in

Biological invasions as a selective filter driving behavioral divergence

  • Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, (2017).

  • IPBES. Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. (IPBES secretariat, 2019). https://doi.org/10.5281/zenodo.3831673.

  • Elton, C. S. The Ecology of Invasions by Animals and Plants. (University of Chicago Press, 1958).

  • Lockwood, J. L., Hoopes, M. F. & Marchetti, M. P. Invasion Ecology. (Wiley-Blackwell, 2013).

  • O’Dowd, D. J., Green, P. T. & Lake, P. S. Invasional “meltdown” on an oceanic island. Ecol. Lett. 6, 812–817 (2003).

    Google Scholar 

  • Doherty, T. S., Glen, A. S., Nimmo, D. G., Ritchie, E. G. & Dickman, C. R. Invasive predators and global biodiversity loss. Proc. Natl Acad. Sci. 113, 11261–11265 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Spatz, D. R. et al. Globally threatened vertebrates on islands with invasive species. Sci. Adv. 3, (2017).

  • Pimentel, D. et al. Economic and environmental threats of alien plant, animal, and microbe invasions. Agriculture, Ecosyst. Environ. 84, 1–20 (2001).

    Google Scholar 

  • Hoffmann, B. D. & Broadhurst, L. M. The economic cost of managing invasive species in Australia. NeoBiota 31, 1–18 (2016).

    Google Scholar 

  • Kolar, C. S. & Lodge, D. M. Progress in invasion biology: predicting invaders. Trends Ecol. Evolution 16, 199–204 (2001).

    Google Scholar 

  • Jeschke, J. M. & Strayer, D. L. Invasion success of vertebrates in Europe and North America. Proc. Natl Acad. Sci. 102, 7198–7202 (2005).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lovell, R. S. L., Blackburn, T. M., Dyer, E. E. & Pigot, A. L. Environmental resistance predicts the spread of alien species. Nat. Ecol. Evolution 5, 322–329 (2021).

    Google Scholar 

  • Blackburn, T. M. et al. A proposed unified framework for biological invasions. Trends Ecol. Evolution 26, 333–339 (2011).

    Google Scholar 

  • Chapple, D. G., Simmonds, S. M. & Wong, B. B. M. Can behavioral and personality traits influence the success of unintentional species introductions? Trends Ecol. Evolution 27, 57–64 (2012).

    Google Scholar 

  • Chapple, D. G. & Wong, B. B. M. The role of behavioural variation across different stages of the introduction process. in Biological Invasions and Animal Behaviour (eds. Weis, Judith, S. & Sol, Daniel.) 7–25 (Cambridge University Press, 2016).

  • Holway, D. & Suarez, A. Animal behavior: an essential component of invasion biology. Trends Ecol. Evolution 14, 328–330 (1999).

    CAS 

    Google Scholar 

  • Felden, A. et al. Behavioural variation and plasticity along an invasive ant introduction pathway. J. Anim. Ecol. 87, 1653–1666 (2018).

    PubMed 

    Google Scholar 

  • D’Amore, D. M., Popescu, V. D. & Morris, M. R. The influence of the invasive process on behaviours in an intentionally introduced hybrid, Xiphophorus helleri-maculatus. Anim. Behav. 156, 79–85 (2019).

    Google Scholar 

  • Perkins, T. A., Boettiger, C. & Phillips, B. L. After the games are over: life‐history trade‐offs drive dispersal attenuation following range expansion. Ecol. Evolution 6, 6425–6434 (2016).

    Google Scholar 

  • Phillips, B. L., Brown, G. P., Travis, J. M. J. & Shine, R. Reid’s Paradox revisited: the evolution of dispersal kernels during range expansion. Am. Naturalist 172, S34–S48 (2008).

    Google Scholar 

  • Shine, R., Brown, G. P. & Phillips, B. L. An evolutionary process that assembles phenotypes through space rather than through time. Proc. Natl Acad. Sci. 108, 5708–5711 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lindström, T., Brown, G. P., Sisson, S. A., Phillips, B. L. & Shine, R. Rapid shifts in dispersal behavior on an expanding range edge. Proc. Natl Acad. Sci. 110, 13452–13456 (2013).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Heger, T. & Jeschke, J. M. The enemy release hypothesis as a hierarchy of hypotheses. Oikos 123, 741–750 (2014).

    Google Scholar 

  • Colautti, R. I., Ricciardi, A., Grigorovich, I. A. & MacIsaac, H. J. Is invasion success explained by the enemy release hypothesis? Ecol. Lett. 7, 721–733 (2004).

    Google Scholar 

  • Wilson, J. R. U., Dormontt, E. E., Prentis, P. J., Lowe, A. J. & Richardson, D. M. Something in the way you move: dispersal pathways affect invasion success. Trends Ecol. Evolution 24, 136–144 (2009).

    Google Scholar 

  • Wilson, S. & Swan, G. A complete guide to reptiles of Australia. (New Holland Publishers, 2021).

  • Chapple, D. G., Miller, K. A., Kraus, F. & Thompson, M. B. Divergent introduction histories among invasive populations of the delicate skink (Lampropholis delicata): has the importance of genetic admixture in the success of biological invasions been overemphasized? Diversity Distrib. 19, 134–146 (2013).

    Google Scholar 

  • Chapple, D., Knegtmans, J., Kikillus, H. & van Winkel, D. Biosecurity of exotic reptiles and amphibians in New Zealand: building upon Tony Whitaker’s legacy. J. R. Soc. N.Z. 46, 66–84 (2016).

    Google Scholar 

  • Chapple, D. G., Whitaker, A. H., Chapple, S. N. J., Miller, K. A. & Thompson, M. B. Biosecurity interceptions of an invasive lizard: Origin of stowaways and human-assisted spread within New Zealand. Evolut. Appl. 6, 324–339 (2013).

    Google Scholar 

  • Tingley, R., Thompson, M. B., Hartley, S. & Chapple, D. G. Patterns of niche filling and expansion across the invaded ranges of an Australian lizard. Ecography 39, 270–280 (2016).

    Google Scholar 

  • Chapple, D. G. et al. Biology of the invasive delicate skink (Lampropholis delicata) on Lord Howe Island. Aust. J. Zool. 62, 498–506 (2014).

    Google Scholar 

  • Moule, H. et al. A matter of time: temporal variation in the introduction history and population genetic structuring of an invasive lizard. Curr. Zool. 61, 456–464 (2015).

    CAS 

    Google Scholar 

  • Chapple, D. G., Simmonds, S. M. & Wong, B. B. M. Know when to run, know when to hide: can behavioral differences explain the divergent invasion success of two sympatric lizards? Ecol. Evolution 1, 278–289 (2011).

    Google Scholar 

  • Cromie, G. L. & Chapple, D. G. Impact of tail loss on the behaviour and locomotor performance of two sympatric Lampropholis skink species. PLoS ONE 7, e34732 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brand, J. A. et al. Rapid shifts in behavioural traits during a recent fish invasion. Behav. Ecol. Sociobiol. 75, 134 (2021).

    Google Scholar 

  • Myles-Gonzalez, E., Burness, G., Yavno, S., Rooke, A. & Fox, M. G. To boldly go where no goby has gone before: boldness, dispersal tendency, and metabolism at the invasion front. Behav. Ecol. 26, 1083–1090 (2015).

    Google Scholar 

  • Pintor, L. M., Sih, A. & Bauer, M. L. Differences in aggression, activity and boldness between native and introduced populations of an invasive crayfish. Oikos 117, 1629–1636 (2008).

    Google Scholar 

  • Mueller, J. C. et al. Selection on a behaviour-related gene during the first stages of the biological invasion pathway. Mol. Ecol. 26, 6110–6121 (2017).

    MathSciNet 
    CAS 
    PubMed 

    Google Scholar 

  • Snell-Rood, E. C. An overview of the evolutionary causes and consequences of behavioural plasticity. Anim. Behav. 85, 1004–1011 (2013).

    Google Scholar 

  • Niemelä, P. T., Niehoff, P. P., Gasparini, C., Dingemanse, N. J. & Tuni, C. Crickets become behaviourally more stable when raised under higher temperatures. Behav. Ecol. Sociobiol. 73, 81 (2019).

    Google Scholar 

  • Polverino, G. et al. Psychoactive pollution suppresses individual differences in fish behaviour. Proc. R. Soc. B: Biol. Sci. 288, 20202294 (2021).

    Google Scholar 

  • Royauté, R., Garrison, C., Dalos, J., Berdal, M. A. & Dochtermann, N. A. Current energy state interacts with the developmental environment to influence behavioural plasticity. Anim. Behav. 148, 39–51 (2019).

    Google Scholar 

  • Michelangeli, M., Chapple, D. G., Goulet, C. T., Bertram, M. G. & Wong, B. B. M. Behavioral syndromes vary among geographically distinct populations in a reptile. Behav. Ecol. 30, 393–401 (2019).

    Google Scholar 

  • Nicolaus, M., Tinbergen, J. M., Ubels, R., Both, C. & Dingemanse, N. J. Density fluctuations represent a key process maintaining personality variation in a wild passerine bird. Ecol. Lett. 19, 478–486 (2016).

    PubMed 

    Google Scholar 

  • Lapiedra, O., Schoener, T. W., Leal, M., Losos, J. B. & Kolbe, J. J. Predator-driven natural selection on risk-taking behavior in anole lizards. Science 360, 1017–1020 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Gruber, J., Brown, G., Whiting, M. J. & Shine, R. Geographic divergence in dispersal-related behaviour in cane toads from range-front versus range-core populations in Australia. Behav. Ecol. Sociobiol. 71, 38 (2017).

    Google Scholar 

  • Gruber, J., Brown, G., Whiting, M. J. & Shine, R. Is the behavioural divergence between range-core and range-edge populations of cane toads (Rhinella marina) due to evolutionary change or developmental plasticity? R. Soc. Open Sci. 4, 170789 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Morgan, D., Waas, J. R. & Innes, J. Do territorial and non-breeding Australian Magpies Gymnorhina tibicen influence the local movements of rural birds in New Zealand? Ibis 148, 330–342 (2006).

    Google Scholar 

  • O’leary, R. A. & Jones, D. N. Foraging by suburban Australian magpies during dry conditions. Corella 26, 53–54 (2002).

    Google Scholar 

  • Wright, T. F., Eberhard, J. R., Hobson, E. A., Avery, M. L. & Russello, M. A. Behavioral flexibility and species invasions: the adaptive flexibility hypothesis. Ethol. Ecol. Evolution 22, 393–404 (2010).

    Google Scholar 

  • Dingemanse, N. J. & Wolf, M. Between-individual differences in behavioural plasticity within populations: causes and consequences. Anim. Behav. 85, 1031–1039 (2013).

    Google Scholar 

  • Ducatez, S., Sol, D., Sayol, F. & Lefebvre, L. Behavioural plasticity is associated with reduced extinction risk in birds. Nat. Ecol. Evolution 4, 788–793 (2020).

    Google Scholar 

  • Cole, E. F. & Quinn, J. L. Personality and problem-solving performance explain competitive ability in the wild. Proc. R. Soc. B: Biol. Sci. 279, 1168–1175 (2012).

    Google Scholar 

  • Webster, M. M., Ward, A. J. W. & Hart, P. J. B. Individual boldness affects interspecific interactions in sticklebacks. Behav. Ecol. Sociobiol. 63, 511–520 (2009).

    Google Scholar 

  • McGhee, K. E., Pintor, L. M. & Bell, A. M. Reciprocal behavioral plasticity and behavioral types during predator-prey interactions. Am. Naturalist 182, 704–717 (2013).

    Google Scholar 

  • Ioannou, C. C., Payne, M. & Krause, J. Ecological consequences of the bold–shy continuum: the effect of predator boldness on prey risk. Oecologia 157, 177–182 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Moran, N. P., Wong, B. B. M. & Thompson, R. M. Weaving animal temperament into food webs: implications for biodiversity. Oikos 126, 917–930 (2017).

    Google Scholar 

  • Bellard, C., Cassey, P. & Blackburn, T. M. Alien species as a driver of recent extinctions. Biol. Lett. 12, 20150623 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Moule, H., Michelangeli, M., Thompson, M. B. & Chapple, D. G. The influence of urbanization on the behaviour of an Australian lizard and the presence of an activity–exploratory behavioural syndrome. J. Zool. 298, 103–111 (2016).

    Google Scholar 

  • Michelangeli, M., Wong, B. B. M. & Chapple, D. G. It’s a trap: sampling bias due to animal personality is not always inevitable. Behav. Ecol. 27, 62–67 (2016).

    Google Scholar 

  • Michelangeli, M., Melki-Wegner, B., Laskowski, K., Wong, B. B. M. & Chapple, D. G. Impacts of caudal autotomy on personality. Anim. Behav. 162, 67–78 (2020).

    Google Scholar 

  • Shine, R. Locomotor speeds of gravid lizards: Placing “costs of reproduction” within an ecological context. Funct. Ecol. 17, 526–533 (2003).

    Google Scholar 

  • Naimo, A. C., Jones, C., Chapple, D. G. & Wong, B. B. M. Has an invasive lizard lost its antipredator behaviours following 40 generations of isolation from snake predators? Behav. Ecol. Sociobiol. 75, 131 (2021).

    Google Scholar 

  • Brand, J. A. et al. Population differences in the effect of context on personality in an invasive lizard. Behav. Ecol. 32, 1363–1371 (2021).

    Google Scholar 

  • Goulet, C. T., Thompson, M. B., Michelangeli, M., Wong, B. B. M. & Chapple, D. G. Thermal physiology: a new dimension of the pace‐of‐life syndrome. J. Anim. Ecol. 86, 1269–1280 (2017).

    PubMed 

    Google Scholar 

  • Michelangeli, M., Goulet, C. T., Kang, H. S., Wong, B. B. M. & Chapple, D. G. Integrating thermal physiology within a syndrome: locomotion, personality and habitat selection in an ectotherm. Funct. Ecol. 32, 970–981 (2018).

    Google Scholar 

  • Bell, A. M. Randomized or fixed order for studies of behavioral syndromes? Behav. Ecol. 24, 16–20 (2013).

    PubMed 

    Google Scholar 

  • Friard, O. & Gamba, M. BORIS: a free, versatile open-source event-logging software for video/audio coding and live observations. Methods Ecol. Evolution 7, 1325–1330 (2016).

    Google Scholar 

  • R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/. (2019).

  • Bürkner, P. C. brms: an R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).

    Google Scholar 

  • Munson, A. A., Michelangeli, M. & Sih, A. Stable social groups foster conformity and among-group differences. Anim. Behav. 174, 197–206 (2021).

    Google Scholar 

  • Royauté, R. & Dochtermann, N. A. Comparing ecological and evolutionary variability within datasets. Behav. Ecol. Sociobiol. 75, 127 (2021).

    Google Scholar 

  • Dalos, J., Royauté, R., Hedrick, A. V. & Dochtermann, N. A. Phylogenetic conservation of behavioural variation and behavioural syndromes. J. Evolut. Biol. 35, 311–321 (2022).

    Google Scholar 

  • Miller, K. A., Duran, A., Melville, J., Thompson, M. B. & Chapple, D. G. Sex-specific shifts in morphology and colour pattern polymorphism during range expansion of an invasive lizard. J. Biogeogr. 44, 2778–2788 (2017).

    Google Scholar 

  • Michelangeli, M., Chapple, D. G. & Wong, B. B. M. Are behavioural syndromes sex specific? Personality in a widespread lizard species. Behav. Ecol. Sociobiol. 70, 1911–1919 (2016).

    Google Scholar 

  • Vehtari, A., Gelman, A. & Gabry, J. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat. Comput. 27, 1413–1432 (2017).

    MathSciNet 
    MATH 

    Google Scholar 

  • Nakagawa, S. & Schielzeth, H. Repeatability for Gaussian and non-Gaussian data: a practical guide for biologists. Biol. Rev. 85, 935–956 (2010).

    PubMed 

    Google Scholar 

  • Chapple, D. G. et al. Data from Chapple et al. “Biological invasions as a selective filter driving behavioral divergence”. Monash University. Dataset. https://doi.org/10.26180/18851036.v2 (2022).


  • Source: Ecology - nature.com

    Author Correction: Split westerlies over Europe in the early Little Ice Age

    3Q: Why Europe is so vulnerable to heat waves