Thieltges, D. W., Mouritsen, K. N. & Poulin, R. in Mudflat Ecology (ed Beninger, P.) (Springer International Publishing, 2018).
Tyler-Walters, H. Cerastoderma edule Common cockle. Marine Life Information Network: Biology and Sensitivity Key Information Reviews (2007).
Malham, S. K., Hutchinson, T. H. & Longshaw, M. A review of the biology of European cockles (Cerastoderma spp.). J. Mar. Biol. Assoc. U. K. 92, 1563–1577 (2012).
Magalhaes, L., Freitas, R., Dairain, A. & De Montaudouin, X. Can host density attenuate parasitism?. J. Mar. Biol. Assoc. U. K. 97, 497–505 (2017).
Carss, D. N. et al. Ecosystem services provided by a non-cultured shellfish species: The common cockle Cerastoderma edule. Mar. Environ. Res. 158, 104931 (2020).
Google Scholar
Lassalle, G., de Montaudouin, X., Soudant, P. & Paillard, C. Parasite co-infection of two sympatric bivalves, the Manila clam (Ruditapes philippinarum) and the cockle (Cerastoderma edule) along a latitudinal gradient. Aquat. Living Resour. 20, 33–42 (2007).
Hoberg, E. P. Faunal diversity among avian parasite assemblages: the interaction of history, ecology and biogeography in marine systems. Bull. Scand. Soc. Parasitol. 6, 65–89 (1996).
Muzaffar, S. B. & Jones, I. L. Parasites and diseases of auks (Alcidae) of the world and their ecology-A review. Mar. Ornithol. 32, 121–146 (2004).
Lafferty, K. D., Dobson, A. P. & Kuris, A. M. Parasites dominate food web links. Proc. Natl. Acad. Sci. U. S. A. 103, 11211–11216 (2006).
Google Scholar
Lafferty, K. D. et al. Parasites in food webs: The ultimate missing links. Ecol. Lett. 11, 533–546 (2008).
Google Scholar
Johnson, P. T. J. et al. When parasites become prey: ecological and epidemiological significance of eating parasites. Trends Ecol. Evol. 25, 362–371 (2010).
Google Scholar
Zannella, C. et al. Microbial diseases of bivalve mollusks: Infections, immunology and antimicrobial defense. Mar. Drugs 15, 182 (2017).
Google Scholar
Fermer, J., Culloty, S. C., Kelly, T. C. & O’riordan, R. M. Parasitological survey of the edible cockle Cerastoderma edule (Bivalvia) on the south coast of Ireland. J. Mar. Biol. Assoc. U. K. 91, 923–928 (2011).
Longshaw, M. & Malham, S. K. A review of the infectious agents, parasites, pathogens and commensals of European cockles (Cerastoderma edule and C. glaucum) (vol 93, pg 227, 2013). J. Mar. Biol. Assoc. U. K. 93, 1141 (2013).
Newman, S. H. et al. Aquatic bird disease and mortality as an indicator of changing ecosystem health. Mar. Ecol. Prog. Ser. 352, 299–309 (2007).
Google Scholar
Vezzulli, L. et al. Climate influence on Vibrio and associated human diseases during the past half-century in the coastal North Atlantic. Proc. Natl. Acad. Sci. U. S. A. 113, E5062–E5071 (2016).
Google Scholar
Jesser, K. J. & Noble, R. T. Vibrio ecology in the Neuse River Estuary, North Carolina, characterized by next-generation amplicon sequencing of the gene encoding heat shock protein 60 (hsp60). Appl. Environ. Microbiol. 84, e00333-e418 (2018).
Google Scholar
Romalde, J. L., Dieguez, A. L., Lasa, A. & Balboa, S. New Vibrio species associated to molluscan microbiota: A review. Front. Microbiol. 4, 413 (2014).
Google Scholar
Allam, B., Paillard, C. & Ford, S. Pathogenicity of Vibrio tapetis, the etiological agent of brown ring disease in clams. Dis. Aquat. Org. 48, 221–231 (2002).
Waechter, M., Le Roux, F., Nicolas, J., Marissal, E. & Berthe, F. Characterisation of Crassostrea gigas spat pathogenic bacteria. C.R. Biol. 325, 231–238 (2002).
Google Scholar
Gay, M., Renault, T., Pons, A. & Le Roux, F. Two Vibrio splendidus related strains collaborate to kill Crassostrea gigas: Taxonomy and host alterations. Dis. Aquat. Org. 62, 65–74 (2004).
Paillard, C., Le Roux, F. & Borrego, J. Bacterial disease in marine bivalves, a review of recent studies: Trends and evolution. Aquat. Living Resour. 17, 477–498 (2004).
Prado, S., Romalde, J., Montes, J. & Barja, J. Pathogenic bacteria isolated from disease outbreaks in shellfish hatcheries. First description of Vibrio neptunius as an oyster pathogen. Dis. Aquat. Org. 67, 209–215 (2005).
Google Scholar
Garnier, M., Labreuche, Y. & Nicolas, J. Molecular and phenotypic characterization of Vibrio aestuarianus subsp francensis subsp nov., a pathogen of the oyster Crassostrea gigas. Syst. Appl. Microbiol. 31, 358–365 (2008).
Google Scholar
Egerton, S., Culloty, S., Whooley, J., Stanton, C. & Ross, R. P. The gut microbiota of marine fish. Front. Microbiol. 9, 873 (2018).
Google Scholar
Vezzulli, L., Colwell, R. R. & Pruzzo, C. Ocean warming and spread of pathogenic vibrios in the aquatic environment. Microb. Ecol. 65, 817–825 (2013).
Google Scholar
Vezzulli, L. et al. Aquatic ecology of the oyster pathogens Vibrio splendidus and Vibrio aestuarianus. Environ. Microbiol. 17, 1065–1080 (2015).
Google Scholar
Azandegbe, A. et al. Occurrence and seasonality of Vibrio aestuarianus in sediment and Crassostrea gigas haemolymph at two oyster farms in France. Dis. Aquat. Org. 91, 213–221 (2010).
Burreson, E. & Ford, S. A review of recent information on the Haplosporidia, with special reference to Haplosporidium nelsoni (MSX disease). Aquat. Living Resour. 17, 499–517 (2004).
Engelsma, M. Y. et al. Digenean trematodes and haplosporidian protozoans associated with summer mortality of cockles Cerastoderma edule in the Oosterschelde, The Netherlands. (European Association of Fish Pathologists Conference, Split, Croatia., 2011).
Arzul, I. & Carnegie, R. B. New perspective on the haplosporidian parasites of molluscs. J. Invertebr. Pathol. 131, 32–42 (2015).
Google Scholar
Carnegie, R. B., Arzul, I. & Bushek, D. Managing marine mollusc diseases in the context of regional and international commerce: Policy issues and emerging concerns. Philos. Trans. R. Soc. B-Biol. Sci. 371, 20150215 (2016).
Ramilo, A., Abollo, E., Villalba, A. & Carballal, M. J. A Minchinia mercenariae-like parasite infects cockles Cerastoderma edule in Galicia (NW Spain). J. Fish Dis. 41, 41–48 (2018).
Google Scholar
Lynch, S. A. et al. Detection of haplosporidian protistan parasites supports an increase to their known diversity, geographic range and bivalve host specificity. Parasitology 147, 584–592 (2020).
Google Scholar
Albuixech-Marti, S., Lynch, S. A. & Culloty, S. C. Biotic and abiotic factors influencing haplosporidian species distribution in the cockle Cerastoderma edule in Ireland. J. Invertebr. Pathol. 174, 107425 (2020).
Google Scholar
Azevedo, C., Conchas, R. & Montes, J. Description of Haplosporidium edule n. sp (Phylum Haplosporidia), a parasite of Cerastoderma edule (Mollusca, Bivalvia) with complex spore ornamentation. Eur. J. Protistol. 39, 161–167 (2003).
Carballal, M., Diaz, S. & Villalba, A. Urosporidium sp hyperparasite of the turbellarian Paravortex cardii in the cockle Cerastoderma edule. J. Invertebr. Pathol. 90, 104–107 (2005).
Google Scholar
Daoust, P., Conboy, G., McBurney, S. & Burgess, N. Interactive mortality factors in common loons from Maritime Canada. J. Wildl. Dis. 34, 524–531 (1998).
Google Scholar
Converse, K. & Kidd, G. Duck plague epizootics in the United States, 1967–1995. J. Wildl. Dis. 37, 347–357 (2001).
Google Scholar
Friend, M., McLean, R. & Dein, F. Disease emergence in birds: Challenges for the twenty-first century. Auk 118, 290–303 (2001).
Hubalek, Z. An annotated checklist of pathogenic microorganisms associated with migratory birds. J. Wildl. Dis. 40, 639–659 (2004).
Google Scholar
Quesada, R. J. et al. Detection and phylogenetic characterization of a novel herpesvirus from the trachea of two stranded common loons (Gavia immer). J. Wildl. Dis. 47, 233–239 (2011).
Google Scholar
Niemeyer, C. et al. Genetically diverse herpesviruses in South American Atlantic coast seabirds. PLoS ONE 12, e0178811 (2017).
Google Scholar
Bookelaar, B., Lynch, S. A. & Culloty, S. C. Host plasticity supports spread of an aquaculture introduced virus to an ecosystem engineer. Parasit. Vectors 13, 498 (2020).
Google Scholar
Honjo, M. N., Minamoto, T. & Kawabata, Z. Reservoirs of Cyprinid herpesvirus 3 (CyHV-3) DNA in sediments of natural lakes and ponds. Vet. Microbiol. 155, 183–190 (2012).
Google Scholar
Evans, O., Paul-Pont, I. & Whittington, R. J. Detection of ostreid herpesvirus 1 microvariant DNA in aquatic invertebrate species, sediment and other samples collected from the Georges River estuary, New South Wales, Australia. Dis. Aquat. Org. 122, 247–255 (2017).
Google Scholar
Slodkowicz-Kowalska, A. et al. Microsporidian species known to infect humans are present in aquatic birds: Implications for transmission via water?. Appl. Environ. Microbiol. 72, 4540–4544 (2006).
Google Scholar
Malcekova, B., Valencakova, A., Molnar, L. & Kocisova, A. First detection and genotyping of human-associated microsporidia in wild waterfowl of Slovakia. Acta Parasitol. 58, 13–17 (2013).
Google Scholar
Fermer, J., Culloty, S. C., Kelly, T. C. & O’Riordan, R. M. Intrapopulational distribution of Meiogymnophallus minutus (Digenea, Gymnophallidae) infections in its first and second intermediate host. Parasitol. Res. 105, 1231–1238 (2009).
Google Scholar
Yun, Y. et al. Phylogenetic analysis of severe fever with thrombocytopenia syndrome virus in South Korea and migratory bird routes between China, South Korea, and Japan. Am. J. Trop. Med. Hyg. 93, 468–474 (2015).
Google Scholar
Xu, Y., Gong, P., Wielstra, B. & Si, Y. Southward autumn migration of waterfowl facilitates cross-continental transmission of the highly pathogenic avian influenza H5N1 virus. Sci. Rep. 6, 30262 (2016).
Google Scholar
King, R. A., Read, D. S., Traugott, M. & Symondson, W. O. C. Molecular analysis of predation: A review of best practice for DNA-based approaches. Mol. Ecol. 17, 947–963 (2008).
Google Scholar
Harper, G. et al. Rapid screening of invertebrate predators for multiple prey DNA targets. Mol. Ecol. 14, 819–827 (2005).
Google Scholar
Martin, D. L., Ross, R. M., Quetin, L. B. & Murray, A. E. Molecular approach (PCR-DGGE) to diet analysis in young Antarctic krill Euphausia superba. Mar. Ecol. Prog. Ser. 319, 155–165 (2006).
Google Scholar
Read, D. S., Sheppard, S. K., Bruford, M. W., Glen, D. M. & Symondson, W. O. C. Molecular detection of predation by soil micro-arthropods on nematodes. Mol. Ecol. 15, 1963–1972 (2006).
Google Scholar
Harwood, J. D. et al. Tracking the role of alternative prey in soybean aphid predation by Orius insidiosus: A molecular approach. Mol. Ecol. 16, 4390–4400 (2007).
Google Scholar
Albuixech-Martí, S., Culloty, S. C. & Lynch, S. A. Co-occurrence of pathogen assemblages in a keystone species the common cockle Cerastoderma edule on the Irish coast. Parasitology, 1–15 (2021).
Lewis, L. J. & Tierney, T. D. Low tide waterbird surveys: Survey methods and guidance notes. Irish Wildlife Manuals 80 (2014).
Garcia, C. et al. Vibrio aestuarianus subsp. cardii subsp. nov., pathogenic to the edible cockles Cerastoderma edule in France, and establishment of Vibrio aestuarianus subsp. aestuarianus subsp. nov. and Vibrio aestuarianus subsp. francensis subsp. nov. Int. J. Syst. Evol. Microbiol. 71, 004654 (2021).
Lacoste, A. et al. A Vibrio splendidus strain is associated with summer mortality of juvenile oysters Crassostrea gigas in the Bay of Morlaix (North Brittany, France). Dis. Aquat. Org. 46, 139–145 (2001).
Google Scholar
Le Roux, F. et al. Comparative analysis of Vibrio splendidus-related strains isolated during Crassostrea gigas mortality events. Aquat. Living Resour. 15, 251–258 (2002).
Garnier, M., Labreuche, Y., Garcia, C., Robert, A. & Nicolas, J. Evidence for the involvement of pathogenic bacteria in summer mortalities of the Pacific oyster Crassostrea gigas. Microb. Ecol. 53, 187–196 (2007).
Google Scholar
McCleary, S. & Henshilwood, K. Novel quantitative TaqMan (R) MGB real-time PCR for sensitive detection of Vibrio aestuarianus in Crassostrea gigas. Dis. Aquat. Org. 114, 239–248 (2015).
Google Scholar
Halpern, M., Senderovich, Y. & Izhaki, I. Waterfowl-The missing link in epidemic and pandemic cholera dissemination?. PLoS Pathog. 4, e1000173 (2008).
Google Scholar
Rodríguez, J., López, P., Muñoz, J. & Rodríguez, N. Detection of Vibrio cholerae no toxigenico in migratory and resident birds (Charadriiformes) in a coastal lagoon from northeastern Venezuela. Saber 22, 122–126 (2010).
Fernandez-Delgado, M. et al. Prevalence and distribution of Vibrio spp. in wild aquatic birds of the Southern Caribbean Sea, Venezuela, 2011–12. J. Wildl. Dis. 52, 621–626 (2016).
Laviad-Shitrit, S., Izhaki, I. & Halpern, M. Accumulating evidence suggests that some waterbird species are potential vectors of Vibrio cholerae. PLoS Pathog. 15, e1007814 (2019).
Google Scholar
Buck, J. D. Isolation of Candida-albicans and halophilic Vibrio spp. from aquatic birds in Connecticut and Florida. Appl. Environ. Microbiol. 56, 826–828 (1990).
Google Scholar
Miyasaka, J. et al. Isolation of Vibrio parahaemolyticus and Vibrio vulnificus from wild aquatic birds in Japan. Epidemiol. Infect. 134, 780–785 (2006).
Google Scholar
Fu, S. et al. Long-distance transmission of pathogenic Vibrio species by migratory waterbirds: A potential threat to the public health. Sci. Rep. 9, 16303 (2019).
Google Scholar
Senderovich, Y., Izhaki, I. & Halpern, M. Fish as reservoirs and vectors of Vibrio cholerae. PLoS ONE 5, e8607 (2010).
Google Scholar
Laviad-Shitrit, S. et al. Great cormorants (Phalacrocorax carbo) as potential vectors for the dispersal of Vibrio cholerae. Sci. Rep. 7, 7973 (2017).
Google Scholar
Hossain, Z. Z., Farhana, I., Tulsiani’, S. M., Beguml, A. & Jensen, P. K. M. Transmission and toxigenic potential of Vibrio cholerae in hilsha fish (Tenualosa ilisha) for human consumption in Bangladesh. Front. Microbiol. 9, 222 (2018).
Google Scholar
Bryant, D. M. Effects of prey density and site character on estuary usage by overwintering waders (Charadrii). Estuar. Coast. Mar. Sci. 9, 369–384 (1979).
Google Scholar
Hicklin, P. W. & Smith, P. C. Selection of foraging sites and invertebrate prey by migrant semipalmated sandpipers, Calidris-pusilla (Pallas), in Minas Basin, Bay of Fundy. Can. J. Zool. 62, 2201–2210 (1984).
Colwell, M. A. & Landrum, S. L. Nonrandom shorebird distribution and fine-scale variation in prey abundance. Condor 95, 94–103 (1993).
Ben-Horin, T., Bidegain, G., Huey, L., Narvaez, D. A. & Bushek, D. Parasite transmission through suspension feeding. J. Invertebr. Pathol. 131, 155–176 (2015).
Google Scholar
Pruzzo, C., Vezzulli, L. & Colwell, R. R. Global impact of Vibrio cholerae interactions with chitin. Environ. Microbiol. 10, 1400–1410 (2008).
Google Scholar
Vezzulli, L., Pruzzo, C., Huq, A. & Colwell, R. R. Environmental reservoirs of Vibrio cholerae and their role in cholera. Environ. Microbiol. Rep. 2, 27–33 (2010).
Google Scholar
Freitas, C., Glatter, T. & Ringgaard, S. The release of a distinct cell type from swarm colonies facilitates dissemination of Vibrio parahaemolyticus in the environment. ISME J. 14, 230–244 (2020).
Google Scholar
Vezzulli, L. et al. Benthic ecology of Vibrio spp. and pathogenic Vibrio species in a coastal Mediterranean environment (La Spezia Gulf, Italy). Microb. Ecol. 58, 808–818 (2009).
Google Scholar
Piersma, T., Degoeij, P. & Tulp, I. An evaluation of intertidal feeding habitats from a shorebird perspective – Towards relevant comparisons between temperate and tropical mudflats. Neth. J. Sea Res. 31, 503–512 (1993).
Hervas, A., Tully, O., Hickey, J., O’Keefe, E. & Kelly, K. Assessment, monitoring and management of the Dundalk Bay and Waterford Cockle (Cerastoderma edule) Fisheries in 2007. BIM Fisheries Resource Series 7 (2008).
Martins, R. C., Catry, T., Santos, C. D., Palmeirim, J. M. & Granadeiro, J. P. Seasonal variations in the diet and foraging behaviour of dunlins Calidris alpina in a South European Estuary: Improved feeding conditions for northward migrants. PLoS ONE 8, e81174 (2013).
Google Scholar
Walsh, P. S., Metzger, D. A. & Higuchi, R. Chelex-100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10, 506–513 (1991).
Google Scholar
Lynch, S. A., Mulcahy, M. F. & Culloty, S. C. Efficiency of diagnostic techniques for the parasite, Bonamia ostreae, in the flat oyster, Ostrea edulis. Aquaculture 281, 17–21 (2008).
Zeale, M. R. K., Butlin, R. K., Barker, G. L. A., Lees, D. C. & Jones, G. Taxon-specific PCR for DNA barcoding arthropod prey in bat faeces. Mol. Ecol. Resour. 11, 236–244 (2011).
Google Scholar
Freire, R., Arias, A., Mendez, J. & Insua, A. Identification of European commercial cockles (Cerastoderma edule and C. glaucum) by species-specific PCR amplification of the ribosomal DNA ITS region. Eur. Food Res. Technol. 232, 83–86 (2011).
Thompson, J. et al. Diversity and dynamics of a North Atlantic coastal Vibrio community. Appl. Environ. Microbiol. 70, 4103–4110 (2004).
Google Scholar
Vezzulli, L. et al. Long-term effects of ocean warming on the prokaryotic community: Evidence from the vibrios. ISME J. 6, 21–30 (2012).
Google Scholar
Renault, T. et al. Haplosporidiosis in the pacific oyster Crassostrea gigas from the French Atlantic coast. Dis. Aquat. Org. 42, 207–214 (2000).
Google Scholar
Molloy, D. P., Giamberini, L., Stokes, N. A., Burreson, E. M. & Ovcharenko, M. A. Haplosporidium raabei n. sp (Haplosporidia): A parasite of zebra mussels, Dreissena polymorpha (Pallas, 1771). Parasitology 139, 463–477 (2012).
Lynch, S. A., Dillane, E., Carlsson, J. & Culloty, S. C. Development and assessment of a sensitive and cost-effective polymerase chain reaction to detect ostreid herpesvirus 1 and variants. J. Shellfish Res. 32, 657–664 (2013).
Source: Ecology - nature.com