in

Calibrating the zenith of dinosaur diversity in the Campanian of the Western Interior Basin by CA-ID-TIMS U–Pb geochronology

  • Sloan, R. E. in Essays on palaeontology in honour of Loris Shano Russell (ed C. S. Churcher) 134–155 (Royal Ontario Museum, 1976).

  • Dodson, P. J. A faunal review of the Judith River (Oldman) Formation, Dinosaur Provincial Park, Alberta. Mosasaur 1, 89–118 (1983).

    Google Scholar 

  • Clemens, W. A. in Dynamics of extinction (ed D. K. Elliott) 63–85 (John Wiley & Sons, 1986).

  • Dodson, P. J. & Tatarinov, L. P. in The Dinosauria (eds D. B. Weishampel, P. J. Dodson, & H. Osmólska) 55–62 (University of California Press, 1990).

  • Lehman, T. M. in Dinofest International (eds D. L. Wolberg, E. Stump, & G. D. Rosenberg) 223–240 (Philadelphia Academy of Natural Sciences, 1997).

  • Lehman, T. M. in Mesozoic Vertebrate Life (eds D. H. Tanke & K. Carpenter) 310–328 (Indiana University Press, 2001).

  • Sampson, S. D. et al. New horned dinosaurs from Utah provide evidence for intracontinental dinosaur endemism. PLoS ONE 5, e12292. https://doi.org/10.1371/journal.pone.0012292 (2010).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mannion, P. D., Upchurch, P., Carrano, M. T. & Barrett, P. M. Testing the effect of the rock record on diversity: a multidisciplinary approach to elucidating the generic richness of sauropodomorph dinosaurs through time. Biol. Rev. 86, 157–181. https://doi.org/10.1111/j.1469-185X.2010.00139.x (2011).

    Article 
    PubMed 

    Google Scholar 

  • Upchurch, P., Mannion, P. D., Benson, R. B. J., Butler, R. J. & Carrano, M. T. Geological and anthropogenic controls on the sampling of the terrestrial fossil record: a case study from the Dinosauria. Geol. Soc. Spec. Publ 358, 209–240. https://doi.org/10.1144/SP358.14 (2011).

    Article 

    Google Scholar 

  • Haq, B. U. Cretaceous eustasy revisited. Glob. Planet. Change 113, 44–58. https://doi.org/10.1016/j.gloplacha.2013.12.007 (2014).

    ADS 
    Article 

    Google Scholar 

  • Miller, K. G., Barrera, E., Olsson, R. K., Sugarman, P. J. & Savin, S. M. Does ice drive early Maastrichtian eustasy?. Geology 27, 783. https://doi.org/10.1130/0091-7613(1999)027%3c0783:dideme%3e2.3.co;2 (1999).

    ADS 
    <a data-track="click" rel="nofollow noopener" data-track-label="10.1130/0091-7613(1999)0272.3.co;2″ data-track-action=”article reference” href=”https://doi.org/10.1130%2F0091-7613%281999%29027%3C0783%3Adideme%3E2.3.co%3B2″ aria-label=”Article reference 11″>Article 

    Google Scholar 

  • Catuneanu, O., Sweet, A. R. & Miall, A. D. Reciprocal stratigraphy of the Campanian-Paleocene Western Interior of North America. Sediment. Geol. 134, 235–255. https://doi.org/10.1016/S0037-0738(00)00045-2 (2000).

    ADS 
    Article 

    Google Scholar 

  • Smith, R. L. Ash flows. Geol. Soc. Am. Bull. 71, 795–841. https://doi.org/10.1130/0016-7606(1960)71[795:af]2.0.co;2 (1960).

    ADS 
    Article 

    Google Scholar 

  • Smedes, H. W. Geology and igneous petrology of the northern Elkhorn mountains. 116 (United States Geological Survey Professional Paper 510 1966).

  • Rutland, C., Smedes, H. W., Tilling, R. I. & Greenwood, W. R. in Cordilleran volcanism, plutonism, and magma generation at various crustal levels, Montana and Idaho. 28th International Geological Congress, Field Trip Guidebook T337 (ed D. W. Hyndman) 16–31 (American Geophysical Union, 1989).

  • Harlan, S. S. et al. 40Ar/39Ar and K-Ar Geochronology and Tectonic Significance of the Upper Cretaceous Adel Mountain Volcanics and Spatially Associated Tertiary Igneous Rocks, Northwestern Montana. 29 (United States Geological Survey Professional Paper 1696, 2005).

  • Breyer, J. A. et al. Evidence for late cretaceous volcanism in Trans-Pecos Texas. J. Geol. 115, 243–251. https://doi.org/10.1086/510640 (2007).

    ADS 
    Article 

    Google Scholar 

  • Jennings, G. R., Lawton, T. E. & Clinkscales, C. A. Late cretaceous U-Pb tuff ages from the, Skunk Ranch Formation and their implications for age of Laramide deformation, Little Hatchet Mountains, southwestern New Mexico, USA. Cretac. Res. 43, 18–25. https://doi.org/10.1016/j.cretres.2013.02.001 (2013).

    Article 

    Google Scholar 

  • Roberts, E. M. & Hendrix, M. S. Taphonomy of a petrified forest in the Two Medicine Formation (Campanian), northwest Montana: implications for palinspastic restoration of the Boulder batholith and Elkhorn Mountains Volcanics. Palaios 15, 476–482. https://doi.org/10.2307/3515516 (2000).

    ADS 
    Article 

    Google Scholar 

  • Sewall, J. O. et al. Climate model boundary conditions for four Cretaceous time slices. Clim. Past. 3, 647–657. https://doi.org/10.5194/cp-3-647-2007 (2007).

    Article 

    Google Scholar 

  • Bertog, J. Stratigraphy of the lower Pierre Shale (Campanian): implications for the tectonic and eustatic controls on facies distributions. J. Geol. Res. 2010, 910243. https://doi.org/10.1155/2010/910243 (2010).

    ADS 
    Article 

    Google Scholar 

  • Fricke, H. C., Foreman, B. Z. & Sewall, J. O. Integrated climate model-oxygen isotope evidence for a North American monsoon during the Late Cretaceous. Earth Planet. Sci. Lett. 289, 11–21. https://doi.org/10.1016/j.epsl.2009.10.018 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Obradovich, J. D. in Evolution of the Western Interior Basin (eds W. G. E. Caldwell & E. G. Kaufman) 379–396 (Geological Association of Canada Special Paper 39, 1993).

  • Cobban, W. A., Walaszczyk, I., Obradovich, J. D. & McKinney, K. C. A USGS Zonal Table for the Upper Cretaceous Middle Cenomanian–Maastrichtian of the Western Interior of the United States Based on Ammonites, Inoceramids, and Radiometric Ages. (United States Geological Survey Open-File Report 2006–1250, 2006).

  • Rogers, R. R., Swisher, C. C. & Horner, J. R. 40Ar/39Ar age and correlation of the nonmarine Two Medicine Formation (Upper Cretaceous), northwestern Montana, U.S.A. Can J Earth Sci 30, 1066–1075. https://doi.org/10.1139/e93-090 (1993).

    CAS 
    Article 

    Google Scholar 

  • Goodwin, M. B. & Deino, A. L. The first radiometric ages from the Judith River Formation (Upper Cretaceous), Hill County, Montana. Can. J. Earth Sci. 26, 1384–1391. https://doi.org/10.1139/e89-118 (1989).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Thomas, R. G., Eberth, D. A., Deino, A. L. & Robinson, D. Composition, radioisotopic ages, and potential significance of an altered volcanic ash (bentonite) from the Upper Cretaceous Judith River Formation, Dinosaur Provincial Park, southern Alberta, Canada. Cretac. Res. 11, 125–162. https://doi.org/10.1016/s0195-6671(05)80030-8 (1990).

    CAS 
    Article 

    Google Scholar 

  • Roberts, E. M., Deino, A. L. & Chan, M. A. 40Ar/39Ar age of the Kaiparowits Formation, southern Utah, and correlation of contemporaneous Campanian strata and vertebrate faunas along the margin of the Western Interior Basin. Cretac. Res. 26, 307–318. https://doi.org/10.1016/j.cretres.2005.01.002 (2005).

    Article 

    Google Scholar 

  • Fassett, J. E. & Steiner, M. B. in Mesozoic Geology and Paleontology of the Four Corners Region (eds O. Anderson, B. S. Kues, & S. G. Lucas) 239–247 (New Mexico Geological Society 48th Field Conference Guidebook, 1997).

  • Sprain, C. J., Renne, P. R., Wilson, G. P. & Clemens, W. A. High-resolution chronostratigraphy of the terrestrial Cretaceous-Paleogene transition and recovery interval in the Hell Creek region, Montana. Geol. Soc. Am. Bull. 127, 393–409. https://doi.org/10.1130/B31076.1 (2015).

    ADS 
    Article 

    Google Scholar 

  • Clyde, W. C., Ramezani, J., Johnson, K. R., Bowring, S. A. & Jones, M. M. Direct high-precision U-Pb geochronology of the end-Cretaceous extinction and calibration of Paleocene astronomical timescales. Earth Planet. Sci. Lett. 452, 272–280. https://doi.org/10.1016/j.epsl.2016.07.041 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Wang, T. T. et al. High-precision U-Pb geochronologic constraints on the Late Cretaceous terrestrial cyclostratigraphy and geomagnetic polarity from the Songliao Basin, Northeast China. Earth Planet. Sci. Lett. 446, 37–44. https://doi.org/10.1016/j.epsl.2016.04.007 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Blakey, R. C. Paleogeography and Paleotectonics of the Western Interior Seaway, Jurassic-Cretaceous of North America. (American Association of Petroleum Geologists Search and Discovery Article 30392, 2014).

  • Archibald, J. D. Dinosaur Extinction and the End of an Era: What the Fossils Say 240 (Columbia University Press, London, 1996).

    Google Scholar 

  • Currie, P. J. & Russell, D. A. in Dinosaur Provincial Park: A Spectacular Ancient Ecosystem Revealed (eds P. J. Currie & E. B. Koppelhus) 537–569 (Indiana University Press, 2005).

  • Eberth, D. A. & Hamblin, A. P. Tectonic, stratigraphic, and sedimentologic significance of a regional discontinuity in the upper Judith River Group (Belly River Wedge) of southern Alberta, Saskatchewan, and northern Montana. Can. J. Earth Sci. 30, 174–200. https://doi.org/10.1139/e93-016 (1993).

    ADS 
    Article 

    Google Scholar 

  • Eberth, D. A. in Dinosaur Provincial Park: A spectacular Ancient Ecosystem Revealed (eds P. J. Currie & E. B. Koppelhus) Ch. 3, 54–82 (Indiana University Press, 2005).

  • Eberth, D. A. Origin and significance of mud-filled incised valleys (Upper Cretaceous) in southern Alberta, Canada. Sedimentology 43, 459–477. https://doi.org/10.1046/j.1365-3091.1996.d01-15.x (1996).

    ADS 
    Article 

    Google Scholar 

  • Russell, D. A. A new specimen of Stenonychosaurus from the Oldman Formation (Cretaceous) of Alberta. Can. J. Earth Sci. 6, 595–612. https://doi.org/10.1139/e69-059 (1969).

    ADS 
    Article 

    Google Scholar 

  • Dodson, P. Sedimentology and taphonomy of Oldman formation (Campanian), Dinosaur-Provincial-Park, Alberta (Canada). Palaeogeogr. Palaeocl. 10, 21–000. https://doi.org/10.1016/0031-0182(71)90044-7 (1971).

    Article 

    Google Scholar 

  • Farlow, J. O. Consideration of trophic dynamics of a late cretaceous large dinosaur community (Oldman formation). Ecology 57, 841–857. https://doi.org/10.2307/1941052 (1976).

    Article 

    Google Scholar 

  • Beland, P. & Russell, D. A. Paleoecology of Dinosaur-Provincial-Park (Cretaceous), Alberta, interpreted from distribution of articulated vertebrate remains. Can. J. Earth Sci. 15, 1012–1024. https://doi.org/10.1139/e78-109 (1978).

    ADS 
    Article 

    Google Scholar 

  • MacDonald, M., Currie, P. J. & Spencer, W. A. in Dinosaur Provincial Park: A Spectacular Ancient Ecosystem Revealed (eds P. J. Currie & E. B. Koppelhus) 478–485 (Indiana University Press, 2005).

  • Eberth, D. A., Brinkman, D. B. & Barkas, V. in New Perspectives on Horned Dinosaurs: The Royal Tyrrell Museum Ceratopsian Symposium (eds M. J. Ryan, B. J. Chinnery-Allgeier, & D. A. Eberth) 495–508 (Indiana University Press, 2010).

  • Mallon, J. C., Evans, D. C., Ryan, M. J. & Anderson, J. S. Megaherbivorous dinosaur turnover in the Dinosaur Park Formation (upper Campanian) of Alberta, Canada. Palaeogeogr. Palaeocl. 350, 124–138. https://doi.org/10.1016/j.palaeo.2012.06.024 (2012).

    Article 

    Google Scholar 

  • Brown, C. M., Evans, D. C., Campione, N. E., O’Brien, L. J. & Eberth, D. A. Evidence for taphonomic size bias in the Dinosaur Park Formation (Campanian, Alberta), a model Mesozoic terrestrial alluvial-paralic system. Palaeogeogr Palaeocl 372, 108–122. https://doi.org/10.1016/j.palaeo.2012.06.027 (2013).

    Article 

    Google Scholar 

  • Eberth, D. A. & Getty, M. A. in Dinosaur Provincial Park: A Spectacular Ancient Ecosystem Revealed (eds P. J. Currie & E. B. Koppelhus) 501–536 (Indiana University Press, 2005).

  • Brown, C. M., Herridge-Berry, S., Chiba, K., Vitkus, A. & Eberth, D. A. High-resolution (centimetre-scale) GPS/GIS-based 3D mapping and spatial analysis of in situ fossils in two horned-dinosaur bonebeds in the Dinosaur Park Formation (Upper Cretaceous) at Dinosaur Provincial Park, Alberta, Canada. Can. J. Earth Sci. 58, 225–246. https://doi.org/10.1139/cjes-2019-0183 (2021).

    ADS 
    Article 

    Google Scholar 

  • Eberth, D. A., Braman, D. R. & Tokaryk, T. T. Stratigraphy, Sedimentology and vertebrate paleontology of the Judith River Formation (Campanian) near Muddy Lake, West-Central Saskatchewan. Bull. Can. Petrol. Geol. 38, 387–406 (1990).

    Google Scholar 

  • Rogers, R. R. Sequence analysis of the Upper Cretaceous Two Medicine and Judith River formations, Montana; nonmarine response to the Claggett and Bearpaw marine cycles. J. Sediment. Res. 68, 615–631. https://doi.org/10.2110/jsr.68.604 (1998).

    ADS 
    Article 

    Google Scholar 

  • Rogers, R. R. Taphonomy of three dinosaur bone beds in the Upper Cretaceous Two Medicine Formation of Northwestern Montana: evidence for drought-related mortality. Palaios 5, 394–413. https://doi.org/10.2307/3514834 (1990).

    ADS 
    Article 

    Google Scholar 

  • Falcon-Lang, H. J. Growth interruptions in silicified conifer woods from the Upper Cretaceous Two Medicine Formation, Montana, USA: implications for palaeoclimate and dinosaur palaeoecology. Palaeogeogr. Palaeocl. 199, 299–314. https://doi.org/10.1016/S0031-0182(03)00539-X (2003).

    Article 

    Google Scholar 

  • Horner, J. R. & Makela, R. Nest of juveniles provides evidence of family-structure among dinosaurs. Nature 282, 296–298. https://doi.org/10.1038/282296a0 (1979).

    ADS 
    Article 

    Google Scholar 

  • Horner, J. R., Varricchio, D. J. & Goodwin, M. B. Marine transgressions and the evolution of Cretaceous dinosaurs. Nature 358, 59–61. https://doi.org/10.1038/358059a0 (1992).

    ADS 
    Article 

    Google Scholar 

  • Sampson, S. D. Two new horned dinosaurs from the Upper Cretaceous Two Medicine Formation of Montana; With a phylogenetic analysis of the Centrosaurinae (Ornithischia:Ceratopsidae). J. Vertebr. Paleontol. 15, 743–760. https://doi.org/10.1080/02724634.1995.10011259 (1995).

    Article 

    Google Scholar 

  • Carr, T. D., Varricchio, D. J., Sedlmayr, J. C., Roberts, E. M. & Moore, J. R. A new tyrannosaur with evidence for anagenesis and crocodile-like facial sensory system. Sci. Rep. 7, 44942. https://doi.org/10.1038/srep44942 (2017).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wilson, J. P., Ryan, M. J. & Evans, D. C. A new, transitional centrosaurine ceratopsid from the Upper Cretaceous Two Medicine Formation of Montana and the evolution of the “Styracosaurus-line” dinosaurs. R. Soc. Open Sci. 7, 200284. https://doi.org/10.1098/rsos.200284 (2020).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Foreman, B. Z., Rogers, R. R., Deino, A. L., Wirth, K. R. & Thole, J. T. Geochemical characterization of bentonite beds in the Two Medicine Formation (Campanian, Montana), including a new 40Ar/39Ar age. Cretac. Res. 29, 373–385. https://doi.org/10.1016/j.cretres.2007.07.001 (2008).

    Article 

    Google Scholar 

  • Varricchio, D. J. et al. in Large Meteorite Impacts and Planetary Evolution IV Vol. 465 (eds R. L. Gibson & W. U. Reimold) 269–299 (Geological Society of America Special Paper 465, 2010).

  • Meek, F. B. & Hayden, F. V. Descriptions of new species of acephala and gasteropoda, from the tertiary formations of Nebraska Territory, with some general remarks on the geology of the country about the sources of the Missouri River. Ceratites Americanus. Proc. Acad. Nat. Sci. Phila. 8, 111–126 (1856).

    Google Scholar 

  • Hayden, F. V. Notes explanatory of a map and section illustrating the geologic structure of the country bordering the Missouri River from the mouth of the Platte River to Fort Benton. Proc. Acad. Natl. Sci. Phila. 9, 109–148 (1857).

    Google Scholar 

  • Hayden, F. V. in [Fourth Annual] Preliminary Report of the United States Geological Survey of Wyoming and portions of contiguous Territories 85–98 (U.S. Geological Survey, 1871).

  • Dawson, G. M. in Report on the Geology and Resources of the Region in the Vicinity of the Forty-Ninth Parallel, from the Lake of the Woods to the Rocky Mountains 1–18 (British North American Boundary Commission, 1875).

  • Stanton, T. W., Hatcher, J. B. & Knowlton, F. H. Geology and Paleontology of the Judith River Beds (United States Geological Survey Bulletin No. 257, 1905).

  • Bowen, C. F. in Shorter Contributions to General Geology 1914 95–153 (United States Geological Survey Professional Paper 90, 1915).

  • Waage, K. M. in The Cretaceous System in the Western Interior of North America: The Proceedings of an International Symposium Organized by the Geological Association of Canada, Saskatoon, Saskatchewan, May 23–26, 1973 (ed W. G. E. Caldwell) 55–81 (Geological Association of Canada Special paper 13, 1975).

  • Leidy, J. Notice of remains of extinct reptiles and fishes, discovered by Dr. FV Hayden in the Bad Lands of the Judith River, Nebraska Territory. Proc. Acad. Nat. Sci. Phila. 8, 72–73. https://doi.org/10.5281/zenodo.1038128 (1856).

    Article 

    Google Scholar 

  • Leidy, J. Extinct vertebrata from the Judith River and Great Lignite formations of Nebraska. Trans. Am. Philos. Soc. 11, 139–154. https://doi.org/10.2307/3231936 (1860).

    Article 

    Google Scholar 

  • Cope, E. D. On some extinct reptiles and Batrachia from the Judith River and Fox Hills beds of Montana. Proc. Acad. Natl. Sci. Phila. 28, 340–359 (1876).

    Google Scholar 

  • Sternberg, C. H. Notes on the fossil vertebrates collected on the Cope expedition to the Judith River and Cow Island beds, Montana, in 1876. Science 40, 134–135. https://doi.org/10.1126/science.40.1021.134 (1914).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Sahni, A. The vertebrate fauna of the Judith River Formation, Montana. Bull. Am. Mus. Nat. Hist. 147, 325–412 (1972).

    Google Scholar 

  • Tschudy, B. D. Palynology of the upper Campanian (Cretaceous) Judith River Formation, north-central Montana. 42 (United States Geological Survey Professional Paper 770, 1973).

  • Case, G. R. A new Selachian Fauna from the Judith River formation (Campanian) of Montana. Palaeontogr. Abt. A Band A 160, 176–205 (1978).

    Google Scholar 

  • Horner, J. R. A new hadrosaur (Reptilia, Ornithischia) from the Upper Cretaceous Judith River Formation of Montana. J. Vertebr. Paleontol. 8, 314–321. https://doi.org/10.1080/02724634.1988.10011714 (1988).

    Article 

    Google Scholar 

  • Fiorillo, A. R. & Currie, P. J. Theropod teeth from the Judith River formation (Upper Cretaceous) of south-central Montana. J. Vertebr. Paleontol. 14, 74–80. https://doi.org/10.1080/02724634.1994.10011539 (1994).

    Article 

    Google Scholar 

  • Prieto-Marquez, A. New information on the cranium of Brachylophosaurus canadensis (Dinosauria, Hadrosauridae), with a revision of its phylogenetic position. J. Vertebr. Paleontol. 25, 144–156. https://doi.org/10.1671/0272-4634(2005)025[0144:Niotco]2.0.Co;2 (2005).

    Article 

    Google Scholar 

  • Fricke, H. C., Rogers, R. R., Backlund, R., Dwyer, C. N. & Echt, S. Preservation of primary stable isotope signals in dinosaur remains, and environmental gradients of the Late Cretaceous of Montana and Alberta. Palaeogeogr. Palaeocl. 266, 13–27. https://doi.org/10.1016/j.palaeo.2008.03.030 (2008).

    Article 

    Google Scholar 

  • Fricke, H. C., Rogers, R. R. & Gates, T. A. Hadrosaurid migration: inferences based on stable isotope comparisons among Late Cretaceous dinosaur localities. Paleobiology 35, 270–288. https://doi.org/10.1666/08025.1 (2009).

    Article 

    Google Scholar 

  • Tweet, J. S., Chin, K., Braman, D. R. & Murphy, N. L. Probable gut contents within a specimen of Brachylophosaurus canadensis (Dinosauria: Hadrosauridae) from the Upper Cretaceous Judith River formation of Montana. Palaios 23, 624–635. https://doi.org/10.2110/palo.2007.p07-044r (2008).

    ADS 
    Article 

    Google Scholar 

  • Ryan, M. J., Evans, D. C., Currie, P. J. & Loewen, M. A. A new chasmosaurine from northern Laramidia expands frill disparity in ceratopsid dinosaurs. Naturwissenschaften 101, 505–512. https://doi.org/10.1007/s00114-014-1183-1 (2014).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Arbour, V. M. & Evans, D. C. A new ankylosaurine dinosaur from the Judith River formation of Montana, USA, based on an exceptional skeleton with soft tissue preservation. R. Soc. Open Sci. 4, 161086. https://doi.org/10.1098/rsos.161086 (2017).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chiba, K., Ryan, M. J., Fanti, F., Loewen, M. A. & Evans, D. C. New material and systematic re-evaluation of Medusaceratops lokii (Dinosauria, Ceratopsidae) from the Judith River formation (Campanian, Montana). J. Paleontol. 92, 272–288. https://doi.org/10.1017/jpa.2017.62 (2017).

    Article 

    Google Scholar 

  • Rogers, R. R. et al. Age, correlation, and lithostratigraphic revision of the Upper Cretaceous (Campanian) Judith River formation in its type area (north-central Montana), with a comparison of low- and high-accommodation alluvial records. J. Geol. 124, 99–135. https://doi.org/10.1086/684289 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Lawton, T. F., Pollock, S. L. & Robinson, R. A. J. Integrating sandstone petrology and nonmarine sequence stratigraphy: application to the late cretaceous fluvial systems of southwestern Utah, USA. J. Sediment. Res. 73, 389–406. https://doi.org/10.1306/100702730389 (2003).

    ADS 
    Article 

    Google Scholar 

  • Jinnah, Z. A. et al. New 40Ar/39Ar and detrital zircon U-Pb ages for the Upper Cretaceous Wahweap and Kaiparowits formations on the Kaiparowits Plateau, Utah: implications for regional correlation, provenance, and biostratigraphy. Cretac. Res. 30, 287–299. https://doi.org/10.1016/j.cretres.2008.07.012 (2009).

    Article 

    Google Scholar 

  • Beveridge, T. L. et al. Refined geochronology and revised stratigraphic nomenclature of the Upper Cretaceous Wahweap Formation, Utah, U.S.A. and the age of early Campanian vertebrates from southern Laramidia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 591, 110876. https://doi.org/10.1016/j.palaeo.2022.110876 (2022).

    Article 

    Google Scholar 

  • Jinnah, Z. A. & Roberts, E. M. Facies associations, paleoenvironment, and base-level changes in the Upper Cretaceous Wahweap Formation, Utah, USA. J. Sediment. Res. 81, 266–283. https://doi.org/10.2110/jsr.2011.22 (2011).

    ADS 
    Article 

    Google Scholar 

  • Gregory, H. E. & Moore, R. C. The Kaiparowits region, a geographic and geologic reconnaissance of parts of Utah and Arizona. Report No. 164, 161 (United States Geological Survey Professional Paper 164, 1931).

  • Lohrengel, C. F. II. Palynology of Kaiparowits Formation, Garfield County, Utah. AAPG Bull. 53, 729–729. https://doi.org/10.1306/5d25c75f-16c1-11d7-8645000102c1865d (1969).

    Article 

    Google Scholar 

  • Roberts, E. M. Facies architecture and depositional environments of the Upper Cretaceous Kaiparowits Formation, southern Utah. Sediment. Geol. 197, 207–233. https://doi.org/10.1016/j.sedgeo.2006.10.001 (2007).

    ADS 
    Article 

    Google Scholar 

  • Lawton, T. F. & Bradford, B. A. Correlation and provenance of Upper Cretaceous (Campanian) fluvial strata, Utah, USA, from Zircon U-Pb geochronology and petrography. J. Sediment. Res. 81, 495–512. https://doi.org/10.2110/jsr.2011.45 (2011).

    ADS 
    Article 

    Google Scholar 

  • Beveridge, T. L., Roberts, E. M. & Titus, A. L. Volcaniclastic member of the richly fossiliferous Kaiparowits Formation reveals new insights for regional correlation and tectonics in southern Utah during the latest Campanian. Cretac. Res. https://doi.org/10.1016/j.cretres.2020.104527 (2020).

    Article 

    Google Scholar 

  • Titus, A. L. et al. in Interior Western United States (ed C. M. Dehler) 1–28 (Geological Society of America Field Guide 6, 2005).

  • Titus, A. L. & Loewen, M. A. At the Top of the Grand Staircase: The Late Cretaceous of Southern Utah (Indiana University Press, 2013).

  • Cifelli, R. L. Cretaceous mammals of southern Utah. I. Marsupials from the Kaiparowits Formation (Judithian). J. Vertebr. Paleontol. 10, 295–319. https://doi.org/10.1080/02724634.1990.10011816 (1990).

    Article 

    Google Scholar 

  • Eaton, J., Cifelli, R., Hutchison, J. H., Kirkland, J. & Parrish, J. in Vertebrate Paleontology in Utah (ed D. D. Gillette) 345–353 (Utah Geological Survey Miscellaneous Publication 99–1, 1999).

  • Zanno, L. E. & Sampson, S. D. A new oviraptorosaur (Theropoda, Maniraptora) from the Late Cretaceous (Campanian) of Utah. J. Vertebr. Paleontol. 25, 897–904. https://doi.org/10.1671/0272-4634(2005)025[0897:Anotmf]2.0.Co;2 (2005).

    Article 

    Google Scholar 

  • Gates, T. A. & Sampson, S. D. A new species of Gryposaurus (Dinosauria : Hadrosauridae) from the late Campanian Kaiparowits Formation, southern Utah, USA. Zool J Linn Soc-Lond 151, 351–376. https://doi.org/10.1111/j.1096-3642.2007.00349.x (2007).

    Article 

    Google Scholar 

  • Sampson, S. D., Lund, E. K., Loewen, M. A., Farke, A. A. & Clayton, K. E. A remarkable short-snouted horned dinosaur from the Late Cretaceous (late Campanian) of southern Laramidia. Proc. Biol. Sci. 280, 20131186. https://doi.org/10.1098/rspb.2013.1186 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Carr, T. D., Williamson, T. E., Britt, B. B. & Stadtman, K. Evidence for high taxonomic and morphologic tyrannosauroid diversity in the Late Cretaceous (Late Campanian) of the American Southwest and a new short-skulled tyrannosaurid from the Kaiparowits formation of Utah. Naturwissenschaften 98, 241–246. https://doi.org/10.1007/s00114-011-0762-7 (2011).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Zanno, L. E., Varricchio, D. J., O’Connor, P. M., Titus, A. L. & Knell, M. J. A new troodontid theropod, Talos sampsoni gen. et sp. Nov., from the Upper Cretaceous Western Interior Basin of North America. PLoS ONE 6, e24487. https://doi.org/10.1371/journal.pone.0024487 (2011).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Loewen, M. A., Irmis, R. B., Sertich, J. J., Currie, P. J. & Sampson, S. D. Tyrant dinosaur evolution tracks the rise and fall of Late Cretaceous oceans. PLoS ONE 8, e79420. https://doi.org/10.1371/journal.pone.0079420 (2013).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wiersma, J. P. & Irmis, R. B. A new southern Laramidian ankylosaurid, Akainacephalus johnsoni gen. et sp. Nov., from the upper Campanian Kaiparowits Formation of southern Utah, USA. Peerj 6, e5016. https://doi.org/10.7717/peerj.5016 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Titus, A. L. et al. Geology and taphonomy of a unique tyrannosaurid bonebed from the upper Campanian Kaiparowits Formation of southern Utah: implications for tyrannosaurid gregariousness. PeerJ 9, e11013. https://doi.org/10.7717/peerj.11013 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Roberts, E., Sampson, S., Deino, A., Bowring, S. & Buchwaldt, R. in At the Top of the Grand Staircase: The Late Cretaceous of Southern Utah (eds A. L. Titus & M. A. Loewen) 85–106 (Indiana University Press, 2013).

  • Fassett, J. E. & Hinds, J. S. Geology and fuel resources of the Fruitland Formation and Kirtland Shale of the San Juan Basin, New Mexico and Colorado. Report No. 676, 76 (United States Geological Survey Professional Paper 676, 1971).

  • Fassett, J. E. in Geologic Assessment of Coal in the Colorado Plateau: Arizona, Colorado, New Mexico, and Utah (eds M. A. Kirschbaum, L. N. R. Roberts, & L. Biewick) Q1-Q132 (U.S. Geological Survey Professional Paper 1625–B, 2000).

  • Flynn, A. G. et al. Early Paleocene magnetostratigraphy and revised biostratigraphy of the Ojo Alamo Sandstone and Lower Nacimiento Formation, San Juan Basin, New Mexico, USA. GSA Bull. 132, 2154–2174. https://doi.org/10.1130/b35481.1 (2020).

    Article 

    Google Scholar 

  • Hay, O. P. On the habits and the pose of the Sauropodous dinosaurs, especially of Diplodocus. Am. Nat. 42, 672–681. https://doi.org/10.1086/278992 (1908).

    Article 

    Google Scholar 

  • Gilmore, C. W. in Shorter Contributions to General Geology 1916 279–308 (United States Geological Survey Professional Paper 98-Q, 1916).

  • Gilmore, C. W. On the Replilia of the Kirtland formation of New Mexico, with descriptions of new species of fossil turtles. Proc. U.S. Natl. Mus. 83, 159–188 (1935).

    Article 

    Google Scholar 

  • Hunt, A. P. Integrated vertebrate, invertebrate and plant taphonomy of the Fossil Forest area (Fruitland and Kirtland formations: Late Cretaceous), San-Juan-County, New-Mexico, USA. Palaeogeogr. Palaeocl. 88, 85–107. https://doi.org/10.1016/0031-0182(91)90016-K (1991).

    Article 

    Google Scholar 

  • Hunt, A. P. & Lucas, S. G. in New Mexico Geological Society 43rd Field Conference Guidebook Vol. 43 (eds S. G. Lucas, B. S. Kues, T. E. Williamson, & A. P. Hunt) 217–239 (New Mexico Geological Society, 1992).

  • Fassett, J. E. & Heizler, M. T. in The Geology of the Ouray-Silverton Area (eds K. E. Karlstrom et al.) 115–121 (68th New Mexico Geological Society Field Conference Guidebook, 2017).

  • Folinsbee, R., Lipson, J. & Baadsgaard, H. Potassium-argon dates of upper cretaceous ash falls, Alberta, Canada. Ann. N. Y. Acad. Sci. 91, 352. https://doi.org/10.1111/j.1749-6632.1961.tb35475.x (1961).

    ADS 
    Article 

    Google Scholar 

  • Lerbekmo, J. F. Petrology of the belly river formation, southern Alberta foothills. Sedimentology 2, 54–86. https://doi.org/10.1111/j.1365-3091.1963.tb01200.x (1963).

    ADS 
    Article 

    Google Scholar 

  • Min, K. W., Renne, P. R. & Huff, W. D. 40Ar/39Ar dating of Ordovician K-bentonites in Laurentia and Baltoscandia. Earth Planet. Sci. Lett. 185, 121–134. https://doi.org/10.1016/S0012-821x(00)00365-4 (2001).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Steiger, R. H. & Jäger, E. Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Planet. Sci. Lett. 36, 359–362. https://doi.org/10.1016/0012-821x(77)90060-7 (1977).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Samson, S. D. & Alexander, E. C. Calibration of the interlaboratory 40Ar-39Ar dating standard, Mmhb-1. Chem. Geol. 66, 27–34. https://doi.org/10.1016/0168-9622(87)90025-X (1987).

    CAS 
    Article 

    Google Scholar 

  • Deino, A. & Potts, R. Single-crystal 40Ar/39Ar dating of the Olorgesailie formation, Southern Kenya Rift. J. Geophys. Res. 95, 8453. https://doi.org/10.1029/JB095iB06p08453 (1990).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Renne, P. R. et al. Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating. Chem Geol 145, 117–152. https://doi.org/10.1016/s0009-2541(97)00159-9 (1998).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Kuiper, K. F. et al. Synchronizing rock clocks of Earth history. Science 320, 500–504. https://doi.org/10.1126/science.1154339 (2008).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Fowler, D. W. Revised geochronology, correlation, and dinosaur stratigraphic ranges of the Santonian-Maastrichtian (Late Cretaceous) formations of the Western Interior of North America. PLoS ONE 12, e0188426. https://doi.org/10.1371/journal.pone.0188426 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Turrin, B. D. et al. in American Geophysical Union, Fall Meeting Vol. 2016 V23A–2969 (San Francisco, California, 2016).

  • Phillips, D., Matchan, E. L., Dalton, H. & Kuiper, K. F. Revised astronomically calibrated 40Ar/39Ar ages for the Fish Canyon Tuff sanidine—closing the interlaboratory gap. Chem. Geol. 597, 120815. https://doi.org/10.1016/j.chemgeo.2022.120815 (2022).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Eberth, D. A. & Kamo, S. L. High-precision U-Pb CA-ID-TIMS dating and chronostratigraphy of the dinosaur-rich Horseshoe Canyon Formation (Upper Cretaceous, Campanian-Maastrichtian), Red Deer River valley, Alberta, Canada. Can. J. Earth Sci. 57, 1220–1237. https://doi.org/10.1139/cjes-2019-0019 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Gale, A. S. et al. in Geologic Time Scale 2020 (eds F. M. Gradstein, J. G. Ogg, M. D. Schmitz, & G. M. Ogg) 1023–1086 (Elsevier, 2020).

  • Condon, D. J., Schoene, B., McLean, N. M., Bowring, S. A. & Parrish, R. R. Metrology and traceability of U-Pb isotope dilution geochronology (EARTHTIME Tracer Calibration Part I). Geochim. Cosmochim. Acta 164, 464–480. https://doi.org/10.1016/j.gca.2015.05.026 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Mattinson, J. M. Zircon U-Pb chemical abrasion (“CA-TIMS”) method: combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. Chem. Geol. 220, 47–66. https://doi.org/10.1016/j.chemgeo.2005.03.011 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • McLean, N. M., Condon, D. J., Schoene, B. & Bowring, S. A. Evaluating uncertainties in the calibration of isotopic reference materials and multi-element isotopic tracers (EARTHTIME Tracer Calibration Part II). Geochim. Cosmochim. Acta 164, 481–501. https://doi.org/10.1016/j.gca.2015.02.040 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Lu, J. et al. Volcanically driven lacustrine ecosystem changes during the Carnian Pluvial Episode (Late Triassic). Proc. Natl. Acad. Sci. U.S.A. 118, e2109895118. https://doi.org/10.1073/pnas.2109895118 (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jiang, B., Harlow, G. E., Wohletz, K., Zhou, Z. & Meng, J. New evidence suggests pyroclastic flows are responsible for the remarkable preservation of the Jehol biota. Nat. Commun. 5, 3151. https://doi.org/10.1038/ncomms4151 (2014).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Gates, T. A. et al. Biogeography of terrestrial and freshwater vertebrates from the late Cretaceous (Campanian) Western Interior of North America. Palaeogeogr. Palaeocl. 291, 371–387. https://doi.org/10.1016/j.palaeo.2010.03.008 (2010).

    Article 

    Google Scholar 

  • Eaton, J. G. in Stratigraphy, depositional environments; and sedimentary tectonics of the western margin, Cretaceous Western Interior Seaway (eds J. Dale Nations & J. G. Eaton) 47–63 (Geological Society of America Special Paper 260, 1991).

  • Sankey, J. T. Late Campanian southern dinosaurs, Aguja Formation, Big Bend, Texas. J. Paleontol. 75, 208–215. https://doi.org/10.1666/0022-3360(2001)075%3c0208:Lcsdaf%3e2.0.Co;2 (2001).

    <a data-track="click" rel="nofollow noopener" data-track-label="10.1666/0022-3360(2001)0752.0.Co;2″ data-track-action=”article reference” href=”https://doi.org/10.1666%2F0022-3360%282001%29075%3C0208%3ALcsdaf%3E2.0.Co%3B2″ aria-label=”Article reference 135″>Article 

    Google Scholar 

  • Sullivan, R. & Lucas, S. G. Vertebrate faunal succession in the Upper Cretaceous, San Juan Basin, New Mexico, with implications for correlations within the north American western interior. J. Vertebr. Paleontol. 23, 102a–102a (2003).

    Google Scholar 

  • Currie, P. J. in Dinosaur Provincial Park: A Spectacular Ancient Ecosystem Revealed (eds P. J. Currie & E. B. Koppelhus) 3–33 (Indiana University Press, 2005).

  • Kirkland, J. I. & Deblieux, D. D. in New Perspectives on Horned Dinosaurs: The Royal Tyrrell Museum Ceratopsian Symposium (eds M. J. Ryan, B. J. Chinnery-Allgeier, & D. A. Eberth) 117–140 (Indiana University Press, 2010).

  • Miller, I. M., Johnson, K., Kline, D. E., Nichols, D. J. & Barclay, R. in At the Top of the Grand Staircase: The Late Cretaceous of southern Utah (eds A. Titus & M. Loewen) 107–131 (Indiana University Press, 2013).

  • Tapanila, L. & Roberts, E. in At the Top of the Grand Staircase: The Late Cretaceous of Southern Utah (eds A. L. Titus & M. A. Loewen) 132–152 (Indiana University Press, 2013).

  • Schmitt, J. & Varricchio, D. J. Volcano-tectonic partitioning of Laramidia: Influence on Campanian terrestrial environments and ecosystems. Program and Abstracts. J. Vertebr. Paleontol. 31, 188. https://doi.org/10.1080/02724634.2011.10635174 (2011).

    Article 

    Google Scholar 

  • Burgener, L. et al. An extreme climate gradient-induced ecological regionalization in the Upper Cretaceous Western Interior Basin of North America. GSA Bull. https://doi.org/10.1130/b35904.1 (2021).

    Article 

    Google Scholar 

  • Sullivan, R. M. Revision of the dinosaur Stegoceras Lambe (Ornithischia, Pachycephalosauridae). J. Vertebr. Paleontol. 23, 181–207. https://doi.org/10.1671/0272-4634(2003)23[181:ROTDSL]2.0.CO;2 (2003).

    Article 

    Google Scholar 

  • Sullivan, R. & Lucas, S. The Kirtlandian land-vertebrate “age”-faunal composition, temporal position and biostratigraphic correlation in the nonmarine Upper Cretaceous of western North America. N. M. Mus. Nat. Hist. Sci. Bull. 35, 7–29 (2006).

    Google Scholar 

  • Lucas, S. G., Sullivan, R. M., Lichtig, A., Dalman, S. & Jasinski, S. E. in Cretaceous Period: Biotic Diversity and Biogeography Vol. New Mexico Museum of Natural History and Science Bulletin 71 (eds S. G. Lucas & A. Khosla) 195–213 (2016).

  • Dean, C. D., Chiarenza, A. A. & Maidment, S. C. R. Formation binning: a new method for increased temporal resolution in regional studies, applied to the Late Cretaceous dinosaur fossil record of North America. Palaeontology 63, 881–901. https://doi.org/10.1111/pala.12492 (2020).

    Article 

    Google Scholar 

  • Maidment, S. C. R., Dean, C. D., Mansergh, R. I. & Butler, R. J. Deep-time biodiversity patterns and the dinosaurian fossil record of the Late Cretaceous Western Interior, North America. Proc. Biol. Sci. 288, 20210692. https://doi.org/10.1098/rspb.2021.0692 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Loughney, K. M. & Badgley, C. The influence of depositional environment and basin history on the taphonomy of mammalian assemblages from the Barstow Formation (middle Miocene), California. Palaios 35, 175–190. https://doi.org/10.2110/palo.2019.067 (2020).

    ADS 
    Article 

    Google Scholar 

  • Sakamoto, M., Benton, M. J. & Venditti, C. Dinosaurs in decline tens of millions of years before their final extinction. Proc. Natl. Acad. Sci. 113, 5036–5040. https://doi.org/10.1073/pnas.1521478113 (2016).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Condamine, F. L., Guinot, G., Benton, M. J. & Currie, P. J. Dinosaur biodiversity declined well before the asteroid impact, influenced by ecological and environmental pressures. Nat. Commun. 12, 3833. https://doi.org/10.1038/s41467-021-23754-0 (2021).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Therrien, F. O. & Fastovsky, D. E. Paleoenvironments of early theropods, Chinle Formation (Late Triassic), Petrified Forest National Park, Arizona. Palaios 15, 194–211. https://doi.org/10.1669/0883-1351(2000)015%3c0194:poetcf%3e2.0.co;2 (2000).

    ADS 
    <a data-track="click" rel="nofollow noopener" data-track-label="10.1669/0883-1351(2000)0152.0.co;2″ data-track-action=”article reference” href=”https://doi.org/10.1669%2F0883-1351%282000%29015%3C0194%3Apoetcf%3E2.0.co%3B2″ aria-label=”Article reference 151″>Article 

    Google Scholar 

  • Hoke, G. D., Schmitz, M. D. & Bowring, S. A. An ultrasonic method for isolating nonclay components from clay-rich material. Geochem. Geophys. Geosyst. 15, 492–498. https://doi.org/10.1002/2013GC005125 (2014).

    ADS 
    Article 

    Google Scholar 

  • Ramezani, J. et al. High-precision U-Pb zircon geochronology of the Late Triassic Chinle Formation, Petrified Forest National Park (Arizona, USA): temporal constraints on the early evolution of dinosaurs. Geol. Soc. Am. Bull. 123, 2142–2159. https://doi.org/10.1130/b30433.1 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Widmann, P., Davies, J. H. F. L. & Schaltegger, U. Calibrating chemical abrasion: its effects on zircon crystal structure, chemical composition and U-Pb age. Chem. Geol. 511, 1–10. https://doi.org/10.1016/j.chemgeo.2019.02.026 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Krogh, T. E. Low-contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determinations. Geochim. Cosmochim. Acta 37, 485–494. https://doi.org/10.1016/0016-7037(73)90213-5 (1973).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Gerstenberger, H. & Haase, G. A highly effective emitter substance for mass spectrometric Pb isotope ratio determinations. Chem. Geol. 136, 309–312. https://doi.org/10.1016/S0009-2541(96)00033-2 (1997).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Bowring, J. F., McLean, N. M. & Bowring, S. A. Engineering cyber infrastructure for U-Pb geochronology: Tripoli and U-Pb_Redux. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2010gc003479 (2011).

    Article 

    Google Scholar 

  • McLean, N. M., Bowring, J. F. & Bowring, S. A. An algorithm for U-Pb isotope dilution data reduction and uncertainty propagation. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2010gc003478 (2011).

    Article 

    Google Scholar 

  • Machlus, M. L. et al. A strategy for cross-calibrating U-Pb chronology and astrochronology of sedimentary sequences: an example from the Green River Formation, Wyoming, USA. Earth Planet. Sci. Lett. 413, 70–78. https://doi.org/10.1016/j.epsl.2014.12.009 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Hiess, J., Condon, D. J., McLean, N. & Noble, S. R. 238U/235U systematics in terrestrial uranium-bearing minerals. Science 335, 1610–1614. https://doi.org/10.1126/science.1215507 (2012).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Schoene, B., Crowley, J. L., Condon, D. J., Schmitz, M. D. & Bowring, S. A. Reassessing the uranium decay constants for geochronology using ID-TIMS U-Pb data. Geochim. Cosmochim. Acta 70, 426–445. https://doi.org/10.1016/j.gca.2005.09.007 (2006).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Mattinson, J. M. Analysis of the relative decay constants of 235U and 238U by multi-step CA-TIMS measurements of closed-system natural zircon samples. Chem. Geol. 275, 186–198. https://doi.org/10.1016/j.chemgeo.2010.05.007 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Jaffey, A. H., Flynn, K. F., Glendenin, L. E., Bentley, W. C. & Essling, A. M. Precision measurement of half-lives and specific activities of 235U and 238U. Phys. Rev. C 4, 1889–1906. https://doi.org/10.1103/PhysRevC.4.1889 (1971).

    ADS 
    Article 

    Google Scholar 

  • Nasdala, L. et al. GZ7 and GZ8—two zircon reference materials for SIMS U-Pb geochronology. Geostand. Geoanal. Res. 42, 431–457. https://doi.org/10.1111/ggr.12239 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Haslett, J. & Parnell, A. A simple monotone process with application to radiocarbon-dated depth chronologies. J. R. Stat. Soc. C Appl. Stat. 57, 399–418. https://doi.org/10.1111/j.1467-9876.2008.00623.x (2008).

    MathSciNet 
    Article 
    MATH 

    Google Scholar 

  • Parnell, A. C., Haslett, J., Allen, J. R. M., Buck, C. E. & Huntley, B. A flexible approach to assessing synchroneity of past events using Bayesian reconstructions of sedimentation history. Quat. Sci. Rev. 27, 1872–1885. https://doi.org/10.1016/j.quascirev.2008.07.009 (2008).

    ADS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    The effects of microclimatic winter conditions in urban areas on the risk of establishment for Aedes albopictus

    The relationships between growth rate and mitochondrial metabolism varies over time