instead used a newer mutagenesis technique that the Shoulders Lab previously developed, called MutaT7. This technique allows the researchers to perform both mutagenesis and screening in living cells, which dramatically speeds up the process. Their technique also enables them to mutate the target gene at a higher rate.“Our continuous directed evolution technique allows you to look at a lot more mutations in the enzyme than has been done in the past,” McDonald says.Better rubiscoFor this study, the researchers began with a version of rubisco, isolated from a family of semi-anaerobic bacteria known as Gallionellaceae, that is one of the fastest rubisco found in nature. During the directed evolution experiments, which were conducted in E. coli, the researchers kept the microbes in an environment with atmospheric levels of oxygen, creating evolutionary pressure to adapt to oxygen.After six rounds of directed evolution, the researchers identified three different mutations that improved the rubisco’s resistance to oxygen. Each of these mutations are located near the enzyme’s active site (where it performs carboxylation or oxygenation). The researchers believe that these mutations improve the enzyme’s ability to preferentially interact with carbon dioxide over oxygen, which leads to an overall increase in carboxylation efficiency.“The underlying question here is: Can you alter and improve the kinetic properties of rubisco to operate better in environments where you want it to operate better?” Shoulders says. “What changed through the directed evolution process was that rubisco began to like to react with oxygen less. That allows this rubisco to function well in an oxygen-rich environment, where normally it would constantly get distracted and react with oxygen, which you don’t want it to do.”In ongoing work, the researchers are applying this approach to other forms of rubisco, including rubisco from plants. Plants are believed to lose about 30 percent of the energy from the sunlight they absorb through a process called photorespiration, which occurs when rubisco acts on oxygen instead of carbon dioxide.“This really opens the door to a lot of exciting new research, and it’s a step beyond the types of engineering that have dominated rubisco engineering in the past,” Wilson says. “There are definite benefits to agricultural productivity that could be leveraged through a better rubisco.”The research was funded, in part, by the National Science Foundation, the National Institutes of Health, an Abdul Latif Jameel Water and Food Systems Lab Grand Challenge grant, and a Martin Family Society Fellowship for Sustainability. More

  • in

    Study shows how a common fertilizer ingredient benefits plants

    Lanthanides are a class of rare earth elements that in many countries are added to fertilizer as micronutrients to stimulate plant growth. But little is known about how they are absorbed by plants or influence photosynthesis, potentially leaving their benefits untapped.Now, researchers from MIT have shed light on how lanthanides move through and operate within plants. These insights could help farmers optimize their use to grow some of the world’s most popular crops.Published today in the Journal of the American Chemical Society, the study shows that a single nanoscale dose of lanthanides applied to seeds can make some of the world’s most common crops more resilient to UV stress. The researchers also uncovered the chemical processes by which lanthanides interact with the chlorophyll pigments that drive photosynthesis, showing that different lanthanide elements strengthen chlorophyll by replacing the magnesium at its center.“This is a first step to better understand how these elements work in plants, and to provide an example of how they could be better delivered to plants, compared to simply applying them in the soil,” says Associate Professor Benedetto Marelli, who conducted the research with postdoc Giorgio Rizzo. “This is the first example of a thorough study showing the effects of lanthanides on chlorophyll, and their beneficial effects to protect plants from UV stress.”Inside plant connectionsCertain lanthanides are used as contrast agents in MRI and for applications including light-emitting diodes, solar cells, and lasers. Over the last 50 years, lanthanides have become increasingly used in agriculture to enhance crop yields, with China alone applying lanthanide-based fertilizers to nearly 4 million hectares of land each year.“Lanthanides have been considered for a long time to be biologically irrelevant, but that’s changed in agriculture, especially in China,” says Rizzo, the paper’s first author. “But we largely don’t know how lanthanides work to benefit plants — nor do we understand their uptake mechanisms from plant tissues.”Recent studies have shown that low concentrations of lanthanides can promote plant growth, root elongation, hormone synthesis, and stress tolerance, but higher doses can cause harm to plants. Striking the right balance has been hard because of our lack of understanding around how lanthanides are absorbed by plants or how they interact with root soil.For the study, the researchers leveraged seed coating and treatment technologies they previously developed to investigate the way the plant pigment chlorophyll interacts with lanthanides, both inside and outside of plants. Up until now, researchers haven’t been sure whether chlorophyll interacts with lanthanide ions at all.Chlorophyll drives photosynthesis, but the pigments lose their ability to efficiently absorb light when the magnesium ion at their core is removed. The researchers discovered that lanthanides can fill that void, helping chlorophyll pigments partially recover some of their optical properties in a process known as re-greening.“We found that lanthanides can boost several parameters of plant health,” Marelli says. “They mostly accumulate in the roots, but a small amount also makes its way to the leaves, and some of the new chlorophyll molecules made in leaves have lanthanides incorporated in their structure.”This study also offers the first experimental evidence that lanthanides can increase plant resilience to UV stress, something the researchers say was completely unexpected.“Chlorophylls are very sensitive pigments,” Rizzo says. “They can convert light to energy in plants, but when they are isolated from the cell structure, they rapidly hydrolyze and degrade. However, in the form with lanthanides at their center, they are pretty stable, even after extracting them from plant cells.”The researchers, using different spectroscopic techniques, found the benefits held across a range of staple crops, including chickpea, barley, corn, and soybeans.The findings could be used to boost crop yield and increase the resilience of some of the world’s most popular crops to extreme weather.“As we move into an environment where extreme heat and extreme climate events are more common, and particularly where we can have prolonged periods of sun in the field, we want to provide new ways to protect our plants,” Marelli says. “There are existing agrochemicals that can be applied to leaves for protecting plants from stressors such as UV, but they can be toxic, increase microplastics, and can require multiple applications. This could be a complementary way to protect plants from UV stress.”Identifying new applicationsThe researchers also found that larger lanthanide elements like lanthanum were more effective at strengthening chlorophyll pigments than smaller ones. Lanthanum is considered a low-value byproduct of rare earths mining, and can become a burden to the rare earth element (REE) supply chain due to the need to separate it from more desirable rare earths. Increasing the demand for lanthanum could diversify the economics of REEs and improve the stability of their supply chain, the scientists suggest.“This study shows what we could do with these lower-value metals,” Marelli says. “We know lanthanides are extremely useful in electronics, magnets, and energy. In the U.S., there’s a big push to recycle them. That’s why for the plant studies, we focused on lanthanum, being the most abundant, cheapest lanthanide ion.”Moving forward, the team plans to explore how lanthanides work with other biological molecules, including proteins in the human body.In agriculture, the team hopes to scale up its research to include field and greenhouse studies to continue testing the results of UV resilience on different crop types and in experimental farm conditions.“Lanthanides are already widely used in agriculture,” Rizzo says. “We hope this study provides evidence that allows more conscious use of them and also a new way to apply them through seed treatments.”The research was supported by the MIT Climate Grand Challenge and the Office for Naval Research. More

  • in

    Island rivers carve passageways through coral reefs

    Volcanic islands, such as the islands of Hawaii and the Caribbean, are surrounded by coral reefs that encircle an island in a labyrinthine, living ring. A coral reef is punctured at points by reef passes — wide channels that cut through the coral and serve as conduits for ocean water and nutrients to filter in and out. These watery passageways provide circulation throughout a reef, helping to maintain the health of corals by flushing out freshwater and transporting key nutrients.Now, MIT scientists have found that reef passes are shaped by island rivers. In a study appearing today in the journal Geophysical Research Letters, the team shows that the locations of reef passes along coral reefs line up with where rivers funnel out from an island’s coast.Their findings provide the first quantitative evidence of rivers forming reef passes.  Scientists and explorers had speculated that this may be the case: Where a river on a volcanic island meets the coast, the freshwater and sediment it carries flows toward the reef, where a strong enough flow can tunnel into the surrounding coral. This idea has been proposed from time to time but never quantitatively tested, until now.“The results of this study help us to understand how the health of coral reefs depends on the islands they surround,” says study author Taylor Perron, the Cecil and Ida Green Professor of Earth, Atmospheric and Planetary Sciences at MIT.“A lot of discussion around rivers and their impact on reefs today has been negative because of human impact and the effects of agricultural practices,” adds lead author Megan Gillen, a graduate student in the MIT-WHOI Joint Program in Oceanography. “This study shows the potential long-term benefits rivers can have on reefs, which I hope reshapes the paradigm and highlights the natural state of rivers interacting with reefs.”The study’s other co-author is Andrew Ashton of the Woods Hole Oceanographic Institution.Drawing the linesThe new study is based on the team’s analysis of the Society Islands, a chain of islands in the South Pacific Ocean that includes Tahiti and Bora Bora. Gillen, who joined the MIT-WHOI program in 2020, was interested in exploring connections between coral reefs and the islands they surround. With limited options for on-site work during the Covid-19 pandemic, she and Perron looked to see what they could learn through satellite images and maps of island topography. They did a quick search using Google Earth and zeroed in on the Society Islands for their uniquely visible reef and island features.“The islands in this chain have these iconic, beautiful reefs, and we kept noticing these reef passes that seemed to align with deeply embayed portions of the coastline,” Gillen says. “We started asking ourselves, is there a correlation here?”Viewed from above, the coral reefs that circle some islands bear what look to be notches, like cracks that run straight through a ring. These breaks in the coral are reef passes — large channels that run tens of meters deep and can be wide enough for some boats to pass through. On first look, Gillen noticed that the most obvious reef passes seemed to line up with flooded river valleys — depressions in the coastline that have been eroded over time by island rivers that flow toward the ocean. She wondered whether and to what extent island rivers might shape reef passes.“People have examined the flow through reef passes to understand how ocean waves and seawater circulate in and out of lagoons, but there have been no claims of how these passes are formed,” Gillen says. “Reef pass formation has been mentioned infrequently in the literature, and people haven’t explored it in depth.”Reefs unraveledTo get a detailed view of the topography in and around the Society Islands, the team used data from the NASA Shuttle Radar Topography Mission — two radar antennae that flew aboard the space shuttle in 1999 and measured the topography across 80 percent of the Earth’s surface.The researchers used the mission’s topographic data in the Society Islands to create a map of every drainage basin along the coast of each island, to get an idea of where major rivers flow or once flowed. They also marked the locations of every reef pass in the surrounding coral reefs. They then essentially “unraveled” each island’s coastline and reef into a straight line, and compared the locations of basins versus reef passes.“Looking at the unwrapped shorelines, we find a significant correlation in the spatial relationship between these big river basins and where the passes line up,” Gillen says. “So we can say that statistically, the alignment of reef passes and large rivers does not seem random. The big rivers have a role in forming passes.”As for how rivers shape the coral conduits, the team has two ideas, which they call, respectively, reef incision and reef encroachment. In reef incision, they propose that reef passes can form in times when the sea level is relatively low, such that the reef is exposed above the sea surface and a river can flow directly over the reef. The water and sediment carried by the river can then erode the coral, progressively carving a path through the reef.When sea level is relatively higher, the team suspects a reef pass can still form, through reef encroachment. Coral reefs naturally live close to the water surface, where there is light and opportunity for photosynthesis. When sea levels rise, corals naturally grow upward and inward toward an island, to try to “catch up” to the water line.“Reefs migrate toward the islands as sea levels rise, trying to keep pace with changing average sea level,” Gillen says.However, part of the encroaching reef can end up in old river channels that were previously carved out by large rivers and that are lower than the rest of the island coastline. The corals in these river beds end up deeper than light can extend into the water column, and inevitably drown, leaving a gap in the form of a reef pass.“We don’t think it’s an either/or situation,” Gillen says. “Reef incision occurs when sea levels fall, and reef encroachment happens when sea levels rise. Both mechanisms, occurring over dozens of cycles of sea-level rise and island evolution, are likely responsible for the formation and maintenance of reef passes over time.”The team also looked to see whether there were differences in reef passes in older versus younger islands. They observed that younger islands were surrounded by more reef passes that were spaced closer together, versus older islands that had fewer reef passes that were farther apart.As islands age, they subside, or sink, into the ocean, which reduces the amount of land that funnels rainwater into rivers. Eventually, rivers are too weak to keep the reef passes open, at which point, the ocean likely takes over, and incoming waves could act to close up some passes.Gillen is exploring ideas for how rivers, or river-like flow, can be engineered to create paths through coral reefs in ways that would promote circulation and benefit reef health.“Part of me wonders: If you had a more persistent flow, in places where you don’t naturally have rivers interacting with the reef, could that potentially be a way to increase health, by incorporating that river component back into the reef system?” Gillen says. “That’s something we’re thinking about.”This research was supported, in part, by the WHOI Watson and Von Damm fellowships. More

  • in

    When Earth iced over, early life may have sheltered in meltwater ponds

    When the Earth froze over, where did life shelter? MIT scientists say one refuge may have been pools of melted ice that dotted the planet’s icy surface.In a study appearing today in Nature Communications, the researchers report that 635 million to 720 million years ago, during periods known as “Snowball Earth,” when much of the planet was covered in ice, some of our ancient cellular ancestors could have waited things out in meltwater ponds.The scientists found that eukaryotes — complex cellular lifeforms that eventually evolved into the diverse multicellular life we see today — could have survived the global freeze by living in shallow pools of water. These small, watery oases may have persisted atop relatively shallow ice sheets present in equatorial regions. There, the ice surface could accumulate dark-colored dust and debris from below, which enhanced its ability to melt into pools. At temperatures hovering around 0 degrees Celsius, the resulting meltwater ponds could have served as habitable environments for certain forms of early complex life.The team drew its conclusions based on an analysis of modern-day meltwater ponds. Today in Antarctica, small pools of melted ice can be found along the margins of ice sheets. The conditions along these polar ice sheets are similar to what likely existed along ice sheets near the equator during Snowball Earth.The researchers analyzed samples from a variety of meltwater ponds located on the McMurdo Ice Shelf in an area that was first described by members of Robert Falcon Scott’s 1903 expedition as “dirty ice.” The MIT researchers discovered clear signatures of eukaryotic life in every pond. The communities of eukaryotes varied from pond to pond, revealing a surprising diversity of life across the setting. The team also found that salinity plays a key role in the kind of life a pond can host: Ponds that were more brackish or salty had more similar eukaryotic communities, which differed from those in ponds with fresher waters.“We’ve shown that meltwater ponds are valid candidates for where early eukaryotes could have sheltered during these planet-wide glaciation events,” says lead author Fatima Husain, a graduate student in MIT’s Department of Earth, Atmospheric and Planetary Sciences (EAPS). “This shows us that diversity is present and possible in these sorts of settings. It’s really a story of life’s resilience.”The study’s MIT co-authors include Schlumberger Professor of Geobiology Roger Summons and former postdoc Thomas Evans, along with Jasmin Millar of Cardiff University, Anne Jungblut at the Natural History Museum in London, and Ian Hawes of the University of Waikato in New Zealand.Polar plunge“Snowball Earth” is the colloquial term for periods of time in Earth history during which the planet iced over. It is often used as a reference to the two consecutive, multi-million-year glaciation events which took place during the Cryogenian Period, which geologists refer to as the time between 635 and 720 million years ago. Whether the Earth was more of a hardened snowball or a softer “slushball” is still up for debate. But scientists are certain of one thing: Most of the planet was plunged into a deep freeze, with average global temperatures of minus 50 degrees Celsius. The question has been: How and where did life survive?“We’re interested in understanding the foundations of complex life on Earth. We see evidence for eukaryotes before and after the Cryogenian in the fossil record, but we largely lack direct evidence of where they may have lived during,” Husain says. “The great part of this mystery is, we know life survived. We’re just trying to understand how and where.”There are a number of ideas for where organisms could have sheltered during Snowball Earth, including in certain patches of the open ocean (if such environments existed), in and around deep-sea hydrothermal vents, and under ice sheets. In considering meltwater ponds, Husain and her colleagues pursued the hypothesis that surface ice meltwaters may also have been capable of supporting early eukaryotic life at the time.“There are many hypotheses for where life could have survived and sheltered during the Cryogenian, but we don’t have excellent analogs for all of them,” Husain notes. “Above-ice meltwater ponds occur on Earth today and are accessible, giving us the opportunity to really focus in on the eukaryotes which live in these environments.”Small pond, big lifeFor their new study, the researchers analyzed samples taken from meltwater ponds in Antarctica. In 2018, Summons and colleagues from New Zealand traveled to a region of the McMurdo Ice Shelf in East Antarctica, known to host small ponds of melted ice, each just a few feet deep and a few meters wide. There, water freezes all the way to the seafloor, in the process trapping dark-colored sediments and marine organisms. Wind-driven loss of ice from the surface creates a sort of conveyer belt that brings this trapped debris to the surface over time, where it absorbs the sun’s warmth, causing ice to melt, while surrounding debris-free ice reflects incoming sunlight, resulting in the formation of shallow meltwater ponds.The bottom of each pond is lined with mats of microbes that have built up over years to form layers of sticky cellular communities.“These mats can be a few centimeters thick, colorful, and they can be very clearly layered,” Husain says.These microbial mats are made up of cyanobacteria, prokaryotic, single-celled photosynthetic organisms that lack a cell nucleus or other organelles. While these ancient microbes are known to survive within some of the the harshest environments on Earth including meltwater ponds, the researchers wanted to know whether eukaryotes — complex organisms that evolved a cell nucleus and other membrane bound organelles — could also weather similarly challenging circumstances. Answering this question would take more than a microscope, as the defining characteristics of the microscopic eukaryotes present among the microbial mats are too subtle to distinguish by eye.To characterize the eukaryotes, the team analyzed the mats for specific lipids they make called sterols, as well as genetic components called ribosomal ribonucleic acid (rRNA), both of which can be used to identify organisms with varying degrees of specificity. These two independent sets of analyses provided complementary fingerprints for certain eukaryotic groups. As part of the team’s lipid research, they found many sterols and rRNA genes closely associated with specific types of algae, protists, and microscopic animals among the microbial mats. The researchers were able to assess the types and relative abundance of lipids and rRNA genes from pond to pond, and found the ponds hosted a surprising diversity of eukaryotic life.“No two ponds were alike,” Husain says. “There are repeating casts of characters, but they’re present in different abundances. And we found diverse assemblages of eukaryotes from all the major groups in all the ponds studied. These eukaryotes are the descendants of the eukaryotes that survived the Snowball Earth. This really highlights that meltwater ponds during Snowball Earth could have served as above-ice oases that nurtured the eukaryotic life that enabled the diversification and proliferation of complex life — including us — later on.”This research was supported, in part, by the NASA Exobiology Program, the Simons Collaboration on the Origins of Life, and a MISTI grant from MIT-New Zealand. More

  • in

    Decarbonizing steel is as tough as steel

    The long-term aspirational goal of the Paris Agreement on climate change is to cap global warming at 1.5 degrees Celsius above preindustrial levels, and thereby reduce the frequency and severity of floods, droughts, wildfires, and other extreme weather events. Achieving that goal will require a massive reduction in global carbon dioxide (CO2) emissions across all economic sectors. A major roadblock, however, could be the industrial sector, which accounts for roughly 25 percent of global energy- and process-related CO2 emissions — particularly within the iron and steel sector, industry’s largest emitter of CO2.Iron and steel production now relies heavily on fossil fuels (coal or natural gas) for heat, converting iron ore to iron, and making steel strong. Steelmaking could be decarbonized by a combination of several methods, including carbon capture technology, the use of low- or zero-carbon fuels, and increased use of recycled steel. Now a new study in the Journal of Cleaner Production systematically explores the viability of different iron-and-steel decarbonization strategies.Today’s strategy menu includes improving energy efficiency, switching fuels and technologies, using more scrap steel, and reducing demand. Using the MIT Economic Projection and Policy Analysis model, a multi-sector, multi-region model of the world economy, researchers at MIT, the University of Illinois at Urbana-Champaign, and ExxonMobil Technology and Engineering Co. evaluate the decarbonization potential of replacing coal-based production processes with electric arc furnaces (EAF), along with either scrap steel or “direct reduced iron” (DRI), which is fueled by natural gas with carbon capture and storage (NG CCS DRI-EAF) or by hydrogen (H2 DRI-EAF).Under a global climate mitigation scenario aligned with the 1.5 C climate goal, these advanced steelmaking technologies could result in deep decarbonization of the iron and steel sector by 2050, as long as technology costs are low enough to enable large-scale deployment. Higher costs would favor the replacement of coal with electricity and natural gas, greater use of scrap steel, and reduced demand, resulting in a more-than-50-percent reduction in emissions relative to current levels. Lower technology costs would enable massive deployment of NG CCS DRI-EAF or H2 DRI-EAF, reducing emissions by up to 75 percent.Even without adoption of these advanced technologies, the iron-and-steel sector could significantly reduce its CO2 emissions intensity (how much CO2 is released per unit of production) with existing steelmaking technologies, primarily by replacing coal with gas and electricity (especially if it is generated by renewable energy sources), using more scrap steel, and implementing energy efficiency measures.“The iron and steel industry needs to combine several strategies to substantially reduce its emissions by mid-century, including an increase in recycling, but investing in cost reductions in hydrogen pathways and carbon capture and sequestration will enable even deeper emissions mitigation in the sector,” says study supervising author Sergey Paltsev, deputy director of the MIT Center for Sustainability Science and Strategy (MIT CS3) and a senior research scientist at the MIT Energy Initiative (MITEI).This study was supported by MIT CS3 and ExxonMobil through its membership in MITEI. More

  • in

    Window-sized device taps the air for safe drinking water

    Today, 2.2 billion people in the world lack access to safe drinking water. In the United States, more than 46 million people experience water insecurity, living with either no running water or water that is unsafe to drink. The increasing need for drinking water is stretching traditional resources such as rivers, lakes, and reservoirs.To improve access to safe and affordable drinking water, MIT engineers are tapping into an unconventional source: the air. The Earth’s atmosphere contains millions of billions of gallons of water in the form of vapor. If this vapor can be efficiently captured and condensed, it could supply clean drinking water in places where traditional water resources are inaccessible.With that goal in mind, the MIT team has developed and tested a new atmospheric water harvester and shown that it efficiently captures water vapor and produces safe drinking water across a range of relative humidities, including dry desert air.The new device is a black, window-sized vertical panel, made from a water-absorbent hydrogel material, enclosed in a glass chamber coated with a cooling layer. The hydrogel resembles black bubble wrap, with small dome-shaped structures that swell when the hydrogel soaks up water vapor. When the captured vapor evaporates, the domes shrink back down in an origami-like transformation. The evaporated vapor then condenses on the the glass, where it can flow down and out through a tube, as clean and drinkable water.

    MIT engineers test a passive water harvester in Death Valley, CA. The window-sized setup is made from an origami-inspired hydrogel material (black) that absorbs water from the air, and releases it into tubes where researchers can collect the moisture as pure drinking water.

    Credit: Courtesy of the researchers; MIT News

    Previous item
    Next item

    The system runs entirely on its own, without a power source, unlike other designs that require batteries, solar panels, or electricity from the grid. The team ran the device for over a week in Death Valley, California — the driest region in North America. Even in very low-humidity conditions, the device squeezed drinking water from the air at rates of up to 160 milliliters (about two-thirds of a cup) per day.The team estimates that multiple vertical panels, set up in a small array, could passively supply a household with drinking water, even in arid desert environments. What’s more, the system’s water production should increase with humidity, supplying drinking water in temperate and tropical climates.“We have built a meter-scale device that we hope to deploy in resource-limited regions, where even a solar cell is not very accessible,” says Xuanhe Zhao, the Uncas and Helen Whitaker Professor of Mechanical Engineering and Civil and Environmental Engineering at MIT. “It’s a test of feasibility in scaling up this water harvesting technology. Now people can build it even larger, or make it into parallel panels, to supply drinking water to people and achieve real impact.”Zhao and his colleagues present the details of the new water harvesting design in a paper appearing today in the journal Nature Water. The study’s lead author is former MIT postdoc “Will” Chang Liu, who is currently an assistant professor at the National University of Singapore (NUS). MIT co-authors include Xiao-Yun Yan, Shucong Li, and Bolei Deng, along with collaborators from multiple other institutions.Carrying capacityHydrogels are soft, porous materials that are made mainly from water and a microscopic network of interconnecting polymer fibers. Zhao’s group at MIT has primarily explored the use of hydrogels in biomedical applications, including adhesive coatings for medical implants, soft and flexible electrodes, and noninvasive imaging stickers.“Through our work with soft materials, one property we know very well is the way hydrogel is very good at absorbing water from air,” Zhao says.Researchers are exploring a number of ways to harvest water vapor for drinking water. Among the most efficient so far are devices made from metal-organic frameworks, or MOFs — ultra-porous materials that have also been shown to capture water from dry desert air. But the MOFs do not swell or stretch when absorbing water, and are limited in vapor-carrying capacity.Water from airThe group’s new hydrogel-based water harvester addresses another key problem in similar designs. Other groups have designed water harvesters out of micro- or nano-porous hydrogels. But the water produced from these designs can be salty, requiring additional filtering. Salt is a naturally absorbent material, and researchers embed salts — typically, lithium chloride — in hydrogel to increase the material’s water absorption. The drawback, however, is that this salt can leak out with the water when it is eventually collected.The team’s new design significantly limits salt leakage. Within the hydrogel itself, they included an extra ingredient: glycerol, a liquid compound that naturally stabilizes salt, keeping it within the gel rather than letting it crystallize and leak out with the water. The hydrogel itself has a microstructure that lacks nanoscale pores, which further prevents salt from escaping the material. The salt levels in the water they collected were below the standard threshold for safe drinking water, and significantly below the levels produced by many other hydrogel-based designs.In addition to tuning the hydrogel’s composition, the researchers made improvements to its form. Rather than keeping the gel as a flat sheet, they molded it into a pattern of small domes resembling bubble wrap, that act to increase the gel’s surface area, along with the amount of water vapor it can absorb.The researchers fabricated a half-square-meter of hydrogel and encased the material in a window-like glass chamber. They coated the exterior of the chamber with a special polymer film, which helps to cool the glass and stimulates any water vapor in the hydrogel to evaporate and condense onto the glass. They installed a simple tubing system to collect the water as it flows down the glass.In November 2023, the team traveled to Death Valley, California, and set up the device as a vertical panel. Over seven days, they took measurements as the hydrogel absorbed water vapor during the night (the time of day when water vapor in the desert is highest). In the daytime, with help from the sun, the harvested water evaporated out from the hydrogel and condensed onto the glass.Over this period, the device worked across a range of humidities, from 21 to 88 percent, and produced between 57 and 161.5 milliliters of drinking water per day. Even in the driest conditions, the device harvested more water than other passive and some actively powered designs.“This is just a proof-of-concept design, and there are a lot of things we can optimize,” Liu says. “For instance, we could have a multipanel design. And we’re working on a next generation of the material to further improve its intrinsic properties.”“We imagine that you could one day deploy an array of these panels, and the footprint is very small because they are all vertical,” says Zhao, who has plans to further test the panels in many resource-limited regions. “Then you could have many panels together, collecting water all the time, at household scale.”This work was supported, in part, by the MIT J-WAFS Water and Food Seed Grant, the MIT-Chinese University of Hong Kong collaborative research program, and the UM6P-MIT collaborative research program. More

  • in

    “Each of us holds a piece of the solution”

    MIT has an unparalleled history of bringing together interdisciplinary teams to solve pressing problems — think of the development of radar during World War II, or leading the international coalition that cracked the code of the human genome — but the challenge of climate change could demand a scale of collaboration unlike any that’s come before at MIT.“Solving climate change is not just about new technologies or better models. It’s about forging new partnerships across campus and beyond — between scientists and economists, between architects and data scientists, between policymakers and physicists, between anthropologists and engineers, and more,” MIT Vice President for Energy and Climate Evelyn Wang told an energetic crowd of faculty, students, and staff on May 6. “Each of us holds a piece of the solution — but only together can we see the whole.”Undeterred by heavy rain, approximately 300 campus community members filled the atrium in the Tina and Hamid Moghadam Building (Building 55) for a spring gathering hosted by Wang and the Climate Project at MIT. The initiative seeks to direct the full strength of MIT to address climate change, which Wang described as one of the defining challenges of this moment in history — and one of its greatest opportunities.“It calls on us to rethink how we power our world, how we build, how we live — and how we work together,” Wang said. “And there is no better place than MIT to lead this kind of bold, integrated effort. Our culture of curiosity, rigor, and relentless experimentation makes us uniquely suited to cross boundaries — to break down silos and build something new.”The Climate Project is organized around six missions, thematic areas in which MIT aims to make significant impact, ranging from decarbonizing industry to new policy approaches to designing resilient cities. The faculty leaders of these missions posed challenges to the crowd before circulating among the crowd to share their perspectives and to discuss community questions and ideas.Wang and the Climate Project team were joined by a number of research groups, startups, and MIT offices conducting relevant work today on issues related to energy and climate. For example, the MIT Office of Sustainability showcased efforts to use the MIT campus as a living laboratory; MIT spinouts such as Forma Systems, which is developing high-performance, low-carbon building systems, and Addis Energy, which envisions using the earth as a reactor to produce clean ammonia, presented their technologies; and visitors learned about current projects in MIT labs, including DebunkBot, an artificial intelligence-powered chatbot that can persuade people to shift their attitudes about conspiracies, developed by David Rand, the Erwin H. Schell Professor at the MIT Sloan School of Management.Benedetto Marelli, an associate professor in the Department of Civil and Environmental Engineering who leads the Wild Cards Mission, said the energy and enthusiasm that filled the room was inspiring — but that the individual conversations were equally valuable.“I was especially pleased to see so many students come out. I also spoke with other faculty, talked to staff from across the Institute, and met representatives of external companies interested in collaborating with MIT,” Marelli said. “You could see connections being made all around the room, which is exactly what we need as we build momentum for the Climate Project.” More