Chaudhary, G. & Singh, S. K. Global status of genetically modified crops and its commercialization: environmental issues in logistics and manufacturing. (2019).
Zwahlen, C., Hilbeck, A., Gugerli, P. & Nentwig, W. Degradation of the Cry1Ab protein within transgenic Bacillus thuringiensis corn tissue in the field. Mol. Ecol. 12, 765–775 (2010).
Google Scholar
Kamota, A., Muchaonyerwa, P. & Mnkeni, P. N. S. Decomposition of surface-applied and soil-incorporated Bt maize leaf litter and Cry1Ab protein during winter fallow in South Africa. Pedosphere 24, 251–257 (2014).
Google Scholar
Xue, K., Diaz, B. R. & Thies, J. E. Stability of Cry3Bb1 protein in soils and its degradation in transgenic corn residues. Soil Biol. Biochem. 76, 119–126 (2014).
Google Scholar
Griffiths, N. A. et al. Occurrence, leaching, and degradation of Cry1Ab protein from transgenic maize detritus in agricultural streams. Sci. Total Environ. 592, 97–105 (2017).
Google Scholar
Wang, B. F., Yin, J. Q., Wu, F. C., Jiang, Z. L. & Song, X. Y. Field decomposition of Bt-506 maize leaves and its effect on Collembola in the black soil region of Northeast China. Glob. Ecol. Conserv. https://doi.org/10.1016/j.gecco.2021.e01480 (2021).
Google Scholar
Shu, Y. H., Zhang, Y. Y., Zeng, H., Zhang, Y. H. & Wang, J. W. Effects of Cry1Ab Bt maize straw return on bacterial community of earthworm Eisenia Fetida. Chemosphere 173, 1–13 (2017).
Google Scholar
Čerevková, A., Miklisová, D., Szoboszlay, M. S., Tebbe, C. C. & Cagáň, L. The responses of soil nematode communities to Bt maize cultivation at four field sites across Europe. Soil Biol. Biochem. 119, 194–202 (2018).
Google Scholar
Liu, T. et al. Root and detritus of transgenic Bt crop did not change nematode abundance and community composition but enhanced trophic connections. Sci. Total Environ. 644, 822–829 (2018).
Google Scholar
Domínguez, M. T., Holthof, E., Smith, A. R., Koller, E. & Emmett, B. A. Contrasting response of summer soil respiration and enzyme activities to long-term warming and drought in a wet shrubland (NE Wales, UK). Appl. Soil Ecol. 110, 151–155 (2016).
Google Scholar
Zhang, Q. F. et al. Are the combined effects of warming and drought on foliar C:N:P:K stoichiometry in a subtropical forest greater than their individual effects?. Forest Ecol. Manag. 448, 256–266 (2019).
Google Scholar
Chen, Q., Niu, B., Hu, Y., Luo, T. & Zhang, G. Warming and increased precipitation indirectly affect the composition and turnover of labile-fraction soil organic matter by directly affecting vegetation and microorganisms. Sci. Total Environ. 714, 136787.1-136787.9 (2020).
Dai, A. Drought under global warming: A review. Wiley Interdiscip. Rev. Clim. Change 2, 45–65 (2011).
Google Scholar
Martin, J. T., Pederson, G. T., Woodhouse, C. A., Cook, E. R. & King, J. Increased drought severity tracks warming in the United States’ largest river basin. Proc. Natl. Acad. Sci. USA 117, 201916208 (2020).
Ma, S., Zhu, C. & Liu, J. Combined impacts of warm central equatorial pacific sea surface temperatures and anthropogenic warming on the 2019 severe drought in east China. Adv. Atmos. Sci. 37, 1149–1163 (2020).
Google Scholar
Peñuelas, J. et al. Nonintrusive field experiments show different plant responses to warming and drought among sites, seasons, and species in a north–south European gradient. Ecosystems 7, 598–612 (2004).
Google Scholar
Sardans, J., Peñuelas, J. & Estiarte, M. Warming and drought alter soil phosphatase activity and soil P availability in a Mediterranean shrubland. Plant Soil 289, 227–238 (2006).
Google Scholar
Viciedo, D. O., Prado, R., Martinez, C. A., Habermann, H. & Piccolo, M. Short-term warming and water stress affect Panicum maximum Jacq. stoichiometric homeostasis and biomass production. Sci. Total Environ. 681, 267–274 (2019).
Google Scholar
Meeran, K. et al. Warming and elevated CO2 intensify drought and recovery responses of grassland carbon allocation to soil respiration. Glob. Change Biol. 27, 3230–3243 (2021).
Google Scholar
Lang, B., Rall, B. C., Scheu, S. & Brose, U. Effects of environmental warming and drought on size-structured soil food webs. Oikos 123, 1224–1233 (2014).
Google Scholar
Pold, G., Melillo, J. M. & Deangelis, K. M. Two decades of warming increases diversity of a potentially lignolytic bacterial community. Front. Microbiol. 6, 480 (2010).
Séneca, J. et al. Composition and activity of nitrifier communities in soil are unresponsive to elevated temperature and CO2, but strongly affected by drought. ISME J. 14, 1–16 (2020).
Google Scholar
Santos, A. et al. Water stress alters lignin content and related gene expression in two sugarcane genotypes. J. Agric. Food Chem. 63, 4708 (2015).
Google Scholar
Albert, K. R. et al. Effects of elevated CO2, warming and drought episodes on plant carbon uptake in a temperate heath ecosystem are controlled by soil water status. Plant Cell Environ. 34, 1207–1222 (2011).
Google Scholar
Peñuelas, J. et al. Nonintrusive field experiments show different plant responses to warming and drought among sites, seasons, and species in a north-south European gradient. Ecosystems 7, 598–612 (2004).
Google Scholar
Zhu, E., Cao, Z., Jia, J., Liu, C. & Feng, X. Inactive and inefficient: Warming and drought effect on microbial carbon processing in alpine grassland at depth. Glob. Change Biol. https://doi.org/10.1111/gcb.15541 (2021).
Google Scholar
Sardans, J., Peñuelas, J. & Estiarte, M. Changes in soil enzymes related to C and N cycle and in soil C and N content under prolonged warming and drought in a Mediterranean shrubland. Appl. Soil Ecol. 39, 223–235 (2008).
Google Scholar
Xu, G. L. et al. Seasonal exposure to drought and air warming affects soil Collembola and Mites. PLoS ONE 7, e43102 (2012).
Google Scholar
Chang, L. et al. Warming limits daytime but not nighttime activity of epigeic microarthropods in Songnen grasslands. Appl. Soil Ecol. 141, 79–83 (2019).
Google Scholar
Dai, A. G., Trenberth, K. E. & Qian, T. T. A global dataset of palmer drought severity index for 1870–2002: Relationship with soil moisture and effects of surface warming. J. Hydrometeorol. 5, 1117–1130 (2004).
Google Scholar
Bongaarts, J. Intergovernmental panel on climate change special report on global warming of 1.5 °C Switzerland: IPCC, 2018. Popul. Dev. Rev. 45, 251–252 (2019).
Google Scholar
Bellinger, P.F., Christiansen, K. A. & Janssens, F. Checklist of the Collembola of the World. 1996–2019. http://www.collembola.org (Accessed 10 Sept 2021).
Hopkin, S. P. Biology of the Springtails (Insecta:Collembola) 1–330 (Oxford University Press, 1997).
Rusek, J. Biodiversity of Collembola and their functional role in the ecosystem. Biodivers. Conserv. 7, 1207–1219 (1998).
Google Scholar
Filser, J. The role of Collembola in carbon and nitrogen cycling in soil. Pedobiologia 46, 234–245 (2002).
Endlweber, K. & Scheu, S. Effects of Collembola on root properties of two competing ruderal plant species. Soil Biol. Biochem. 38, 2025–2031 (2006).
Google Scholar
Rebek, E. J., Hogg, D. B. & Young, D. K. Effect of four cropping systems on the abundance and diversity of epedaphic Springtails (Hexapoda: Parainsecta: Collembola) in southern Wisconsin. Environ. Entomol. 31, 37–46 (2002).
Google Scholar
Santorufo, L. et al. An assessment of the influence of the urban environment on collembolan communities in soils using taxonomy- and trait-based approaches. Appl. Soil Ecol. 78, 48–56 (2014).
Google Scholar
Rossetti, I. et al. Isolated cork oak trees affect soil properties and biodiversity in a Mediterranean wooded grassland. Agric. Ecosyst. Environ. 202, 203–216 (2015).
Google Scholar
Hönemann, L., Zurbrügg, C. & Nentwig, W. Effects of Bt-corn decomposition on the composition of the soil meso- and macrofauna. Appl. Soil Ecol. 40, 203–209 (2008).
Google Scholar
Arias-Martín, M. et al. Effects of three-year cultivation of Cry1Ab-expressing Bt maize on soil microarthropod communities. Agric. Ecosyst. Environ. 220, 125–134 (2016).
Google Scholar
Song, X. Y. et al. Use of taxonomic and trait-based approaches to evaluate the effects of transgenic Cry1Ac corn on the community characteristics of soil Collembola. Environ. Entomol. 48, 263–269 (2019).
Google Scholar
Thibaud, J. M. Intermue ettemperatures lethales chez les insects collemboles arthropleones. II.—Isotomidae, Entomobryidae et Tomoceridae. Rev. Ecol. Biol. Sol. 14, 267–278 (1977).
Eisenbeis, G. & Wichard, W. Atlas on the Biology of Soil Arthropods 200–228 (Springer, 1987).
Google Scholar
Wang, B. F., Wu, F. C., Yin, J. Q., Jiang, Z. L. & Song, X. Y. Use of taxonomic and trait-based approaches to evaluate the effect of Bt maize expressing cry1Ie protein on non-target Collembola: A case study in Northeast China. Insects. https://doi.org/10.3390/insects12020088 (2021).
Google Scholar
Chang, L., Song, X. Y., Wang, B. F., Wu, D. H. & Reddy, G. Effect of Bt corn (Bt 38) cultivation on community structure of Collembola. Ann. Entomol. Soc. Am. 113, 1–5 (2020).
Google Scholar
Al-Deeb, M., Wilde, G. E., Blair, J. M. & Todd, T. C. Effect of Bt corn for corn rootworm control on nontarget soil microarthropods and nematodes. Environ. Entomol. 32, 859–865 (2003).
Google Scholar
Bitzer, R. J., Rice, M. E., Pilcher, C. D., Pilcher, C. L. & Lam, W. F. Biodiversity and community structure of epedaphic and euedaphic springtails (Collembola) in transgenic rootworm Bt maize. Environ. Entomol. 34, 1346–1376 (2005).
Google Scholar
Yang, Y. et al. Toxicological and biochemical analyses demonstrate no toxic effect of Cry1C and Cry2A to Folsomia candida. Sci. Rep. 5, 15619 (2015).
Google Scholar
Jiang, Z., Zhou, L., Wang, B. F., Wang, D. M. & Song, X. Y. Toxicological and biochemical analyses demonstrate no toxic effect of Bt maize on the Folsomia candida. PLoS ONE 15, e0232747 (2020).
Google Scholar
Frouz, J., Elhottová, D., Helingerová, M. & Kocourek, F. The effect of bt corn on soil invertebrates, soil microbial community and decomposition rates of corn post-harvest residues under field and laboratory conditions. J. Sustain. Agric. 32, 645–655 (2008).
Google Scholar
Daghighi, E., Filser, J., Koehler, H. & Kesel, R. Long-term succession of Collembola communities in relation to climate change and vegetation. Pedobiologia 64, 25–38 (2017).
Google Scholar
Chang, L. et al. Green more than brown food resources drive the effect of simulated climate change on Collembola: A soil transplantation experiment in Northeast China. Geoderma 392, 115008 (2021).
Google Scholar
Convey, P., Block, W. & Peat, H. J. Soil arthropods as indicators of water stress in Antarctic terrestrial habitats. Glob. Change Biol. 9, 1718–1730 (2003).
Google Scholar
Alvarez, T., Frampton, G. K. & Goulson, D. The effects of drought upon epigeal Collembola from arable soils. Agric. For. Entomol. 1, 243–248 (2015).
Google Scholar
Fountain, M. T. & Hopkin, S. P. Folsomia candida (collembola): A “standard” soil arthropod. Annu. Rev. Entomol. 50, 201–222 (2005).
Google Scholar
Holmstrup, M. Water relations and drought sensitivity of Folsomia candida eggs (Collembola: Isotomidae). Eur. J. Entomol. 116, 229–234 (2019).
Google Scholar
Meehan, M. L., Barreto, C., Turnbull, M. S., Bradley, R. L. & Lindo, Z. Response of soil fauna to simulated global change factors depends on ambient climate conditions. Pedobiologia 83, 150672 (2020).
Google Scholar
Harte, J., Rawa, A. & Price, V. Effects of manipulated soil microclimate on mesofaunal biomass and diversity. Soil Biol. Biochem. 28, 313–322 (1996).
Google Scholar
Lindberg, N. Soil fauna and global change: responses to experimental drought, irrigation, fertilisation and soil warming. Acta Universitatis Agriculturae Sueciae Silvestria 37, + Papers I-IV (2003).
Bokhorst, S. et al. Extreme winter warming events more negatively impact small rather than large soil fauna: shift in community composition explained by traits not taxa. Global Change Biolo. 18, 1152–1162 (2012).
Macfadyen, A. Improved funnel-type extractors for soil arthropods. J. Anim. Ecol. 30, 171–184 (1961).
Google Scholar
Christiansen, K. A. & Bellinge, P. F. The Collembola of North America, North of the Rio Grande: A Taxonomic Analysis 2nd edn. (Grinnell College, 1998).
Fjellberg, A. The Collembola of Fennoscandia and Denmark. Part II: Entomobryomorpha and Symphypleona. In Fauna Entomologica Scandinavica, Vol. 42, 1−264 (Koninklijke Brill, 2007).
Potapov, M. Synopses on Palaearctic Collembola: Isotomidae. Abhandlungen und Berichte des Naturkundemuseums, Görlitz, Poland 73, 1–603 (2001).
Yin, W. Y. Pictorial Keys to Soil Animals of China. 282−292, 592−600 (Science Press, 1998).
Grime, J. P. Benefits of plant diversity to ecosystems: Immediate, filter and founder effects. J. Ecol. 86, 902–910 (1998).
Google Scholar
Cerabolini, B., Pierce, S., Luzzaro, A. & Ossola, A. Species evenness affects ecosystem processes in situ via diversity in the adaptive strategies of dominant species. Plant Ecol. 207, 333–345 (2010).
Google Scholar
Source: Ecology - nature.com