More stories

  • in

    Study finds lands used for grazing can worsen or help climate change

    When it comes to global climate change, livestock grazing can be either a blessing or a curse, according to a new study, which offers clues on how to tell the difference.

    If managed properly, the study shows, grazing can actually increase the amount of carbon from the air that gets stored in the ground and sequestered for the long run. But if there is too much grazing, soil erosion can result, and the net effect is to cause more carbon losses, so that the land becomes a net carbon source, instead of a carbon sink. And the study found that the latter is far more common around the world today.

    The new work, published today in the journal Nature Climate Change, provides ways to determine the tipping point between the two, for grazing lands in a given climate zone and soil type. It also provides an estimate of the total amount of carbon that has been lost over past decades due to livestock grazing, and how much could be removed from the atmosphere if grazing optimization management implemented. The study was carried out by Cesar Terrer, an assistant professor of civil and environmental engineering at MIT; Shuai Ren, a PhD student at the Chinese Academy of Sciences whose thesis is co-supervised by Terrer; and four others.

    “This has been a matter of debate in the scientific literature for a long time,” Terrer says. “In general experiments, grazing decreases soil carbon stocks, but surprisingly, sometimes grazing increases soil carbon stocks, which is why it’s been puzzling.”

    What happens, he explains, is that “grazing could stimulate vegetation growth through easing resource constraints such as light and nutrients, thereby increasing root carbon inputs to soils, where carbon can stay there for centuries or millennia.”

    But that only works up to a certain point, the team found after a careful analysis of 1,473 soil carbon observations from different grazing studies from many locations around the world. “When you cross a threshold in grazing intensity, or the amount of animals grazing there, that is when you start to see sort of a tipping point — a strong decrease in the amount of carbon in the soil,” Terrer explains.

    That loss is thought to be primarily from increased soil erosion on the denuded land. And with that erosion, Terrer says, “basically you lose a lot of the carbon that you have been locking in for centuries.”

    The various studies the team compiled, although they differed somewhat, essentially used similar methodology, which is to fence off a portion of land so that livestock can’t access it, and then after some time take soil samples from within the enclosure area, and from comparable nearby areas that have been grazed, and compare the content of carbon compounds.

    “Along with the data on soil carbon for the control and grazed plots,” he says, “we also collected a bunch of other information, such as the mean annual temperature of the site, mean annual precipitation, plant biomass, and properties of the soil, like pH and nitrogen content. And then, of course, we estimate the grazing intensity — aboveground biomass consumed, because that turns out to be the key parameter.”  

    With artificial intelligence models, the authors quantified the importance of each of these parameters, those drivers of intensity — temperature, precipitation, soil properties — in modulating the sign (positive or negative) and magnitude of the impact of grazing on soil carbon stocks. “Interestingly, we found soil carbon stocks increase and then decrease with grazing intensity, rather than the expected linear response,” says Ren.

    Having developed the model through AI methods and validated it, including by comparing its predictions with those based on underlying physical principles, they can then apply the model to estimating both past and future effects. “In this case,” Terrer says, “we use the model to quantify the historical loses in soil carbon stocks from grazing. And we found that 46 petagrams [billion metric tons] of soil carbon, down to a depth of one meter, have been lost in the last few decades due to grazing.”

    By way of comparison, the total amount of greenhouse gas emissions per year from all fossil fuels is about 10 petagrams, so the loss from grazing equals more than four years’ worth of all the world’s fossil emissions combined.

    What they found was “an overall decline in soil carbon stocks, but with a lot of variability.” Terrer says. The analysis showed that the interplay between grazing intensity and environmental conditions such as temperature could explain the variability, with higher grazing intensity and hotter climates resulting in greater carbon loss. “This means that policy-makers should take into account local abiotic and biotic factors to manage rangelands efficiently,” Ren notes. “By ignoring such complex interactions, we found that using IPCC [Intergovernmental Panel on Climate Change] guidelines would underestimate grazing-induced soil carbon loss by a factor of three globally.”

    Using an approach that incorporates local environmental conditions, the team produced global, high-resolution maps of optimal grazing intensity and the threshold of intensity at which carbon starts to decrease very rapidly. These maps are expected to serve as important benchmarks for evaluating existing grazing practices and provide guidance to local farmers on how to effectively manage their grazing lands.

    Then, using that map, the team estimated how much carbon could be captured if all grazing lands were limited to their optimum grazing intensity. Currently, the authors found, about 20 percent of all pasturelands have crossed the thresholds, leading to severe carbon losses. However, they found that under the optimal levels, global grazing lands would sequester 63 petagrams of carbon. “It is amazing,” Ren says. “This value is roughly equivalent to a 30-year carbon accumulation from global natural forest regrowth.”

    That would be no simple task, of course. To achieve optimal levels, the team found that approximately 75 percent of all grazing areas need to reduce grazing intensity. Overall, if the world seriously reduces the amount of grazing, “you have to reduce the amount of meat that’s available for people,” Terrer says.

    “Another option is to move cattle around,” he says, “from areas that are more severely affected by grazing intensity, to areas that are less affected. Those rotations have been suggested as an opportunity to avoid the more drastic declines in carbon stocks without necessarily reducing the availability of meat.”

    This study didn’t delve into these social and economic implications, Terrer says. “Our role is to just point out what would be the opportunity here. It shows that shifts in diets can be a powerful way to mitigate climate change.”

    “This is a rigorous and careful analysis that provides our best look to date at soil carbon changes due to livestock grazing practiced worldwide,” say Ben Bond-Lamberty, a terrestrial ecosystem research scientist at Pacific Northwest National Laboratory, who was not associated with this work. “The authors’ analysis gives us a unique estimate of soil carbon losses due to grazing and, intriguingly, where and how the process might be reversed.”

    He adds: “One intriguing aspect to this work is the discrepancies between its results and the guidelines currently used by the IPCC — guidelines that affect countries’ commitments, carbon-market pricing, and policies.” However, he says, “As the authors note, the amount of carbon historically grazed soils might be able to take up is small relative to ongoing human emissions. But every little bit helps!”

    “Improved management of working lands can be a powerful tool to combat climate change,” says Jonathan Sanderman, carbon program director of the Woodwell Climate Research Center in Falmouth, Massachusetts, who was not associated with this work. He adds, “This work demonstrates that while, historically, grazing has been a large contributor to climate change, there is significant potential to decrease the climate impact of livestock by optimizing grazing intensity to rebuild lost soil carbon.”

    Terrer states that for now, “we have started a new study, to evaluate the consequences of shifts in diets for carbon stocks. I think that’s the million-dollar question: How much carbon could you sequester, compared to business as usual, if diets shift to more vegan or vegetarian?” The answers will not be simple, because a shift to more vegetable-based diets would require more cropland, which can also have different environmental impacts. Pastures take more land than crops, but produce different kinds of emissions. “What’s the overall impact for climate change? That is the question we’re interested in,” he says.

    The research team included Juan Li, Yingfao Cao, Sheshan Yang, and Dan Liu, all with the  Chinese Academy of Sciences. The work was supported by the Second Tibetan Plateau Scientific Expedition and Research Program, and the Science and Technology Major Project of Tibetan Autonomous Region of China. More

  • in

    Letting the Earth answer back: Designing better planetary conversations

    For Chen Chu MArch ’21, the invitation to join the 2023-24 cohort of Morningside Academy for Design Design Fellows has been an unparalleled opportunity to investigate the potential of design as an alternative method of problem-solving.

    After earning a master’s degree in architecture at MIT and gaining professional experience as a researcher at an environmental nongovernmental organization, Chu decided to pursue a PhD in the Department of Urban Studies and Planning. “I discovered that I needed to engage in a deeper way with the most difficult ethical challenges of our time, especially those arising from the fact of climate change,” he explains. “For me, MIT has always represented this wonderful place where people are inherently intellectually curious — it’s a very rewarding community to be part of.”

    Chu’s PhD research, guided by his doctoral advisor Delia Wendel, assistant professor of urban studies and international development, focuses on how traditional practices of floodplain agriculture can inform local and global strategies for sustainable food production and distribution in response to climate change. 

    Typically located alongside a river or stream, floodplains arise from seasonal flooding patterns that distribute nutrient-rich silt and create connectivity between species. This results in exceptionally high levels of biodiversity and microbial richness, generating the ideal conditions for agriculture. It’s no accident that the first human civilizations were founded on floodplains, including Mesopotamia (named for its location poised between two rivers, the Euphrates and Tigris), the Indus River Civilization, and the cultures of Ancient Egypt based around the Nile. Riverine transportation networks and predictable flooding rhythms provide a framework for trade and cultivation; nonetheless, floodplain communities must learn to live with risk, subject to the sudden disruptions of high waters, drought, and ecological disequilibrium. 

    For Chu, the “unstable and ungovernable” status of floodplains makes them fertile ground for thinking about. “I’m drawn to these so-called ‘wet landscapes’ — edge conditions that act as transitional spaces between land and water, between humans and nature, between city and river,” he reflects. “The development of extensively irrigated agricultural sites is typically a collective effort, which raises intriguing questions about how communities establish social organizations that simultaneously negotiate top-down state control and adapt to the uncertainty of nature.”

    Chu is in the process of honing the focus of his dissertation and refining his data collection methods, which will include archival research and fieldwork, as well as interviews with floodplain inhabitants to gain an understanding of sociopolitical nuances. Meanwhile, his role as a design fellow gives him the space to address the big questions that fire his imagination. How can we live well on shared land? How can we take responsibility for the lives of future generations? What types of political structures are required to get everyone on board? 

    These are just a few of the questions that Chu recently put to his cohort in a presentation. During the weekly seminars for the fellowship, he has the chance to converse with peers and mentors of multiple disciplines — from researchers rethinking the pedagogy of design to entrepreneurs applying design thinking to new business models to architects and engineers developing new habitats to heal our relationship with the natural world. 

    “I’ll admit — I’m wary of the human instinct to problem-solve,” says Chu. “When it comes to the material conditions and lived experience of people and planet, there’s a limit to our economic and political reasoning, and to conventional architectural practice. That said, I do believe that the mindset of a designer can open up new ways of thinking. At its core, design is an interdisciplinary practice based on the understanding that a problem can’t be solved from a narrow, singular perspective.” 

    The stimulating structure of a MAD Fellowship — free from immediate obligations to publish or produce, fellows learn from one another and engage with visiting speakers via regular seminars and events — has prompted Chu to consider what truly makes for generative conversation in the contexts of academia and the private and public sectors. In his opinion, discussions around climate change often fail to take account of one important voice; an absence he describes as “that silent being, the Earth.”

    “You can’t ask the Earth, ‘What does justice mean to you?’ Nature will not respond,” he reflects. To bridge the gap, Chu believes it’s important to combine the study of specific political and social conditions with broader existential questions raised by the environmental humanities. His own research draws upon the perspectives of thinkers including Dipesh Chakrabarty, Donna Haraway, Peter Singer,  Anna Tsing, and Michael Watts, among others. He cites James C. Scott’s lecture “In Praise of Floods” as one of his most important influences.

    In addition to his instinctive appreciation for theory, Chu’s outlook is grounded by an attention to innovation at the local level. He is currently establishing the parameters of his research, examining case studies of agricultural systems and flood mitigation strategies that have been sustained for centuries. 

    “One example is the polder system that is practiced in the Netherlands, China, Bangladesh, and many parts of the world: small, low-lying tracts of land submerged in water and surrounded by dykes and canals,” he explains. “You’ll find a different but comparable strategy in the colder regions of Japan. Crops are protected from the winter winds by constructing a spatial unit with the house at the center; trees behind the house serve as windbreakers and paddy fields for rice are located in front of the house, providing an integrated system of food and livelihood security.”

    Chu observes that there is a tendency for international policymakers to overlook local solutions in favor of grander visions and ambitious climate pledges — but he is equally keen not to romanticize vernacular practices. “Realistically, it’s always a two-way interaction. Unless you already have a workable local system in place, it’s difficult to implement a solution without top-down support. On the other hand, the large-scale technocratic dreams are empty if ignorant of local traditions and histories.” 

    By navigating between the global and the local, the theoretical and the practical, the visionary and the cautionary, Chu has hope in the possibility of gradually finding a way toward long-term solutions that adapt to specific conditions over time. It’s a model of ambition and criticality that Chu sees played out during dialogue at MAD and within his department; at root, he’s aware that the outcome of these conversations depends on the ethical context that shapes them.

    “I’ve been fortunate to have many mentors who have taught me the power of humility; a respect for the finitude, fragility,  and uncertainty of life,” he recalls. “It’s a mindset that’s barely apparent in today’s push for economic growth.” The flip-side of hubristic growth is an assumption that technological ingenuity will be enough to solve the climate crisis, but Chu’s optimism arises from a different source: “When I feel overwhelmed by the weight of the problems we’re facing, I just need to look around me,” he says. “Here on campus — at MAD, in my home department, and increasingly among the new generations of students — there’s a powerful ethos of political sensitivity, ethical compassion, and an attention to clear and critical judgment. That always gives me hope for the planet.” More

  • in

    At Sustainability Connect 2024, a look at how MIT is decarbonizing its campus

    How is MIT working to meet its goal of decarbonizing the campus by 2050? How are local journalists communicating climate impacts and solutions to diverse audiences? What can each of us do to bring our unique skills and insight to tackle the challenges of climate and sustainability?

    These are all questions asked — and answered — at Sustainability Connect, the yearly forum hosted by the MIT Office of Sustainability that offers an inside look at this transformative and comprehensive work that is the foundation for MIT’s climate and sustainability leadership on campus. The event invites individuals in every role at MIT to learn more about the sustainability and climate work happening on campus and to share their ideas, highlight important work, and find new ways to plug into ongoing efforts. “This event is a reminder of the remarkable, diverse, and committed group of colleagues we are all part of at MIT,” said Director of Sustainability Julie Newman as the event kicked off alongside Interfaith Chaplain and Spiritual Advisor to the Indigenous Community Nina Lytton, who offered a moment of connection to attendees. At the event, that diverse and committed group was made up of more than 130 community members representing more than 70 departments, labs, and centers.

    This year, Sustainability Connect was timed with announcement of the new Climate Project at MIT, with Vice Provost Richard Lester joining the event to expound on MIT’s deep commitment to tackling the climate challenge over the next 10 years through a series of climate missions — many of which build upon the ongoing research taking place across campus already. In introducing the Climate Project at MIT, Lester echoed the theme of connection and collaboration. “This plan is about helping bridge the gap between what we would accomplish as a collection of energetic, talented, ambitious individuals, and what we’re capable of if we act together,” he said.

    Play video

    Sustainability Connect 2024: Decarbonizing the Campus Video: MIT Office of Sustainability

    Highlighting one of the many collaborative efforts to address MIT’s contributions to climate change was the Decarbonizing the Campus panel, which provided a real-time look at MIT’s work to eliminate carbon emissions from campus by 2050. Newman and Vice President for Campus Services and Stewardship Joe Higgins, along with Senior Campus Planner Vasso Mathes, Senior Sustainability Project Manager Steve Lanou, and PhD student Chenhan Shao, shared the many ways MIT is working to decarbonize its campus now and respond to evolving technologies and policies in the future. “A third of MIT’s faculty and researchers … are working to identify ways in which MIT can amplify its contributions to addressing the world’s climate crisis. But part and parcel to that goal is we’re putting significant effort into decarbonizing MIT’S own carbon footprint here on our campus,” Higgins said before highlighting how MIT continues to work on projects focused on building efficiency, renewable energy on campus and off, and support of a cleaner grid, among many decarbonization strategies.

    Newman shared the way in which climate education and research play an important role through the Decarbonization Working Group research streams, and courses like class 4.s42 (Carbon Reduction Pathways for the MIT Campus) offered by Professor Christoph Reinhart. Lanou and Shao also showcased how MIT is optimizing its response to Cambridge’s Building Energy Use Disclosure Ordinance, which is aimed at tracking and reducing emissions from large commercial properties in the city with a goal of net-zero buildings by 2035. “We’ve been able [create] pathways that would be practical, innovative, have a high degree of accountability, and that could work well within the structures and the limitations that we have,” Lanou said before debuting a dashboard he and Shao developed during Independent Activities Period to track and forecast work to meet the Cambridge goal. 

    MIT’s robust commitment to decarbonize its campus goes beyond energy systems, as highlighted by the work of many staff members who led roundtables as part of Sustainability in Motion, where attendees were invited to sit down with colleagues from across campus responsible for implementing the numerous climate and sustainability commitments. Teams reported out on progress to date on a range of efforts including sustainable food systems, safe and sustainable labs, and procurement. “Tackling the unprecedented challenges of a changing planet in and around MIT takes the support of individuals and teams from all corners of the Institute,” said Assistant Director of Sustainability Brian Goldberg in leading the session. “Whether folks have sustainability or climate in their job title, or they’ve contributed countless volunteer hours to the cause, our community members are leading many meaningful efforts to transform MIT.”

    Play video

    Sustainability Connect 2024: Climate in the Media PanelVideo: Office of Sustainability

    The day culminated with a panel on climate in the media, taking the excitement from the room and putting it in context — how do you translate this work, these solutions, and these challenges for a diverse audience with an ever-changing appetite for these kinds of stories? Laur Hesse Fisher, program director for the Environmental Solutions Initiate (ESI); Barbara Moran, climate and environment reporter at WBUR radio; and independent climate journalist Annie Ropeik joined the panel moderated by Knight Science Journalism Program at MIT Director Deborah Blum. Blum spoke of the current mistrust of not only the media but of news stories of climate impacts and even solutions. “To those of us telling the story of climate change, how do we reach resistant audiences? How do we gain their trust?” she asked.

    Fisher, who hosts the TIL Climate podcast and leads the ESI Journalism Fellowship, explained how she shifts her approach depending on her audience. “[With TIL Climate], a lot of what we do is, we try to understand what kinds of questions people have,” she said. “We have people submit questions to us, and then we answer them in language that they can understand.”

    For Moran, reaching audiences relies on finding the right topic to bridge to deeper issues. On a recent story about solar arrays and their impact on forests and the landscape around them, Moran saw bees and pollinators as the way in. “I can talk about bees and flowers. And that will hook people enough to get in. And then through that, we can address this issue of forest versus commercial solar and this tension, and what can be done to address that, and what’s working and what’s not,” she said.

    The panel highlighted that even as climate solutions and challenges become clearer, communicating them can remain a challenge. “Sustainability Connect is invaluable when it comes to sharing our work and bringing more people in, but over the years, it’s become clear how many people are still outside of these conversations,” said Newman. “Capping the day off with this conversation on climate in the media served as a jumping-off point for all of us to think how we can better communicate our efforts and tackle the challenges that keep us from bringing everyone to the table to help us find and share solutions for addressing climate change. It’s just the beginning of this conversation.” More

  • in

    Moving past the Iron Age

    MIT graduate student Sydney Rose Johnson has never seen the steel mills in central India. She’s never toured the American Midwest’s hulking steel plants or the mini mills dotting the Mississippi River. But in the past year, she’s become more familiar with steel production than she ever imagined.

    A fourth-year dual degree MBA and PhD candidate in chemical engineering and a graduate research assistant with the MIT Energy Initiative (MITEI) as well as a 2022-23 Shell Energy Fellow, Johnson looks at ways to reduce carbon dioxide (CO2) emissions generated by industrial processes in hard-to-abate industries. Those include steel.

    Almost every aspect of infrastructure and transportation — buildings, bridges, cars, trains, mass transit — contains steel. The manufacture of steel hasn’t changed much since the Iron Age, with some steel plants in the United States and India operating almost continually for more than a century, their massive blast furnaces re-lined periodically with carbon and graphite to keep them going.

    According to the World Economic Forum, steel demand is projected to increase 30 percent by 2050, spurred in part by population growth and economic development in China, India, Africa, and Southeast Asia.

    The steel industry is among the three biggest producers of CO2 worldwide. Every ton of steel produced in 2020 emitted, on average, 1.89 tons of CO2 into the atmosphere — around 8 percent of global CO2 emissions, according to the World Steel Association.

    A combination of technical strategies and financial investments, Johnson notes, will be needed to wrestle that 8 percent figure down to something more planet-friendly.

    Johnson’s thesis focuses on modeling and analyzing ways to decarbonize steel. Using data mined from academic and industry sources, she builds models to calculate emissions, costs, and energy consumption for plant-level production.

    “I optimize steel production pathways using emission goals, industry commitments, and cost,” she says. Based on the projected growth of India’s steel industry, she applies this approach to case studies that predict outcomes for some of the country’s thousand-plus factories, which together have a production capacity of 154 million metric tons of steel. For the United States, she looks at the effect of Inflation Reduction Act (IRA) credits. The 2022 IRA provides incentives that could accelerate the steel industry’s efforts to minimize its carbon emissions.

    Johnson compares emissions and costs across different production pathways, asking questions such as: “If we start today, what would a cost-optimal production scenario look like years from now? How would it change if we added in credits? What would have to happen to cut 2005 levels of emissions in half by 2030?”

    “My goal is to gain an understanding of how current and emerging decarbonization strategies will be integrated into the industry,” Johnson says.

    Grappling with industrial problems

    Growing up in Marietta, Georgia, outside Atlanta, the closest she ever came to a plant of any kind was through her father, a chemical engineer working in logistics and procuring steel for an aerospace company, and during high school, when she spent a semester working alongside chemical engineers tweaking the pH of an anti-foaming agent.

    At Kennesaw Mountain High School, a STEM magnet program in Cobb County, students devote an entire semester of their senior year to an internship and research project.

    Johnson chose to work at Kemira Chemicals, which develops chemical solutions for water-intensive industries with a focus on pulp and paper, water treatment, and energy systems.

    “My goal was to understand why a polymer product was falling out of suspension — essentially, why it was less stable,” she recalls. She learned how to formulate a lab-scale version of the product and conduct tests to measure its viscosity and acidity. Comparing the lab-scale and regular product results revealed that acidity was an important factor. “Through conversations with my mentor, I learned this was connected with the holding conditions, which led to the product being oxidized,” she says. With the anti-foaming agent’s problem identified, steps could be taken to fix it.

    “I learned how to apply problem-solving. I got to learn more about working in an industrial environment by connecting with the team in quality control as well as with R&D and chemical engineers at the plant site,” Johnson says. “This experience confirmed I wanted to pursue engineering in college.”

    As an undergraduate at Stanford University, she learned about the different fields — biotechnology, environmental science, electrochemistry, and energy, among others — open to chemical engineers. “It seemed like a very diverse field and application range,” she says. “I was just so intrigued by the different things I saw people doing and all these different sets of issues.”

    Turning up the heat

    At MIT, she turned her attention to how certain industries can offset their detrimental effects on climate.

    “I’m interested in the impact of technology on global communities, the environment, and policy. Energy applications affect every field. My goal as a chemical engineer is to have a broad perspective on problem-solving and to find solutions that benefit as many people, especially those under-resourced, as possible,” says Johnson, who has served on the MIT Chemical Engineering Graduate Student Advisory Board, the MIT Energy and Climate Club, and is involved with diversity and inclusion initiatives.

    The steel industry, Johnson acknowledges, is not what she first imagined when she saw herself working toward mitigating climate change.

    “But now, understanding the role the material has in infrastructure development, combined with its heavy use of coal, has illuminated how the sector, along with other hard-to-abate industries, is important in the climate change conversation,” Johnson says.

    Despite the advanced age of many steel mills, some are quite energy-efficient, she notes. Yet these operations, which produce heat upwards of 3,000 degrees Fahrenheit, are still emission-intensive.

    Steel is made from iron ore, a mixture of iron, oxygen, and other minerals found on virtually every continent, with Brazil and Australia alone exporting millions of metric tons per year. Commonly based on a process dating back to the 19th century, iron is extracted from the ore through smelting — heating the ore with blast furnaces until the metal becomes spongy and its chemical components begin to break down.

    A reducing agent is needed to release the oxygen trapped in the ore, transforming it from its raw form to pure iron. That’s where most emissions come from, Johnson notes.

    “We want to reduce emissions, and we want to make a cleaner and safer environment for everyone,” she says. “It’s not just the CO2 emissions. It’s also sometimes NOx and SOx [nitrogen oxides and sulfur oxides] and air pollution particulate matter at some of these production facilities that can affect people as well.”

    In 2020, the International Energy Agency released a roadmap exploring potential technologies and strategies that would make the iron and steel sector more compatible with the agency’s vision of increased sustainability. Emission reductions can be accomplished with more modern technology, the agency suggests, or by substituting the fuels producing the immense heat needed to process ore. Traditionally, the fuels used for iron reduction have been coal and natural gas. Alternative fuels include clean hydrogen, electricity, and biomass.

    Using the MITEI Sustainable Energy System Analysis Modeling Environment (SESAME), Johnson analyzes various decarbonization strategies. She considers options such as switching fuel for furnaces to hydrogen with a little bit of natural gas or adding carbon-capture devices. The models demonstrate how effective these tactics are likely to be. The answers aren’t always encouraging.

    “Upstream emissions can determine how effective the strategies are,” Johnson says. Charcoal derived from forestry biomass seemed to be a promising alternative fuel, but her models showed that processing the charcoal for use in the blast furnace limited its effectiveness in negating emissions.

    Despite the challenges, “there are definitely ways of moving forward,” Johnson says. “It’s been an intriguing journey in terms of understanding where the industry is at. There’s still a long way to go, but it’s doable.”

    Johnson is heartened by the steel industry’s efforts to recycle scrap into new steel products and incorporate more emission-friendly technologies and practices, some of which result in significantly lower CO2 emissions than conventional production.

    A major issue is that low-carbon steel can be more than 50 percent more costly than conventionally produced steel. “There are costs associated with making the transition, but in the context of the environmental implications, I think it’s well worth it to adopt these technologies,” she says.

    After graduation, Johnson plans to continue to work in the energy field. “I definitely want to use a combination of engineering knowledge and business knowledge to work toward mitigating climate change, potentially in the startup space with clean technology or even in a policy context,” she says. “I’m interested in connecting the private and public sectors to implement measures for improving our environment and benefiting as many people as possible.” More

  • in

    Explained: Carbon credits

    One of the most contentious issues faced at the 28th Conference of Parties (COP28) on climate change last December was a proposal for a U.N.-sanctioned market for trading carbon credits. Such a mechanism would allow nations and industries making slow progress in reducing their own carbon emissions to pay others to take emissions-reducing measures, such as improving energy efficiency or protecting forests.

    Such trading systems have already grown to a multibillion-dollar market despite a lack of clear international regulations to define and monitor the claimed emissions reductions. During weeks of feverish negotiations, some nations, including the U.S., advocated for a somewhat looser approach to regulations in the interests of getting a system in place quickly. Others, including the European Union, advocated much tighter regulation, in light of a history of questionable or even counterproductive projects of this kind in the past. In the end, no agreement was reached on the subject, which will be revisited at a later meeting.

    The concept seems simple enough: Offset emissions in one place by preventing or capturing an equal amount of emissions elsewhere. But implementing that idea has turned out to be far more complex and fraught with problems than many expected.

    For example, projects that aim to preserve a section of forest — which can remove carbon dioxide from the air and sequester it in the soil — face numerous issues. Will the preservation of one parcel just lead to the clearcutting of an adjacent parcel? Would the preserved land have been left uncut anyway? And what if it ends up being destroyed by wildfire, drought, or insect infestation — all of which are expected to become more likely with climate change?

    Similarly, projects that aim to capture carbon dioxide emissions and inject them into the ground are sometimes used to justify increasing the production of petroleum or natural gas, negating the intended climate mitigation of the process.

    Several experts at MIT now say that the system could be effective, at least in certain circumstances, but it must be thoroughly evaluated and regulated.

    Carbon removal, natural or mechanical

    Sergey Paltsev, deputy director of MIT’s Joint Program on the Science and Policy of Global Change, co-led a study and workshop last year that included policymakers, industry representatives, and researchers. They focused on one kind of carbon offsets, those based on natural climate solutions — restoration or preservation of natural systems that not only sequester carbon but also provide other benefits, such as greater biodiversity. “We find a lot of confusion and misperceptions and misinformation, even about how you define the term carbon credit or offset,” he says.

    He points out that there has been a lot of criticism of the whole idea of carbon offsets, “and that criticism is well-placed. I think that’s a very healthy conversation, to clarify what makes sense and what doesn’t make sense. What are the real actions versus what is greenwashing?”

    He says that government-mandated and managed carbon trading programs in some places, including British Columbia and parts of Europe, have been somewhat effective because they have clear standards in place, whereas unregulated carbon credit systems have often been abused.

    Charles Harvey, an MIT professor of civil and environmental engineering, should know, having been actively involved in both sides of the issue over the last two decades. He co-founded a company in 2008 that was the first private U.S. company to attempt to remove carbon dioxide from emissions on a commercial scale, a process called carbon capture and sequestration, or CCS. Such projects have been a major recipient of federal subsidies aimed at combatting climate change, but Harvey now says these are largely a waste of money and in most cases do not achieve their stated objective.

    In fact, he says that according to industry sources, as of 2021 more than 90 percent of CCS projects in the U.S. have been used for the production of more fossil fuels — oil and natural gas. Here’s how it works: Natural gas wells often produce methane mixed with carbon dioxide, which must be removed to produce a marketable natural gas. This carbon dioxide is then injected into oil wells to stimulate more production. So, the net effect is the creation of more total greenhouse gas emissions rather than less, explains Harvey, who recently received a grant from the Rockefeller Foundation to explore CCS projects and whether they can be made to contribute to true emissions reductions.

    What went wrong with the ambitious startup CCS company Harvey co-founded? “What happened is that the prices of renewables and energy storage are now incredibly cheap,” he says. “It makes no sense to do this, ever, on power plants because honestly, fossil fuel power plants don’t even really make economic sense anymore.”

    Where does Harvey see potential for carbon credits to work? One possibility is the preservation or restoration of tropical peatlands, which he has received another grant to study. These are vast areas of permanently waterlogged land in which dead plant matter —and the carbon it contains — remains in place because the water prevents the normal decomposition processes that would otherwise release the stored carbon back into the air.

    While it is virtually impossible to quantify the amount of carbon stored in the soil of forest or farmland, in peatlands that’s easy to do because essentially all of the submerged material is carbon-based. Simply measuring changes in the elevation of such land, which can be done remotely by plane or satellite, gives a precise measure of how much carbon has been stored or released. When a patch of peat forest that has been clear-cut to build plantations or roads is reforested, the amount of carbon emissions that were prevented can be measured accurately.

    Because of that potential for accurate documentation, protecting or restoring peat bogs can also be a good way to achieve meaningful offsets for carbon emissions elsewhere, Harvey says. Rewetting a previously drained peat forest can immediately counteract the release of its stored carbon and can keep it there as long as it is not drained again — something that can be verified using satellite data.

    Paltsev adds that while such nature-based systems for countering carbon emissions can be a key component of addressing climate change, especially in very difficult-to-decarbonize industries such as aviation, carbon credits for such programs “shouldn’t be a replacement for our efforts at emissions reduction. It should be in addition.”

    Criteria for meaningful offsets

    John Sterman, the Jay W. Forrester Professor of Management at the MIT Sloan School of Management, has published a set of criteria for evaluating proposed carbon offset plans to make sure they would provide the benefits they claim. At present, “there’s no regulation, there’s no oversight” for carbon offsets, he says. “There have been many scandals over this.”

    For example, one company was providing what it claimed was certification for carbon offset projects but was found to have such lax standards that the claimed offsets were often not real. For example, there were multiple claims to protect the same piece of forest and claims to protect land that was already legally protected.

    Sterman’s proposed set of criteria goes by the acronym AVID+. “It stands for four principles that you have to meet in order for your offset to be legitimate: It has to be additional, verifiable, immediate, and durable,” he says. “And then I call it AVID+,” he adds, the “plus” being for plans that have additional benefits as well, such as improving health, creating jobs, or helping historically disadvantaged communities.

    Offsets can be useful, he says, for addressing especially hard-to-abate industries such as steel or cement manufacturing, or aviation. But it is essential to meet all four of the criteria, or else real emissions are not really being offset. For example, planting trees today, while often a good thing to do, would take decades to offset emissions going into the atmosphere now, where they may persist for centuries — so that fails to meet the “immediate” requirement.

    And protecting existing forests, while also desirable, is very hard to prove as being additional, because “that requires a counterfactual that you can never observe,” he says. “That’s where a lot of squirrely accounting and a lot of fraud comes in, because how do you know that the forest would have been cut down but for the offset?” In one well-documented case, he points out, a company tried to sell carbon offsets for a section of forest that was already an established nature preserve.

    Are there offsets that can meet all the criteria and provide real benefits in helping to address climate change? Yes, Sterman and Harvey say, but they need to be evaluated carefully.

    “My favorite example,” Sterman says, “is doing deep energy retrofits and putting solar panels on low-income housing.” These measures can help address the so-called landlord-tenant problem: If tenants typically pay the utility bills, landlords have little incentive to pay for efficiency improvements, and the tenants don’t have the capital to make such improvements on their own. “Policies that would make this possible are pretty good candidates for legitimate offsets, because they are additional — low-income households can’t afford to do it without assistance, so it’s not going to happen without a program. It’s verifiable, because you’ve got the utility bills pre and post.” They are also quite immediate, typically taking only a year or so to implement, and “they’re pretty durable,” he says.

    Another example is a recent plan in Alaska that allows cruise ships to offset the emissions caused by their trips by paying into a fund that provides subsidies for Alaskan citizens to install heat pumps in their homes, thus preventing emissions from wood or fossil fuel heating systems. “I think this is a pretty good candidate to meet the criteria, certainly a lot better than much of what’s being done today,” Sterman says.

    But eventually, what is really needed, the researchers agree, are real, enforceable standards. After COP28, carbon offsets are still allowed, Sterman says, “but there is still no widely accepted mandatory regulation. We’re still in the wild West.”

    Paltsev nevertheless sees reasons for optimism about nature-based carbon offset systems. For example, he says the aviation industry has recently agreed to implement a set of standards for offsetting their emissions, known as CORSIA, for carbon offsetting and reduction scheme for international aviation. “It’s a point for optimism,” he says, “because they issued very tough guidelines as to what projects are eligible and what projects are not.”

    He adds, “There is a solution if you want to find a good solution. It is doable, when there is a will and there is the need.” More

  • in

    Anushree Chaudhuri: Involving local communities in renewable energy planning

    Anushree Chaudhuri has a history of making bold decisions. In fifth grade, she biked across her home state of California with little prior experience. In her first year at MIT, she advocated for student recommendations in the preparation of the Institute’s Climate Action Plan for the Decade. And recently, she led a field research project throughout California to document the perspectives of rural and Indigenous populations affected by climate change and clean energy projects.

    “It doesn’t matter who you are or how young you are, you can get involved with something and inspire others to do so,” the senior says.

    Initially a materials science and engineering major, Chaudhuri was quickly drawn to environmental policy issues and later decided to double-major in urban studies and planning and in economics. Chaudhuri will receive her bachelor’s degrees this month, followed by a master’s degree in city planning in the spring.

    The importance of community engagement in policymaking has become one of Chaudhuri’s core interests. A 2024 Marshall Scholar, she is headed to the U.K. next year to pursue a PhD related to environment and development. She hopes to build on her work in California and continue to bring attention to impacts that energy transitions can have on local communities, which tend to be rural and low-income. Addressing resistance to these projects can be challenging, but “ignoring it leaves these communities in the dust and widens the urban-rural divide,” she says.

    Silliness and sustainability 

    Chaudhuri classifies her many activities into two groups: those that help her unwind, like her living community, Conner Two, and those that require intensive deliberation, like her sustainability-related organizing.

    Conner Two, in the Burton-Conner residence hall, is where Chaudhuri feels most at home on campus. She describes the group’s activities as “silly” and emphasizes their love of jokes, even in the floor’s nickname, “the British Floor,” which is intentionally absurd, as the residents are rarely British.

    Chaudhuri’s first involvement with sustainability issues on campus was during the preparation of MIT’s Fast Forward Climate Action Plan in the 2020-2021 academic year. As a co-lead of one of several student working groups, she helped organize key discussions between the administration, climate experts, and student government to push for six main goals in the plan, including an ethical investing framework. Being involved with a significant student movement so early on in her undergraduate career was a learning opportunity for Chaudhuri and impressed upon her that young people can play critical roles in making far-reaching structural changes.

    The experience also made her realize how many organizations on campus shared similar goals even if their perspectives varied, and she saw the potential for more synergy among them.

    Chaudhuri went on to co-lead the Student Sustainability Coalition to help build community across the sustainability-related organizations on campus and create a centralized system that would make it easier for outsiders and group members to access information and work together. Through the coalition, students have collaborated on efforts including campus events, and off-campus matters such as the Cambridge Green New Deal hearings.

    Another benefit to such a network: It creates a support system that recognizes even small-scale victories. “Community is so important to avoid burnout when you’re working on something that can be very frustrating and an uphill battle like negotiating with leadership or seeking policy changes,” Chaudhuri says.

    Fieldwork

    For the past year, Chaudhuri has been doing independent research in California with the support of several advisory organizations to host conversations with groups affected by renewable energy projects, which, as she has documented, are often concentrated in rural, low-income, and Indigenous communities. The introduction of renewable energy facilities, such as wind and solar farms, can perpetuate existing inequities if they ignore serious community concerns, Chaudhuri says.

    As state or federal policymakers and private developers carry out the permitting process for these projects, “they can repeat histories of extraction, sometimes infringing on the rights of a local or Tribal government to decide what happens with their land,” she says.

    In her site visits, she is documenting community opposition to controversial solar and wind proposals and collecting oral histories. Doing fieldwork for the first time as an outsider was difficult for Chaudhuri, as she dealt with distrust, unpredictability, and needing to be completely flexible for her sources. “A lot of it was just being willing to drop everything and go and be a little bit adventurous and take some risks,” she says.

    Role models and reading

    Chaudhuri is quick to credit many of the role models and other formative influences in her life.

    After working on the Climate Action Plan, Chaudhuri attended a public narrative workshop at Harvard University led by Marshall Ganz, a grassroots community organizer who worked with Cesar Chavez and on the 2008 Obama presidential campaign. “That was a big inspiration and kind of shaped how I viewed leadership in, for example, campus advocacy, but also in other projects and internships.”

    Reading has also influenced Chaudhuri’s perspective on community organizing, “After the Climate Action Plan campaign, I realized that a lot of what made the campaign successful or not could track well with organizing and social change theories, and histories of social movements. So, that was a good experience for me, being able to critically reflect on it and tie it into these other things I was learning about.”

    Since beginning her studies at MIT, Chaudhuri has become especially interested in social theory and political philosophy, starting with ancient forms of Western and Eastern ethic, and up to 20th and 21st century philosophers who inspire her. Chaudhuri cites Amartya Sen and Olúfẹ́mi Táíwò as particularly influential. “I think [they’ve] provided a really compelling framework to guide a lot of my own values,” she says.

    Another role model is Brenda Mallory, the current chair of the U.S. Council on Environmental Quality, who Chaudhuri was grateful to meet at the United Nations COP27 Climate Conference. As an intern at the U.S. Department of Energy, Chaudhuri worked within a team on implementing the federal administration’s Justice40 initiative, which commits 40 percent of federal climate investments to disadvantaged communities. This initiative was largely directed by Mallory, and Chaudhuri admires how Mallory was able to make an impact at different levels of government through her leadership. Chaudhuri hopes to follow in Mallory’s footsteps someday, as a public official committed to just policies and programs.

     “Good leaders are those who empower good leadership in others,” Chaudhuri says. More

  • in

    Local journalism is a critical “gate” to engage Americans on climate change

    Last year, Pew Research Center data revealed that only 37 percent of Americans said addressing climate change should be a top priority for the president and Congress. Furthermore, climate change was ranked 17th out of 21 national issues included in a Pew survey. 

    But in reality, it’s not that Americans don’t care about climate change, says celebrated climate scientist and communicator MIT Professor Katharine Hayhoe. It’s that they don’t know that they already do. 

    To get Americans to care about climate change, she adds, it’s imperative to guide them to their gate. At first, it might not be clear where that gate is. But it exists. 

    That message was threaded through the Connecting with Americans on Climate Change webinar last fall, which featured a discussion with Hayhoe and the five journalists who made up the 2023 cohort of the MIT Environmental Solutions Journalism Fellowship. Hayhoe referred to a “gate” as a conversational entry point about climate impacts and solutions. The catch? It doesn’t have to be climate-specific. Instead, it can focus on the things that people already hold close to their heart.

    “If you show people … whether it’s a military veteran or a parent or a fiscal conservative or somebody who is in a rural farming area or somebody who loves kayaking or birds or who just loves their kids … how they’re the perfect person to care [about climate change], then it actually enhances their identity to advocate for and adopt climate solutions,” said Hayhoe. “It makes them a better parent, a more frugal fiscal conservative, somebody who’s more invested in the security of their country. It actually enhances who they already are instead of trying to turn them into someone else.”

    The MIT Environmental Solutions Journalism Fellowship provides financial and technical support to journalists dedicated to connecting local stories to broader climate contexts, especially in parts of the country where climate change is disputed or underreported. 

    Climate journalism is typically limited to larger national news outlets that have the resources to employ dedicated climate reporters. And since many local papers are already struggling — with the country on track to lose a third of its papers by the end of next year, leaving over 50 percent of counties in the United States with just one or no local news outlets — local climate beats can be neglected. This makes the work executed by the ESI’s fellows all the more imperative. Because for many Americans, the relevance of these stories to their own community is their gate to climate action. 

    “This is the only climate journalism fellowship that focuses exclusively on local storytelling,” says Laur Hesse Fisher, program director at MIT ESI and founder of the fellowship. “It’s a model for engaging some of the hardest audiences to reach: people who don’t think they care much about climate change. These talented journalists tell powerful, impactful stories that resonate directly with these audiences.”

    From March to June, the second cohort of ESI Journalism Fellows pursued local, high-impact climate reporting in Montana, Arizona, Maine, West Virginia, and Kentucky. 

    Collectively, their 26 stories had over 70,000 direct visits on their host outlets’ websites as of August 2023, gaining hundreds of responses from local voters, lawmakers, and citizen groups. Even though they targeted local audiences, they also had national appeal, as they were republished by 46 outlets — including Vox, Grist, WNYC, WBUR, the NPR homepage, and three separate stories on NPR’s “Here & Now” program, which is broadcast by 45 additional partner radio stations across the country — with a collective reach in the hundreds of thousands. 

    Micah Drew published an eight-part series in The Flathead Beacon titled, “Montana’s Climate Change Lawsuit.” It followed a landmark case of 16 young people in Montana suing the state for violating their right to a “clean and healthful environment.” Of the plaintiffs, Drew said, “They were able to articulate very clearly what they’ve seen, what they’ve lived through in a pretty short amount of life. Some of them talked about wildfires — which we have a lot of here in Montana — and [how] wildfire smoke has canceled soccer games at the high school level. It cancels cross-country practice; it cancels sporting events. I mean, that’s a whole section of your livelihood when you’re that young that’s now being affected.”

    Joan Meiners is a climate news reporter for the Arizona Republic. Her five-part series was situated at the intersection of Phoenix’s extreme heat and housing crises. “I found that we are building three times more sprawling, single-family detached homes … as the number of apartment building units,” she says. “And with an affordability crisis, with a climate crisis, we really need to rethink that. The good news, which I also found through research for this series … is that Arizona doesn’t have a statewide building code, so each municipality decides on what they’re going to require builders to follow … and there’s a lot that different municipalities can do just by showing up to their city council meetings [and] revising the building codes.”

    For The Maine Monitor, freelance journalist Annie Ropeik generated a four-part series, called “Hooked on Heating Oil,” on how Maine came to rely on oil for home heating more than any other state. When asked about solutions, Ropeik says, “Access to fossil fuel alternatives was really the central equity issue that I was looking at in my project, beyond just, ‘Maine is really relying on heating oil, that obviously has climate impacts, it’s really expensive.’ What does that mean for people in different financial situations, and what does that access to solutions look like for those different communities? What are the barriers there and how can we address those?”

    Energy and environment reporter Mike Tony created a four-part series in The Charleston Gazette-Mail on West Virginia’s flood vulnerabilities and the state’s lack of climate action. On connecting with audiences, Tony says, “The idea was to pick a topic like flooding that really affects the whole state, and from there, use that as a sort of an inroad to collect perspectives from West Virginians on how it’s affecting them. And then use that as a springboard to scrutinizing the climate politics that are precluding more aggressive action.”

    Finally, Ryan Van Velzer, Louisville Public Media’s energy and environment reporter, covered the decline of Kentucky’s fossil fuel industry and offered solutions for a sustainable future in a four-part series titled, “Coal’s Dying Light.” For him, it was “really difficult to convince people that climate change is real when the economy is fundamentally intertwined with fossil fuels. To a lot of these people, climate change, and the changes necessary to mitigate climate change, can cause real and perceived economic harm to these communities.” 

    With these projects in mind, someone’s gate to caring about climate change is probably nearby — in their own home, community, or greater region. 

    It’s likely closer than they think. 

    To learn more about the next fellowship cohort — which will support projects that report on climate solutions being implemented locally and how they reduce emissions while simultaneously solving pertinent local issues — sign up for the MIT Environmental Solutions Initiative newsletter. Questions about the fellowship can be directed to Laur Hesse Fisher at climate@mit.edu. More

  • in

    Study measures the psychological toll of wildfires

    Wildfires in Southeast Asia significantly affect peoples’ moods, especially if the fires originate outside a person’s own country, according to a new study.

    The study, which measures sentiment by analyzing large amounts of social media data, helps show the psychological toll of wildfires that result in substantial air pollution, at a time when such fires are becoming a high-profile marker of climate change.  

    “It has a substantial negative impact on people’s subjective well-being,” says Siqi Zheng, an MIT professor and co-author of a new paper detailing the results. “This is a big effect.”

    The magnitude of the effect is about the same as another shift uncovered through large-scale studies of sentiment expressed online: When the weekend ends and the work week starts, people’s online postings reflect a sharp drop in mood. The new study finds that daily exposure to typical wildfire smoke levels in the region produces an equivalently large change in sentiment.

    “People feel anxious or sad when they have to go to work on Monday, and what we find with the fires is that this is, in fact, comparable to a Sunday-to-Monday sentiment drop,” says co-author Rui Du, a former MIT postdoct who is now an economist at Oklahoma State University.

    The paper, “Transboundary Vegetation Fire Smoke and Expressed Sentiment: Evidence from Twitter,” has been published online in the Journal of Environmental Economics and Management.

    The authors are Zheng, who is the STL Champion Professor of Urban and Real Estate Sustainability in the Center for Real Estate and the Department of Urban Studies and Planning at MIT; Du, an assistant professor of economics at Oklahoma State University’s Spears School of Business; Ajkel Mino, of the Department of Data Science and Knowledge Engineering at Maastricht University; and Jianghao Wang, of the Institute of Geographic Sciences and Natural Resources Research at the Chinese Academy of Sciences.

    The research is based on an examination of the events of 2019 in Southeast Asia, in which a huge series of Indonesian wildfires, seemingly related to climate change and deforestation for the palm oil industry, produced a massive amount of haze in the region. The air-quality problems affected seven countries: Brunei, Indonesia, Malaysia, Philippines, Singapore, Thailand, and Vietnam.

    To conduct the study, the scholars produced a large-scale analysis of postings from 2019 on X (formerly known as Twitter) to sample public sentiment. The study involved 1,270,927 tweets from 378,300 users who agreed to have their locations made available. The researchers compiled the data with a web crawler program and multilingual natural language processing applications that review the content of tweets and rate them in affective terms based on the vocabulary used. They also used satellite data from NASA and NOAA to create a map of wildfires and haze over time, linking that to the social media data.

    Using this method creates an advantage that regular public-opinion polling does not have: It creates a measurement of mood that is effectively a real-time metric rather than an after-the-fact assessment. Moreover, substantial wind shifts in the region at the time in 2019 essentially randomize which countries were exposed to more haze at various points, making the results less likely to be influenced by other factors.

    The researchers also made a point to disentangle the sentiment change due to wildfire smoke and that due to other factors. After all, people experience mood changes all the time from various natural and socioeconomic events. Wildfires may be correlated with some of them, which makes it hard to tease out the singular effect of the smoke. By comparing only the difference in exposure to wildfire smoke, blown in by wind, within the same locations over time, this study is able to isolate the impact of local wildfire haze on mood, filtering out nonpollution influences.

    “What we are seeing from our estimates is really just the pure causal effect of the transboundary wildfire smoke,” Du says.

    The study also revealed that people living near international borders are much more likely to be upset when affected by wildfire smoke that comes from a neighboring country. When similar conditions originate in their own country, there is a considerably more muted reaction.

    “Notably, individuals do not seem to respond to domestically produced fire plumes,” the authors write in the paper. The small size of many countries in the region, coupled with a fire-prone climate, make this an ongoing source of concern, however.

    “In Southeast Asia this is really a big problem, with small countries clustered together,” Zheng observes.

    Zheng also co-authored a 2022 study using a related methodology to study the impact of the Covid-19 pandemic on the moods of residents in about 100 countries. In that case, the research showed that the global pandemic depressed sentiment about 4.7 times as much as the normal Sunday-to-Monday shift.

    “There was a huge toll of Covid on people’s sentiment, and while the impact of the wildfires was about one-fifth of Covid, that’s still quite large,” Du says.

    In policy terms, Zheng suggests that the global implications of cross-border smoke pollution could give countries a shared incentive to cooperate further. If one country’s fires become another country’s problem, they may all have reason to limit them. Scientists warn of a rising number of wildfires globally, fueled by climate change conditions in which more fires can proliferate, posing a persistent threat across societies.

    “If they don’t work on this collaboratively, it could be damaging to everyone,” Zheng says.

    The research at MIT was supported, in part, by the MIT Sustainable Urbanization Lab. Jianghao Wang was supported by the National Natural Science Foundation of China. More