in

Effects of salinization on the occurrence of a long-lived vertebrate in a desert river

  • Yuan, F. & Miyamoto, S. Dominant processes controlling water chemistry of the Pecos River in American Southwest. Geophys. Res. Lett. 32(17), L17406. https://doi.org/10.1029/2005GL023359 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Yuan, F., Miyamoto, S. & Anand, S. Changes in major element hydrochemistry of the Pecos River in the American Southwest since 1935. Appl. Geochem. 22(8), 1798–1813. https://doi.org/10.1016/j.apgeochem.2007.03.036 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Harley, G. L. & Maxwell, J. T. Current declines of Pecos River (New Mexico, USA) streamflow in a 700-year context. Holocene 28(5), 766–777. https://doi.org/10.1177/0959683617744263 (2018).

    ADS 
    Article 

    Google Scholar 

  • Jensen, R., Hatler, W., Mecke, M. & Hart, C. The Influences of Human Activities on the Water of the Pecos River Basin of Texas: A Brief Overview. Technical Report. SR-2006-03. Texas Water Resources Institute (2006).

  • Hoagstrom, C. W. Causes and impacts of salinization in the lower Pecos River. Gt. Plains Res. 19(1), 27–44 (2009).

    Google Scholar 

  • Williams, A. P., Cook, B. I. & Smerdon, J. E. Rapid intensification of the emerging North American megadrought in 2020–2021. Nat. Clim. Change 12(3), 232–234. https://doi.org/10.1038/s41558-022-01290-z (2022).

    ADS 
    Article 

    Google Scholar 

  • Cheek, C. A. & Taylor, C. M. Salinity and geomorphology drive long-term changes to local and regional fish assemblage attributes in the lower Pecos River, Texas. Ecol. Freshw. Fish 25(3), 340–351. https://doi.org/10.1111/eff.12214 (2015).

    Article 

    Google Scholar 

  • Pease, A. A. & Delaune, K. D. Dried and salted: cumulative impacts of diminished flows and salinization on the lower Pecos River food webs. In Proceedings of the Desert Fishes Council Special Publication. Vol. 2021, 2–19. https://doi.org/10.26153/tsw/12364 (2021)

  • Linam, G. W. & Kleinsasser, L. J. Relationships Between Fishes and Water Quality in the Pecos River, Texas. River Studies Report. No. 9. Texas Parks and Wildlife Department (1996).

  • Hoagstrom, C. W., Zymonas, N. D., Davenport, S. R., Propst, D. L. & Brooks, J. E. Rapid species replacements between fishes of the North American plains: A case history from the Pecos River. Aquat. Invasions 5(2), 141–153. https://doi.org/10.3391/ai.2010.5.2.03 (2010).

    Article 

    Google Scholar 

  • Randklev, C. R. et al. A semi-arid river in distress: Contributing factors and recovery solutions for three imperiled freshwater mussels (Family Unionidae) endemic to the Rio Grande Basin in North America. Sci. Total Environ. 631–632, 733–744. https://doi.org/10.1016/j.scitotenv.2018.03.032 (2018).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Kimmons, J. B. & Moll, D. Seed dispersal by Red-eared sliders (Trachemys scripta elegans) and Common snapping turtles (Chelydra serpentina). Chelonian Conserv. Biol. 9(2), 289–294. https://doi.org/10.2744/CCB-0797.1 (2010).

    Article 

    Google Scholar 

  • Lazar, B. et al. Loggerhead sea turtles (Caretta caretta) as bioturbators in neritic habitats: An insight through the analysis of benthic molluscs in the diet. Mar. Ecol. 32(1), 65–74. https://doi.org/10.1111/j.1439-0485.2010.00402.x (2011).

    ADS 
    Article 

    Google Scholar 

  • Lovich, J. E., Ennen, J. R., Agha, M. & Gibbons, J. W. Where have all the turtles gone, and why does it matter?. Bioscience 68(10), 771–781. https://doi.org/10.1093/biosci/biy095 (2018).

    Article 

    Google Scholar 

  • de Solla, S. R., Fernie, K. J. & Ashpole, S. Snapping turtles (Chelydra serpentina) as bioindicators in Canadian areas of concern in the Great Lakes Basin. II. Changes in hatching success and hatchling deformities in relation to persistent organic pollutants. Environ. Pollut. 153(3), 529–536. https://doi.org/10.1016/j.envpol.2007.09.017 (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Adams, C. I. M., Baker, J. E. & Kjellerup, B. V. Toxicological effects of polychlorinated biphenyls (PCBs) on freshwater turtles in the United States. Chemosphere 154, 148–154. https://doi.org/10.1016/j.chemosphere.2016.03.102 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Beau, F., Bustamante, P., Michaud, B. & Brischoux, F. Environmental causes and reproductive correlates of mercury contamination in European pond turtles (Emys orbicularis). Environ. Res. 172(4), 338–344. https://doi.org/10.1016/j.envres.2019.01.043 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • van Dijk, P. P. Pseudemys gorzugi (errata version published in 2016). The IUCN Red List of Threatened Species Vol. 2011, e.T18459A97. (2011).

  • NMDGF [New Mexico Department of Game and Fish]. Threatened and Endangered Species of New Mexico, 2020 Biennial Review. Management and Fisheries Management Divisions (2020).

  • SEMARNAT [Secretaríade Medio Ambiente y Recursos Naturales]. NORMA Oficial Mexicana NOM-059-SEMARNAT-2010, Protección ambiental–Especies nativas de México de flora y fauna silvestres–Categorías de riesgo y especificaciones para su inclusión, exclusión o cambio–Lista de especies en riesgo. Diario Oficial de la Federación Vol. 2 (2010).

  • TPWD [Texas Parks & Wildlife Department]. Species Account: the Rio Grande River Cooter (Pseudemys gorzugi). In Texas Comprehensive Wildlife Conservation Strategy 2005–2010 (eds Bender, S., Shelton, S., Bender, K. & Kalmbach, A.). Nongame Division, 1075–7076 (2012).

  • Pierce, L. J. S., Stuart, J. N., Ward, J. P. & Painter, C. W. Pseudemys gorzugi Ward 1984–Rio Grande Cooter, Western River Cooter, Tortuga de Oreja Amarilla, Jicotéa del Rio Bravo In Conservation Biology of Freshwater Turtles and Tortoises: A Compilation Project of the IUCN/SSC Tortoise and Freshwater Turtle Specialist Group (eds. Rhodin, A. G. J. et al.). Chelonian Res. Monog. Vol. 5, No. 9, 100.1–100.12. https://doi.org/10.3854/crm.5.100.gorzugi.v1.2016 (2016).

  • Endangered and Threatened Wildlife and Plants. Endangered and Threatened Wildlife and Plants; three species not warranted for listing as endangered or threatened species. Fed. Reg. 87(49), 14227–14228 (2022).

    Google Scholar 

  • Bailey, L. A., Forstner, M. R. J., Dixon, J. R. & Hudson, R. Contemporary status of the Rio Grande Cooter (Testudines: Emydidae: Pseudemys gorzugi) in Texas: phylogenetic, ecological and conservation consideration. In Proceedings of the Sixth Symposium on the Natural Resources of the Chihuahuan Desert Region (eds. Hoyt, C. A. & Karges, J.) 320–324. (Chihuahuan Desert Research Institute, 2014).

  • Suriyamongkol, T., Waldon, K. J. & Mali, I. Trachemys scripta (Red-eared Slider) and Pseudemys gorzugi (Rio Grande Cooter). Fish hook ingestion and shooting. Herpetol. Rev. 50(4), 776–777 (2019).

    Google Scholar 

  • Degenhardt, W. G., Painter, C. W. & Price, A. H. Amphibians and Reptiles of New Mexico (University of New Mexico Press, 1996).

    Google Scholar 

  • Ernst, C. H. Turtles of the United States and Canada 2nd edn. (Johns Hopkins University Press, 2009).

    Google Scholar 

  • Dixon, J. R. Amphibians and Reptiles of Texas: With Keys, Taxonomic Synopses, Bibliography, and Distribution Maps 3rd edn. (Texas A&M University Press, 2013).

    Google Scholar 

  • Suriyamongkol, T. et al. Geographic distribution. Pseudemys gorzugi (Rio Grande Cooter). Herpetol. Rev. 51(3), 536–537 (2020).

    Google Scholar 

  • Christman, B. L. & Kamees, L. K. Current Distribution of the Blotched Watersnake (Nerodia erythrogaster) and the Rio Grande Cooter (Pseudemys gorzugi) in the Lower Pecos River System Eddy County, New Mexico 2006–2007. Final Report. New Mexico Department of Game and Fish (2007).

  • Bogolin, A. P., Davis, D. R., Ruppert, K. M., Kline, R. J. & Rahmann, A. F. Geographic distribution. Pseudemys gorzugi (Rio Grande Cooter). Herpetol. Rev. 50(4), 745 (2019).

    Google Scholar 

  • Congdon, J. D., Dunham, A. E. & Van Loben Sels, R. C. Demographics of common snapping turtles (Chelydra serpentina): Implications for conservation and management of long-lived organisms. Am. Zool. 34, 397–408. https://doi.org/10.1093/icb/34.3.397 (1994).

    Article 

    Google Scholar 

  • Brooks, R. J., Brown, G. P. & Galbraith, D. A. Effects of a sudden increase in natural mortality of adults on a population of the common snapping turtle (Chelydra serpentina). Can. J. Zool. 69, 1314–1320. https://doi.org/10.1139/z91-185 (1991).

    Article 

    Google Scholar 

  • Congdon, J. D., Dunham, A. E. & Van Loben Sels, R. C. Delayed sexual maturity and demographics of Blanding’s turtles (Emydoidea blandingii): Implications for conservation and management of long-lived organisms. Conserv. Biol. 7(4), 826–833. https://doi.org/10.1046/j.1523-1739.1993.740826.x (1993).

    Article 

    Google Scholar 

  • Suriyamongkol, M. & Mali, I. Aspects of the reproductive biology of the Rio Grande Cooter (Pseudemys gorzugi) on the Black River, New Mexico. Chelonian Conserv. Biol. https://doi.org/10.2744/CCB-1385.1 (2019).

    Article 

    Google Scholar 

  • Bailey, L. A., Dixon, J. R., Hudson, R. & Forstner, M. R. J. Minimal genetic structure of the Rio Grande Cooter (Pseudemys gorzugi). Southwest. Nat. 53(3), 406–411. https://doi.org/10.1894/GC-179.1 (2008).

    Article 

    Google Scholar 

  • Mali, I., Duarte, A. & Forstner, M. R. J. Comparison of hoop-net trapping and visual surveys to monitor abundance of the Rio Grande Cooter (Pseudemys gorzugi). PeerJ 6, e4677:1-16. https://doi.org/10.7717/peerj.4677 (2018).

    Article 

    Google Scholar 

  • Hart, C. R., McDonald, A. & Hatler, W. Pecos River Ecosystem Monitoring Project. Technical Report. Texas Cooperative Extension: The Texas A&M University System. (2005).

  • Hong, M., Zhang, K., Shu, C., Xie, D. & Shi, H. Effect of salinity on the survival, ions, and urea modulation in Red-eared Slider (Trachemys scripta elegans). Asian Herpetol. Res. 5(2), 128–136. https://doi.org/10.3724/SP.J.1245.2014.00128 (2014).

    Article 

    Google Scholar 

  • Hintz, W. D. et al. Salinization triggers a trophic cascade in experimental freshwater communities with varying food-chain length. Ecol. Appl. 27(3), 833–844. https://doi.org/10.1002/eap.1487 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Letter, A. W., Waldon, K. J., Pollock, D. A. & Mali, I. Dietary habits of Rio Grande Cooters (Pseudemys gorzugi) from two sites within the Black River, Eddy County, New Mexico, USA. J. Herpetol. 53(3), 204–208. https://doi.org/10.1670/18-057 (2019).

    Article 

    Google Scholar 

  • Suriyamongkol, T., Ortega-Berno, V., Mahan, L. B. & Mali, I. Using stable isotopes to study resource partitioning between Red-eared Slider and Rio Grande Cooter in the Pecos River watershed. Ichthyol. Herpetol. 110(1), 96–105. https://doi.org/10.1643/h2021023 (2022).

    Article 

    Google Scholar 

  • Bassett, L. G., Mali, I., Nowlin, W. H., Foley, D. H. & Forstner, M. R. J. Diet and isotopic niche of the Rio Grande Cooter (Pseudemys gorzugi) and syntopic Red-eared Slider (Trachemys scripta elegans) in San Felipe Creek, Texas, USA. Chelonian Conserv. Biol. (in Press).

  • Bárcenas-García, A. et al. Impacts of dams on freshwater turtles: A global review to identify conservation solutions. Trop. Conserv. Sci. 15(4), 1–21. https://doi.org/10.1177/194008292211037098 (2021).

    Article 

    Google Scholar 

  • Smith, M. J. et al. Association between anuran tadpoles and salinity in a landscape mosaic of wetlands impacted by secondary salinisation. Freshw. Biol. 52(1), 75–84. https://doi.org/10.1111/j.1365-2427.2006.01672.x (2007).

    Article 

    Google Scholar 

  • Wohner, P. J. et al. Integrating monitoring and optimization modeling to inform flow decisions for Chinook salmon smolts. Ecol. Model. 471(2022), 110058. https://doi.org/10.1016/j.ecolmodel.2022.110058 (2022).

    Article 

    Google Scholar 

  • Suriyamongkol, T., Tian, W. & Mali, I. Monitoring the basking behavior of Rio Grande Cooter (Pseudemys gorzugi) through game camerias in southeastern New Mexico, USA. West. N. Am. Nat. 81(3), 361–371. https://doi.org/10.3398/064.081.0305 (2021).

    Article 

    Google Scholar 

  • Painter, C. W. Preliminary Investigations of the Distribution and Natural History of the Rio Grande River Cooter (Pseudemys gorzugi) in New Mexico. Preliminary Report. (United States Department of the Interior–Bureau of Land Management, 1993).

  • Hak, J. C. & Comer, P. J. Modeling landscape condition for biodiversity assessment—Application in temperate North America. Ecol. Indic. 82, 206–216. https://doi.org/10.1016/j.ecolind.2017.06.049 (2017).

    Article 

    Google Scholar 

  • ESRI. ArcGIS Desktop. Ver. 10.8 (Environmental System Research Institute, 2020).

  • MacKenzie, D. I. et al. Estimating site occupancy rates when detection probabilities are less than one. Ecology 83(8), 2248–2255. https://doi.org/10.1890/0012-9658(2002)083[2248:ESORWD]2.0.CO;2 (2002).

    Article 

    Google Scholar 

  • Tyre, A. J. et al. Improving precision and reducing bias in biological surveys: Estimating false-negative error rates. Ecol. Appl. 13(6), 1790–1801. https://doi.org/10.1890/02-5078 (2003).

    Article 

    Google Scholar 

  • Mackenzie, D. I. et al. Occupancy Estimation and Modeling: Inferring Dynamics of Species Occurrence 2nd edn. (Elsevier, 2017).

    Google Scholar 

  • Duarte, A., Whitlock, S. L. & Peterson, J. T. Species distribution modeling. In Encyclopedia of Ecology 2nd edn (ed. Fath, B. D.) (Elsevier, 2019).

    Google Scholar 

  • MacLaren, A. R., Foley, D. H., Sirsi, S. & Forstner, M. R. J. Updating methods of satellite transmitter attachment for long-term monitoring of the Rio Grande Cooter (Pseudemys gorzugi). Herpetol. Rev. 48(1), 48–52 (2017).

    Google Scholar 

  • MacLaren, A. R., Sirsi, S., Foley, D. H. & Forstner, M. R. J. Pseudemys gorzugi (Rio Grande Cooter). Long distance dispersal. Herpetol. Rev. 48(1), 180–181 (2017).

    Google Scholar 

  • Fiske, I. & Chandler, R. unmarked: An R package for fitting hierarchical models of wildlife occurrence and abundance. J. Stat. Softw. 43(10), 1–23. https://doi.org/10.18637/jss.v043.i10 (2011).

    Article 

    Google Scholar 

  • R Core Team. R: A Language and Environment for Statistical Computing (Foundation For Statistical Computing, 2021).

    Google Scholar 

  • Morin, D. J. et al. Is your ad hoc model selection strategy affecting your multimodel inference?. Ecosphere 11(1), e02997. https://doi.org/10.1002/ecs2.2997 (2020).

    Article 

    Google Scholar 

  • Burnham, K. P. & Anderson, D. R. Model Selection and Inference: A Practical Information-Theoretic Approach 1st edn. (Springer, XXX, 1998).

    Book 

    Google Scholar 

  • Hosmer, D. W., Lemeshow, S. & Sturdivant, R. X. Applied Logistic Regression 3rd edn. (Wiley, 2013).

    Book 

    Google Scholar 

  • Gasparrini, A., Armstrong, B. & Kenward, M. G. Multivariate meta-analysis for non-linear and other multi-parameter associations. Stat. Med. 31(29), 3821–3839. https://doi.org/10.1002/sim.5471 (2012).

    MathSciNet 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jackson, D., White, I. R. & Riley, R. D. A matrix-based method of moments for fitting the multivariate random effects model for meta-analysis and meta-regression. Biom. J. 55(2), 231–245. https://doi.org/10.1002/bimj.201200152 (2013).

    MathSciNet 
    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 


  • Source: Ecology - nature.com

    Ultrasonic antifouling devices negatively impact Cuvier’s beaked whales near Guadalupe Island, México

    Estimating leaf area index of maize using UAV-based digital imagery and machine learning methods