in

Coupling genetic structure analysis and ecological-niche modeling in Kersting’s groundnut in West Africa

  • Mabhaudhi, T. et al. Prospects of orphan crops in climate change. Planta 250, 695–708. https://doi.org/10.1007/s00425-019-03129-y (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Singh, M., Bisht, I. S., Dutta, M., Springer. India, 221. https://doi.org/10.1007/978-81-322-2023-7(2014).

  • Litrico, I. & Violle, C. Diversity in plant breeding: A new conceptual framework. Trends Plant Sci. 20, 604–613. https://doi.org/10.1016/j.tplants.2015.07.007 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Govindaraj, M., Vetriventhan, M. & Srinivasan, M. Importance of genetic diversity assessment in crop plants and its recent advances: An overview of its analytical perspectives. Genet. Res. Intern. 431–487, 2015. https://doi.org/10.1155/2015/431487 (2015).

    Article 

    Google Scholar 

  • Akohoué, F., Sibiya, J. & Achigan-Dako, E. G. On-farm practices, mapping, and uses of genetic resources of Kersting’s groundnut [Macrotyloma geocarpum (Harms) Maréchal et Baudet] across ecological zones in Benin and Togo. Genet. Resour. Crop. Evol. 66, 195–214. https://doi.org/10.1007/s10722-018-0705-7 (2018).

    CAS 
    Article 

    Google Scholar 

  • Assogba, P. et al. Indigenous knowledge and agro-morphological evaluation of the minor crop Kersting’s groundnut [Macrotyloma geocarpum (Harms) Maréchal et Baudet] cultivars of Benin. Genet. Resour. Crop. Evol. 63, 513–529. https://doi.org/10.1007/s10722-015-0268-9 (2015).

    Article 

    Google Scholar 

  • Adu-Gyamfi, R., Fearon, J., Bayorbor, T. B., Dzomeku, I. K. & Avornyo, V. K. The Status of Kersting’s groundnut [Macrotyloma geocarpum (Harms) Marechal and Baudet]. Outlook Agric. 40, 259–262. https://doi.org/10.5367/oa.2011.0050 (2011).

    Article 

    Google Scholar 

  • Obasi, M. O. & Agbatse, A. Evaluation of nutritive value and some functional properties of Kersting’s groundnut seeds for optimum utilisation as a food and feed resource. E. Afr. Agric. For. J. 68, 173–181. https://doi.org/10.4314/eaafj.v68i4.1794 (2003).

    Article 

    Google Scholar 

  • Ajayi, O. B. & Oyetayo, F. L. Potentials of Kerstingiella geocarpa as a health food. J. Med. Food 12, 184–187. https://doi.org/10.1089/jmf.2008.0100 (2009).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Mohammed, M., Jaiswal, S. K., Sowley, E. N. K., Ahiabor, B. D. K. & Dakora, F. D. Symbiotic N2 fixation and grain yield of endangered Kersting’s groundnut landraces in response to soil and plant associated bradyrhizobium inoculation to promote ecological resource-use efficiency. Front. Microbiol. 9, 1–14. https://doi.org/10.3389/fmicb.2018.02105 (2018).

    CAS 
    Article 

    Google Scholar 

  • Tamini, Z. Étude ethnobotanique de la Lentille de Terre [Macrotyloma geocarpum Maréchal & Baudet] au Burkina Faso. J. Agric. Trad. Bot. Appl. 37, 187–199. https://doi.org/10.3406/jatba.1995.3569 (1995).

    Article 

    Google Scholar 

  • Coulibaly, M., Agossou, C. O. A., Akohoué, F., Sawadogo, M. & Achigan-Dako, E. G. Farmers’ preferences for genetic resources of Kersting’s groundnut [Macrotyloma geocarpum (Harms) Maréchal and Baudet] in the production systems of Burkina Faso and Ghana. Agronomy 10, 1–20. https://doi.org/10.3390/agronomy10030371 (2020).

    CAS 
    Article 

    Google Scholar 

  • AchiganDako, E. G. & Vodouhe, S. R. Macrotyloma geocarpum (Harms) Marechal & Baudet. In Plant Resources of Tropical Africa 1: Cereals and Pulses (ed. Brink, M. B. G.) 111–114 (Backhuys Publishers CTA, PROTA, 2006).

    Google Scholar 

  • Mergeai, G. Influence des facteurs sociologiques sur la conservation des ressources phytogenetiques: Le cas de la lentille de terre [Macrotyloma geocarpum (Harms) Marechal et Baudet] au Togo. Bull Rech Agron 28, 487–500 (1993).

    Google Scholar 

  • Long, S. P., Marshall-Colon, A. & Zhu, X. G. Meeting the global food demand of the future by engineering crop photosynthesis and yield potential. Cell 161, 56–66. https://doi.org/10.1016/j.cell.2015.03.019 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Akohoue, F., Achigan-Dako, E. G., Sneller, C., Van Deynze, A. & Sibiya, J. Genetic diversity, SNP-trait associations and genomic selection accuracy in a west African collection of Kersting’s groundnut [Macrotyloma geocarpum (Harms) Marechal & Baudet]. PLoS ONE 15, 1–24. https://doi.org/10.1371/journal.pone.0234769 (2020).

    CAS 
    Article 

    Google Scholar 

  • Schierenbeck, K. A. Population-level genetic variation and climate change in a biodiversity hotspot. Ann. Bot. 119, 215–228. https://doi.org/10.1093/aob/mcw214 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Araújo, M. B., Whittaker, R. J., Ladle, R. J. & Erhard, M. Reducing uncertainty in projections of extinction risk from climate change. Glob. Ecol. Biogeogr. 14, 529–538. https://doi.org/10.1111/j.1466-822X.2005.00182.x (2005).

    Article 

    Google Scholar 

  • Araujo, M. B. & Peterson, A. T. Uses and misuses of bioclimatic envelope modeling. Ecology 93, 1527–1539. https://doi.org/10.1890/11-1930.1 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Martínez-Meyer, E. Climate change and biodiversity: Some considerations in forecasting shifts in species’ potential distributions. Biodiv. Inform. 2, 42–55. https://doi.org/10.17161/bi.v2i0.8 (2005).

    Article 

    Google Scholar 

  • Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151 (2006).

    Article 

    Google Scholar 

  • Pironon, S. et al. Potential adaptive strategies for 29 sub-Saharan crops under future climate change. Nat. Clim. Chang. 9, 758–763. https://doi.org/10.1038/s41558-019-0585-7 (2019).

    ADS 
    Article 

    Google Scholar 

  • Ramirez-Cabral, N. Y. Z., Kumar, L. & Taylor, S. Crop niche modeling projects major shifts in common bean growing areas. Agric. For. Meteor. 218–219, 102–113. https://doi.org/10.1016/j.agrformet.2015.12.002 (2016).

    Article 

    Google Scholar 

  • Syfert, M. M. et al. Crop wild relatives of the brinjal eggplant (Solanum melongena): Poorly represented in genebanks and many species at risk of extinction. Am. J. Bot. 103, 1–17. https://doi.org/10.3732/ajb.1500539 (2016).

    CAS 
    Article 

    Google Scholar 

  • Blonder, B. Hypervolume concepts in niche- and trait-based ecology. Ecography 41, 1441–1455. https://doi.org/10.1111/ecog.03187 (2018).

    Article 

    Google Scholar 

  • Hampe, A. & Petit, R. J. Conserving biodiversity under climate change: The rear edge matters. Ecol. Lett. 8, 461–467. https://doi.org/10.1111/j.1461-0248.2005.00739.x (2005).

    Article 
    PubMed 

    Google Scholar 

  • Leimu, R. & Fischer, M. A meta-analysis of local adaptation in plants. PLoS ONE 3, 1–8. https://doi.org/10.1371/journal.pone.0004010 (2008).

    CAS 
    Article 

    Google Scholar 

  • Hereford, J. A quantitative survey of local adaptation and fitness trade-offs. Am. Naturalist. 173, 579–588. https://doi.org/10.1086/597611 (2009).

    Article 

    Google Scholar 

  • Shaw, R. G. & Etterson, J. R. Rapid climate change and the rate of adaptation: Insight from experimental quantitative genetics. New Phytol. 195, 752–765. https://doi.org/10.1111/j.1469-8137.2012.04230.x (2012).

    Article 
    PubMed 

    Google Scholar 

  • Gotelli, N. J. & Stanton-Geddes, J. Climate change, genetic markers and species distribution modelling. J. Biogeogr. 42, 1577–1585. https://doi.org/10.1111/jbi.12562 (2015).

    Article 

    Google Scholar 

  • Ikeda, D. H. et al. Genetically informed ecological niche models improve climate change predictions. Glob. Change Biol. 23, 164–176. https://doi.org/10.1111/gcb.13470 (2016).

    ADS 
    Article 

    Google Scholar 

  • Alvarado-Serrano, D. F. & Knowles, L. L. Ecological niche models in phylogeographic studies: Applications, advances and precautions. Mol. Ecol. Resour. 14, 233–248. https://doi.org/10.1111/1755-0998.12184 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Thoen, M. P. et al. Genetic architecture of plant stress resistance: Multi-trait genome-wide association mapping. New Phytol. 213, 1346–1362. https://doi.org/10.1111/nph.14220 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Kafoutchoni, K. M., Agoyi, E. E., Agbahoungba, S., Assogbadjo, A. E. & Agbangla, C. Genetic diversity and population structure in a regional collection of Kersting’s groundnut [Macrotyloma geocarpum (Harms) Maréchal & Baudet]. Genet. Resour. Crop. Evol. https://doi.org/10.1007/s10722-021-01187-4 (2021).

    Article 

    Google Scholar 

  • Brown, J. L. & Carnaval, A. C. A tale of two niches: Methods, concepts, and evolution. Front. Biogeogr. https://doi.org/10.21425/f5fbg44158 (2019).

    Article 

    Google Scholar 

  • Marcer, A., Mendez-Vigo, B., Alonso-Blanco, C. & Pico, F. X. Tackling intraspecific genetic structure in distribution models better reflects species geographical range. Ecol. Evol. 6, 2084–2097. https://doi.org/10.1002/ece3.2010 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Oney, B., Reineking, B., O’Neill, G. & Kreyling, J. Intraspecific variation buffers projected climate change impacts on Pinus contorta. Ecol. Evol. 3, 437–449. https://doi.org/10.1002/ece3.426 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tamini, Z. Etude ethnobotanique et analyses morphophysiologiques du développement de la lentille de terre [Macrotyloma geocarpum (harms) Maréchal et Baudet] (Université de Ouagadougou, 1997).

    Google Scholar 

  • Yohannes, H. A review on relationship between climate change and agriculture. J. Earth Sci. Clim. Change 7, 1–8. https://doi.org/10.4172/2157-7617.1000335 (2015).

    Article 

    Google Scholar 

  • Sileshi, G. et al. Variation in maize yield gaps with plant nutrient inputs, soil type and climate across sub-Saharan Africa. Field Crops Res. 116, 1–13. https://doi.org/10.1016/j.fcr.2009.11.014 (2010).

    Article 

    Google Scholar 

  • Padi, F. K. & Ehlers, J. D. Effectiveness of early generation selection in cowpea for grain yield and agronomic characteristics in Semiarid West Africa. Crop Sci. 48, 533–540. https://doi.org/10.2135/cropsci2007.05.0265 (2008).

    Article 

    Google Scholar 

  • Kouelo, K. A. F. et al. Impact du travail du sol et de la fertilisation minérale sur la productivité de [Macrotyloma geocarpum (Harms) Maréchal et Baudet] au centre du Bénin. J. Appl. Biosci. 51, 3625–3632 (2012).

    Google Scholar 

  • Wellenreuther, M., Larson, K. W. & Svensson, E. I. Climatic niche divergence or conservatism? Environmental niches and range limits in ecologically similar damselflie. Ecology 93, 1353–1366. https://doi.org/10.1890/11-1181.1 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Akohoue, F., Achigan-Dako, E. G., Coulibaly, M. & Sibiya, J. Correlations, path coefficient analysis and phenotypic diversity of a West African germplasm of Kersting’s groundnut [Macrotyloma geocarpum (Harms) Maréchal & Baudet]. Genet. Resour. Crop Evol. 66, 1825–1842. https://doi.org/10.1007/s10722-019-00839-w (2019).

    Article 

    Google Scholar 

  • Assogba, P. et al. Indigenous knowledge and agro-morphological evaluation of the minor crop Kersting’s groundnut [Macrotyloma geocarpum (Harms) Maréchal et Baudet] cultivars of Benin. Genet. Resour. Crop Evol. 63, 513–529. https://doi.org/10.1007/s10722-015-0268-9 (2015).

    Article 

    Google Scholar 

  • Adu-Gyamfi, R., Dzomeku, I. K. & Lardi, J. Evaluation of growth and yield potential of genotypes of Kersting’s groundnut (Macrotyloma geocarpum Harms) in Northern Ghana. Int. Res. J. Agric. Sci. Soil Sci. 2, 509–515 (2012).

    Google Scholar 

  • Burke, M. B., Lobell, D. B. & Guarino, L. Shifts in African crop climates by 2050, and the implications for crop improvement and genetic resources conservation. Glob. Environ. Change 19, 317–325. https://doi.org/10.1016/j.gloenvcha.2009.04.003 (2009).

    Article 

    Google Scholar 

  • Ramirez-Cabral, N. Y. Z., Kumar, L. & Shabani, F. Global alterations in areas of suitability for maize production from climate change and using a mechanistic species distribution model (CLIMEX). Sci. Rep. 7, 1–13. https://doi.org/10.1038/s41598-017-05804-0 (2017).

    CAS 
    Article 

    Google Scholar 

  • Hancock, A. M. et al. Adaptation to climate across the Arabidopsis thaliana genome. Science 334, 83–86. https://doi.org/10.1126/science.1209244 (2011).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Bellon, M. R. & van Etten, J. Climate change and on-farm conservation of crop landraces in centres of diversity. In Plant Genetic Resources and Climate Change Vol. 30 (eds Jackson, M. et al.) (CAB International, 2014).

    Google Scholar 

  • Lane, A. & Jarvis, A. Changes in climate will modify the geography of crop suitability: Agricultural biodiversity can help with adaptation. ISI J 4, 12 (2007).

    Google Scholar 

  • Vigouroux, Y., Barnaud, A., Scarcelli, N. & Thuillet, A. C. Biodiversity, evolution and adaptation of cultivated crops. C.R. Biol. 334, 450–457. https://doi.org/10.1016/j.crvi.2011.03.003 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Coulibaly, M., Agossou, C. O. A., Akohoué, F., Sawadogo, M. & Achigan-Dako, E. G. Farmers’ preferences for genetic resources of Kersting’s groundnut [Macrotyloma geocarpum (Harms) Maréchal and Baudet] in the production systems of Burkina Faso and Ghana. Agronomy 10, 371. https://doi.org/10.3390/agronomy10030371 (2020).

    CAS 
    Article 

    Google Scholar 

  • Sohn, N., Fernandez, M. H., Papes, M. & Anciães, M. Ecological Niche modeling in practice: Flagship species and regional conservation planning. Oecol. Aust. 17, 429–440. https://doi.org/10.4257/oeco.2013.1703.11 (2013).

    Article 

    Google Scholar 

  • Amujoyegbe, B., Obisesan, I., Ajayi, A. & Aderanti, F. Disappearance of Kersting’s groundnut [Macrotyloma geocarpum (harms) Maréchal et Baudet] in South-Western Nigeria: An indicator of genetic erosion. Plant Gen Res News 152, 45–50 (2007).

    Google Scholar 

  • Banta, J. A. et al. Climate envelope modelling reveals intraspecific relationships among flowering phenology, niche breadth and potential range size in Arabidopsis thaliana. Ecol. Lett. 15, 769–777. https://doi.org/10.1111/j.1461-0248.2012.01796.x (2012).

    Article 
    PubMed 

    Google Scholar 

  • Kumar, J., Choudhary, A. K., Gupta, D. S. & Kumar, S. Towards exploitation of adaptive traits for climate-resilient smart pulses. Int. J. Mol. Sci. 20, 1–30. https://doi.org/10.3390/ijms20122971 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Bohra, A., Mir, R. R., Jha, R., Maurya, A. K. & Varshney, R. K. Advances in genomics and molecular breeding for legume improvement. In Advancement in Crop Improvement Techniques (eds Bohra, A. et al.) 129–139 (Elsevier Inc, 2020).

    Chapter 

    Google Scholar 

  • Gobu, R. et al. Accelerated crop breeding towards development of climate resilient varieties. In Climate Change and Indian Agriculture: Challenges and Adaptation Strategies (eds Srinivasarao, C. et al.) 49–69 (ICAR-National Academy of Agricultural Research Management, 2020).

    Google Scholar 

  • Aliyu, S., Massawe, F. & Mayes, S. Genetic diversity and population structure of Bambara groundnut [Vigna subterranea (L.) Verdc.]: Synopsis of the past two decades of analysis and implications for crop improvement programmes. Genet. Resour. Crop. Evol. 63, 925–943. https://doi.org/10.1007/s10722-016-0406-z (2016).

    Article 

    Google Scholar 

  • Al-Khayri, J. M., Jain, S. M., Johnson, D. V. Springer Nature Switzerland AG. Switzerland. https://doi.org/10.1007/978-3-030-23400-3(2019).

  • Kilian, A. et al. Diversity arrays technology: a generic genome profiling technology on open platforms. Methods Mol. Biol. 888, 67–89. https://doi.org/10.1007/978-1-61779-870-2_5 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Illumina, I. HiSeq®2500 Sequencing System: Unsurpassed power and efficiency for production scale sequencing. System Specification Sheet: Sequencing, 1–4. https://www.illumina.com/documents/products/datasheets/datasheet_hiseq2500.pdf (2015).

  • Buckler, E. et al. User Manual for TASSEL Trait Analysis by association, Evolution and Linkage Version 5.0. The Buckler Lab at Cornell University. 1–70. https://www.maizegenetics.net/tassel (2014).

  • Pritchard, J. K., Wen, X., Falush, D. Department of Human Genetics, University of Chicago. (2010).

  • Francis, R. M. pophelper: An R package and web app to analyse and visualize population structure. Mol. Ecol. Resour. 17, 27–32. https://doi.org/10.1111/1755-0998.12509 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software structure: A simulation study. Mol. Ecol. 14, 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x (2005).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Jombart, T. & Ahmed, I. adegenet version 1.3-1: New tools for the analysis of genome-wide SNP data. Bioinformatics https://doi.org/10.1093/bioinformatics/btr521 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Boria, R. A., Olson, L. E., Goodman, S. M. & Anderson, R. P. Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol. Model 275, 73–77. https://doi.org/10.1016/j.ecolmodel.2013.12.012 (2014).

    Article 

    Google Scholar 

  • Peterson, A. T. et al. NicheBook (Princeton University Press, 2011).

    Google Scholar 

  • Kass, J. M., Pinilla-Buitrago, G. E., Vilela, B., Aiello-Lammens, M. E., Muscarella, R., Merow, C., Anderson, R. P., Wallace: A Modular Platform for Reproducible Modeling of Species Niches and Distributions. R package version 1.0.6.3. (2020).

  • Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B. & Anderson, R. P. spThin: An R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38, 541–545 (2015).

    Article 

    Google Scholar 

  • Platts, P. J., Omeny, P. A. & Marchant, R. AFRICLIM: High-resolution climate projections for ecological applications in Africa. Afr. J. Ecol. 53, 103–108 (2014).

    Article 

    Google Scholar 

  • Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Change 109, 213–241. https://doi.org/10.1007/s10584-011-0156-z (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • IPCC, I. P. o. C. C. Cambridge University Press. https://doi.org/10.1017/CBO9781107415324(2013).

  • Ramirez-Villegas, J. & Jarvis, A. Downscaling global circulation model outputs: The delta method decision and policy analysis, Working Paper No. 1. Policy Anal. Manag. 1, 1–18 (2010).

    Google Scholar 

  • Hengl, T. et al. Mapping soil properties of Africa at 250 m resolution: Random forests significantly improve current predictions. PLoS ONE 10, 1–26. https://doi.org/10.1371/journal.pone.0125814 (2015).

    CAS 
    Article 

    Google Scholar 

  • Osorio-Olvera, L. et al. ntbox: An R package with graphical user interface for modeling and evaluating multidimensional ecological niches Methods. Ecol. Evol. 11, 1199–1206. https://doi.org/10.1111/2041-210X.13452 (2020).

    Article 

    Google Scholar 

  • Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum Entropy modeling of species geographic distributions. Ecol. Model 190, 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026 (2005).

    Article 

    Google Scholar 

  • Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Diversity Distrib. 17, 43–57. https://doi.org/10.1111/j.1472-4642.2010.00725.x (2010).

    Article 

    Google Scholar 

  • Richards, C. L., Carstens, B. C. & Lacey Knowles, L. Distribution modelling and statistical phylogeography: An integrative framework for generating and testing alternative biogeographical hypotheses. J. Biogeogr. 34, 1833–1845. https://doi.org/10.1111/j.1365-2699.2007.01814.x (2007).

    Article 

    Google Scholar 

  • Phillips, S. J. & Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 31, 161–175. https://doi.org/10.1111/j.2007.0906-7590.05203.x (2008).

    Article 

    Google Scholar 

  • Merow, C., Smith, M. J. & Silander, J. A. A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography 36, 1058–1069. https://doi.org/10.1111/j.1600-0587.2013.07872.x (2013).

    Article 

    Google Scholar 

  • Phillips, S. J. et al. Sample selection bias and presence-only distribution models: Implications for background and pseudo-absence data. Ecol. Appl. 19, 181–197 (2009).

    Article 

    Google Scholar 

  • Barve, N., Barve, V. ENMGadgets: Pre and post processing in ENM Workflow. R package version 0.1.0.1. (2019).

  • Kass, J. M. et al. ENMeval 20: Redesigned for customizable and reproducible modeling of species’ niches and distributions. Ecol. Evolut. https://doi.org/10.1111/2041-210X.13628 (2021).

    Article 

    Google Scholar 

  • Warren, D. L. & Seifert, S. N. Ecological niche modeling in Maxent: The importance of model complexity and the performance of model selection criteria. Ecol. Appl. 21, 335–342. https://doi.org/10.1890/10-1171.1 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Warren, D. L., Glor, R. E. & Turelli, M. Environmental Niche equivalency versus conservatism: Quantitative approaches to Niche evolution. Evolution 62, 2868–2883. https://doi.org/10.1111/j.1558-5646.2008.00482.x (2008).

    Article 
    PubMed 

    Google Scholar 

  • Broennimann, O. et al. Measuring ecological niche overlap from occurrence and spatial environmental data. Glob. Ecol. Biogeogr. 21, 481–497. https://doi.org/10.1111/j.1466-8238.2011.00698.x (2012).

    Article 

    Google Scholar 

  • Benhamou, S. & Cornélis, D. Incorporating movement behavior and barriers to improve kernel home range space use estimates. J. Wildl. Manag. 74, 1353–1360. https://doi.org/10.2193/2009-441 (2010).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Black Kites on a flyway between Western Siberia and the Indian Subcontinent

    Chemical reactions for the energy transition