in

Animal-vehicle collisions during the COVID-19 lockdown in early 2020 in the Krakow metropolitan region, Poland

  • Soulsbury, C. D. & White, P. C. L. Human–wildlife interactions in urban areas: A review of conflicts, benefits and opportunities. Wildl. Res. 42, 541 (2015).

    Article 

    Google Scholar 

  • Tucker, M. A. et al. Moving in the Anthropocene: Global reductions in terrestrial mammalian movements. Science 359, 466–469 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wilson, M. W. et al. Ecological impacts of human-induced animal behaviour change. Ecol. Lett. 23, 1522–1536 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Silva-Rodríguez, E. A., Gálvez, N., Swan, G. J. F., Cusack, J. J. & Moreira-Arce, D. Urban wildlife in times of COVID-19: What can we infer from novel carnivore records in urban areas?. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.142713 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Joshi, Y. V. & Musalem, A. Lockdowns lose one third of their impact on mobility in a month. Sci Rep 11, 22658 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Chung, P.-C. & Chan, T.-C. Impact of physical distancing policy on reducing transmission of SARS-CoV-2 globally: Perspective from government’s response and residents’ compliance. PLoS ONE 16, e0255873 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Corlett, R. T. et al. Impacts of the coronavirus pandemic on biodiversity conservation. Biol. Conserv. 246, 108571 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Connellan, I. The ‘anthropause’ during COVID-19. Cosmos Magazine https://cosmosmagazine.com/nature/animals/the-anthropause-during-covid-19/ (2020).

  • Rutz, C. et al. COVID-19 lockdown allows researchers to quantify the effects of human activity on wildlife. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-020-1237-z (2020).

    Article 
    PubMed 

    Google Scholar 

  • Derryberry, E. P., Phillips, J. N., Derryberry, G. E., Blum, M. J. & Luther, D. Singing in a silent spring: Birds respond to a half-century soundscape reversion during the COVID-19 shutdown. Science 370, 575–579 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gordo, O., Brotons, L., Herrando, S. & Gargallo, G. Rapid behavioural response of urban birds to COVID-19 lockdown. Proc. R. Soc. B Biol. Sci. 288, 20202513 (2021).

    CAS 
    Article 

    Google Scholar 

  • Gaynor, K. M. et al. Anticipating the impacts of the COVID-19 pandemic on wildlife. Front. Ecol. Environ. 18, 542–543 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Humphrey, C. Under cover of COVID-19, loggers plunder Cambodian wildlife sanctuary. Mongabay Environmental News https://news.mongabay.com/2020/08/under-cover-of-covid-19-loggers-plunder-cambodian-wildlife-sanctuary/ (2020).

  • Bates, A. E., Primack, R. B., Moraga, P. & Duarte, C. M. COVID-19 pandemic and associated lockdown as a “Global Human Confinement Experiment” to investigate biodiversity conservation. Biol. Cons. 248, 108665 (2020).

    Article 

    Google Scholar 

  • Nickel, B. A., Suraci, J. P., Allen, M. L. & Wilmers, C. C. Human presence and human footprint have non-equivalent effects on wildlife spatiotemporal habitat use. Biol. Cons. 241, 108383 (2020).

    Article 

    Google Scholar 

  • Zellmer, A. J. et al. What can we learn from wildlife sightings during the COVID-19 global shutdown?. Ecosphere 11, e03215 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Jägerbrand, A. K., Antonson, H. & Ahlström, C. Speed reduction effects over distance of animal-vehicle collision countermeasures – a driving simulator study. Eur. Transp. Res. Rev. 10, 40 (2018).

    Article 

    Google Scholar 

  • Abra, F. D. et al. Pay or prevent? Human safety, costs to society and legal perspectives on animal-vehicle collisions in São Paulo state. Brazil. PLoS One 14, e0215152 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Canal, D., Martín, B., de Lucas, M. & Ferrer, M. Dogs are the main species involved in animal-vehicle collisions in southern Spain: Daily, seasonal and spatial analyses of collisions. PLoS One 13, e0203693 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Visintin, C., van der Ree, R. & McCarthy, M. A. Consistent patterns of vehicle collision risk for six mammal species. J. Environ. Manage. 201, 397–406 (2017).

    PubMed 
    Article 

    Google Scholar 

  • Kreling, S. E. S., Gaynor, K. M. & Coon, C. A. C. Roadkill distribution at the wildland-urban interface. J. Wildl. Manag. 83, 1427–1436 (2019).

    Article 

    Google Scholar 

  • Bíl, M. et al. COVID-19 related travel restrictions prevented numerous wildlife deaths on roads: A comparative analysis of results from 11 countries. Biol. Cons. 256, 109076 (2021).

    Article 

    Google Scholar 

  • Langbein, J., Putman, R. & Pokorny, B. Traffic collisions involving deer and other ungulates in Europe and available measures for mitigation. Ungulate management in Europe: problems and practices 215–259 (2010).

  • Filonchyk, M., Hurynovich, V. & Yan, H. Impact of Covid-19 lockdown on air quality in the Poland, Eastern Europe. Environ. Res. 198, 110454 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Porębska, A. et al. Lockdown in a disneyfied city: Kraków Old Town and the first wave of the Covid-19 pandemic. Urban Des Int 26, 315–331 (2021).

    Article 

    Google Scholar 

  • Tarkowski, M., Puzdrakiewicz, K., Jaczewska, J. & Połom, M. COVID-19 lockdown in Poland – changes in regional and local mobility patterns based on Google Maps data. Prace Komisji Geografii Komunikacji PTG 2020, 46–55 (2020).

    Article 

    Google Scholar 

  • Dean, W. R. J., Seymour, C. L., Joseph, G. S. & Foord, S. H. A review of the impacts of roads on wildlife in semi-arid regions. Diversity 11, 81 (2019).

    Article 

    Google Scholar 

  • Saint-Andrieux, C., Calenge, C. & Bonenfant, C. Comparison of environmental, biological and anthropogenic causes of wildlife–vehicle collisions among three large herbivore species. Popul. Ecol. 62, 64–79 (2020).

    Article 

    Google Scholar 

  • Grosman, P. D., Jaeger, J. A. G., Biron, P. M., Dussault, C. & Ouellet, J.-P. Trade-off between road avoidance and attraction by roadside salt pools in moose: An agent-based model to assess measures for reducing moose-vehicle collisions. Ecol. Model. 222, 1423–1435 (2011).

    Article 

    Google Scholar 

  • Barbosa, P., Schumaker, N. H., Brandon, K. R., Bager, A. & Grilo, C. Simulating the consequences of roads for wildlife population dynamics. Landsc. Urban Plan. 193, 103672 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Silva, C., Simões, M. P., Mira, A. & Santos, S. M. Factors influencing predator roadkills: The availability of prey in road verges. J Environ Manage 247, 644–650 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Sullivan, J. M. Trends and characteristics of animal-vehicle collisions in the United States. J. Safety Res. 42, 9–16 (2011).

    PubMed 
    Article 

    Google Scholar 

  • Morelle, К, Lehaire, F. & Lejeune, P. Spatio-temporal patterns of wildlife-vehicle collisions in a region with a high-density road network. Nature Conservation 5, 53–73 (2013).

    Article 

    Google Scholar 

  • Bartonička, T., Andrášik, R., Duľa, M., Sedoník, J. & Bíl, M. Identification of local factors causing clustering of animal-vehicle collisions. J. Wildl. Manag. 82, 940–947 (2018).

    Article 

    Google Scholar 

  • Saxena, A., Chatterjee, N., Rajvanshi, A. & Habib, B. Integrating large mammal behaviour and traffic flow to determine traversability of roads with heterogeneous traffic on a Central Indian Highway. Sci Rep 10, 18888 (2020).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Basak, S. M. et al. Human-wildlife conflicts in Krakow City, Southern Poland. Animals 10, 1014 (2020).

    PubMed Central 
    Article 

    Google Scholar 

  • Gil-Fernández, M., Harcourt, R., Newsome, T., Towerton, A. & Carthey, A. Adaptations of the red fox (Vulpes vulpes) to urban environments in Sydney, Australia. J. Urban Ecol. https://doi.org/10.1093/jue/juaa009 (2020).

    Article 

    Google Scholar 

  • Podgórski, T. et al. Spatiotemporal behavioral plasticity of wild boar (Sus scrofa) under contrasting conditions of human pressure: primeval forest and metropolitan area. J Mammal 94, 109–119 (2013).

    Article 

    Google Scholar 

  • Steiner, W., Schöll, E. M., Leisch, F. & Hackländer, K. Temporal patterns of roe deer traffic accidents: Effects of season, daytime and lunar phase. PLoS ONE 16, e0249082 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Cagnacci, F. et al. Partial migration in roe deer: migratory and resident tactics are end points of a behavioural gradient determined by ecological factors. Oikos 120, 1790–1802 (2011).

    Article 

    Google Scholar 

  • Kämmerle, J.-L. et al. Temporal patterns in road crossing behaviour in roe deer (Capreolus capreolus) at sites with wildlife warning reflectors. PLoS One 12, e0184761 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Romanowski, J. Vistula river valley as the ecological corridor for mammals. Pol. J. Ecol. 55, 805–819 (2007).

    Google Scholar 

  • Abraham, J. O. & Mumma, M. A. Elevated wildlife-vehicle collision rates during the COVID-19 pandemic. Sci Rep 11, 20391 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gunson, K. E., Mountrakis, G. & Quackenbush, L. J. Spatial wildlife-vehicle collision models: A review of current work and its application to transportation mitigation projects. J. Environ. Manage. 92, 1074–1082 (2011).

    PubMed 
    Article 

    Google Scholar 

  • Leblond, M., Dussault, C. & Ouellet, J.-P. Avoidance of roads by large herbivores and its relation to disturbance intensity. J. Zool. 289, 32–40 (2013).

    Article 

    Google Scholar 

  • Bissonette, J. A. & Kassar, C. A. Locations of deer–vehicle collisions are unrelated to traffic volume or posted speed limit. Human-Wildlife Conflicts 2, 122–130 (2008).

    Google Scholar 

  • Steiner, W., Leisch, F. & Hackländer, K. A review on the temporal pattern of deer–vehicle accidents: Impact of seasonal, diurnal and lunar effects in cervids. Accid. Anal. Prev. 66, 168–181 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Kušta, T., Keken, Z., Ježek, M., Holá, M. & Šmíd, P. The effect of traffic intensity and animal activity on probability of ungulate-vehicle collisions in the Czech Republic. Saf. Sci. 91, 105–113 (2017).

    Article 

    Google Scholar 

  • Shilling, F. et al. A Reprieve from US wildlife mortality on roads during the COVID-19 pandemic. Biol. Cons. 256, 109013 (2021).

    Article 

    Google Scholar 

  • Yasin, Y. J., Grivna, M. & Abu-Zidan, F. M. Global impact of COVID-19 pandemic on road traffic collisions. World J Emerg Surg 16, 51 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Seiler, A. & Helldin, J. O. Mortality in wildlife due to transportation. In The Ecology of Transportation: Managing Mobility for the Environment (eds Davenport, J. & Davenport, J. L.) (Springer, 2006).

    Google Scholar 

  • Smits, R., Bohatkiewicz, J., Bohatkiewicz, J. & Hałucha, M. A Geospatial Multi-scale Level Analysis of the Distribution of Animal-Vehicle Collisions on Polish Highways and National Roads. In Vision Zero for Sustainable Road Safety in Baltic Sea Region (eds Varhelyi, A. et al.) (Springer International Publishing, 2020).

    Google Scholar 

  • Sozański, B. et al. Psychological responses and associated factors during the initial stage of the coronavirus disease (COVID-19) epidemic among the adult population in Poland – a cross-sectional study. BMC Public Health 21, 1929 (2021).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Sidor, A. & Rzymski, P. Dietary choices and habits during COVID-19 lockdown: Experience from Poland. Nutrients 12, E1657 (2020).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Vingilis, E. et al. Coronavirus disease 2019: What could be the effects on Road safety?. Accid. Anal. Prev. 144, 105687 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kioko, J. et al. Driver knowledge and attitudes on animal vehicle collisions in Northern Tanzania. Trop. Conserv. Sci. 8, 352–366 (2015).

    Article 

    Google Scholar 

  • Stokstad, E. Pandemic lockdown stirs up ecological research. Science 369, 893–893 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Dandy, N. Behaviour, lockdown and the natural world. Environ. Values 29, 253–259 (2020).

    Article 

    Google Scholar 

  • Baścik, M. & Degórska, B. Środowisko przyrodnicze Krakowa. Zasoby – Ochrona – Kształtowanie. vol. 2 (2015).

  • Borcard, D., Gillet, F. & Legendre, P. Numerical Ecology with R (Springer, 2011).

    MATH 
    Book 

    Google Scholar 

  • R Core Team. R: a language and environment for statistical computing. Vienna (Austria): R Foundation for Statistical Computing. https://www.r-project.org/ (2020).

  • Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).

    MATH 
    Book 

    Google Scholar 

  • Oksanen, J. et al. vegan: Community Ecology Package (2019).

  • Hervé, M. RVAideMemoire: Testing and Plotting Procedures for Biostatistics (2020).

  • Hancock, J. M. Jaccard Distance (Jaccard Index, Jaccard Similarity Coefficient). in Dictionary of Bioinformatics and Computational Biology (American Cancer Society, 2014). https://doi.org/10.1002/9780471650126.dob0956


  • Source: Ecology - nature.com

    Arboreal camera trap reveals the frequent occurrence of a frugivore-carnivore in neotropical nutmeg trees

    Team creates map for production of eco-friendly metals