in

Elevated fires during COVID-19 lockdown and the vulnerability of protected areas

  • Update of the Zero Draft of the Post-2020 Global Biodiversity Framework (Convention on Biological Diversity, 2020); https://www.cbd.int/doc/c/3064/749a/0f65ac7f9def86707f4eaefa/post2020-prep-02-01-en.pdf

  • Corlett, R. T. et al. Impacts of the coronavirus pandemic on biodiversity conservation. Biol. Conserv. 246, 108571 (2020).

    Article 

    Google Scholar 

  • Singh, R. et al. Impact of the COVID-19 pandemic on rangers and the role of rangers as a planetary health service. Parks 27, 119–134 (2021).

    Article 

    Google Scholar 

  • Hockings, M. et al. COVID‐19 and protected and conserved areas. Parks 26, 7–24 (2020).

    Article 

    Google Scholar 

  • Waithaka, J. The Impact of COVID-19 Pandemic on Africa’s Protected Areas Operations and Programmes (IUCN, 2020); https://www.iucn.org/sites/dev/files/content/documents/2020/report_on_the_impact_of_covid_19_doc_july_10.pdf

  • Lindsey, P. et al. Conserving Africa’s wildlife and wildlands through the COVID-19 crisis and beyond. Nat. Ecol. Evol. 4, 1300–1310 (2020).

    Article 

    Google Scholar 

  • Amador-Jiménez, M., Millner, N., Palmer, C., Pennington, R. T. & Sileci, L. The unintended impact of Colombia’s COVID-19 lockdown on forest fires. Environ. Resour. Econ. 76, 1081–1105 (2020).

    Article 

    Google Scholar 

  • Poulter, B., Freeborn, P. H., Matt Jolly, W. & Morgan Varner, J. COVID-19 lockdowns drive decline in active fires in southeastern United States. Proc. Natl Acad. Sci. USA 118, e2015666118 (2021).

    Article 
    CAS 

    Google Scholar 

  • Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).

    CAS 
    Article 

    Google Scholar 

  • Leclère, D. et al. Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature 585, 551–556 (2020).

    Article 
    CAS 

    Google Scholar 

  • Geldmann, J., Manica, A., Burgess, N. D., Coad, L. & Balmford, A. A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. Proc. Natl Acad. Sci. USA 116, 23209–23215 (2019).

    CAS 
    Article 

    Google Scholar 

  • Tabor, K. et al. Evaluating the effectiveness of conservation and development investments in reducing deforestation and fires in Ankeniheny–Zahemena Corridor, Madagascar. PLoS ONE 12, e0190119 (2017).

    Article 
    CAS 

    Google Scholar 

  • Cochrane, M. A. Fire science for rainforests. Nature 421, 913–919 (2003).

    CAS 
    Article 

    Google Scholar 

  • Driscoll, D. A. et al. How fire interacts with habitat loss and fragmentation. Biol. Rev. 96, 976–998 (2021).

    Article 

    Google Scholar 

  • Nelson, A. & Chomitz, K. M. Effectiveness of strict vs. multiple use protected areas in reducing tropical forest fires: a global analysis using matching methods. PLoS ONE 6, e22722 (2011).

    CAS 
    Article 

    Google Scholar 

  • Carlson, K. M. et al. Effect of oil palm sustainability certification on deforestation and fire in Indonesia. Proc. Natl Acad. Sci. USA 115, 121–126 (2018).

    CAS 
    Article 

    Google Scholar 

  • Turco, M. et al. Skilful forecasting of global fire activity using seasonal climate predictions. Nat. Commun. 9, 2718 (2018).

    Article 
    CAS 

    Google Scholar 

  • Abatzoglou, J. T. & Williams, A. P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl Acad. Sci. USA 113, 11770–11775 (2016).

    CAS 
    Article 

    Google Scholar 

  • Andela, N. et al. A human-driven decline in global burned area. Science 356, 1356–1362 (2017).

    CAS 
    Article 

    Google Scholar 

  • Brooks, T. M. et al. Global biodiversity conservation priorities. Science 313, 58–61 (2006).

    CAS 
    Article 

    Google Scholar 

  • Jones, J. P. G. et al. Last chance for Madagascar’s biodiversity. Nat. Sustain. 2, 350–352 (2019).

    Article 

    Google Scholar 

  • Gardner, C. J. et al. The rapid expansion of Madagascar’s protected area system. Biol. Conserv. 220, 29–36 (2018).

    Article 

    Google Scholar 

  • Hockley, N., Mandimbiniaina, R. & Rakotonarivo, O. S. Fair and equitable conservation: do we really want it, and if so, do we know how to achieve it? Madag. Conserv. Dev. 13, 3–5 (2018).

    Article 

    Google Scholar 

  • Corson, C. in Conservation and Environmental Management in Madagascar (ed. Scales, I. R.) 193–215 (Routledge, 2014).

  • Davies, B. et al. Community factors and excess mortality in first wave of the COVID-19 pandemic in England. Nat. Commun. 12, 3755 (2021).

    CAS 
    Article 

    Google Scholar 

  • Kull, C. A. & Lehmann, C. E. R. in The New Natural History of Madagascar (ed. Goodman, S. M.) 197–203 (Princeton Univ. Press, in the press).

  • Razafindrakoto, M., Roubaud, F. & Wachsberger, J.-M. Puzzle and Paradox: A Political Economy of Madagascar (Cambridge Univ. Press, 2020).

  • Ruggiero, P. G. C., Pfaff, A., Nichols, E., Rosa, M. & Metzger, J. P. Election cycles affect deforestation within Brazil’s Atlantic Forest. Conserv. Lett. 14, e12818 (2021).

    Article 

    Google Scholar 

  • Morpurgo, J., Kissling, W. D., Tyrrell, P., Negret, P. J. & Allan, J. R. The role of elections as drivers of tropical deforestation. Preprint at bioRxiv https://doi.org/10.1101/2021.05.04.442551 (2021).

  • Tourism in Madagascar (WorldData, 2021); https://www.worlddata.info/africa/madagascar/tourism.php

  • Rapport annuel d’activites 2018 (Madagascar National Parks, 2018).

  • Vyawahare, M. As minister and activists trade barbs, Madagascar’s forests burn. Mongabay (17 December 2020).

  • Cochrane, M. A. in Tropical Fire Ecology: Climate Change, Land Use, and Ecosystem Dynamics (ed. Cochrane, M. A.) 389–426 (Springer-Verlag, 2009); https://doi.org/10.1007/978-3-540-77381-8_14

  • Cochrane, M. A. in Tropical Rainforest Responses to Climatic Change (eds Bush, M. et al.) 213–240 (Springer, 2011); https://doi.org/10.1007/978-3-642-05383-2_7

  • Mondal, N. & Sukumar, R. Fires in seasonally dry tropical forest: testing the varying constraints hypothesis across a regional rainfall gradient. PLoS ONE 11, e0159691 (2016).

    Article 
    CAS 

    Google Scholar 

  • Madagascar Economic Update: COVID-19 Increases Poverty, a New Reform Momentum is Needed to Build Back Stronger (World Bank, 2020); https://www.worldbank.org/en/country/madagascar/publication/madagascar-economic-update-covid-19-increases-poverty-a-new-reform-momentum-is-needed-to-build-back-stronger

  • Baker, A. Climate, not conflict. Madagascar’s famine is the first in modern history to be solely caused by global warming. Time (20 July 2021).

  • Graham, V. et al. Management resourcing and government transparency are key drivers of biodiversity outcomes in Southeast Asian protected areas. Biol. Conserv. 253, 108875 (2021).

    Article 

    Google Scholar 

  • Geldmann, J. et al. A global analysis of management capacity and ecological outcomes in terrestrial protected areas. Conserv. Lett. 11, e12434 (2018).

    Article 

    Google Scholar 

  • Gill, D. A. et al. Capacity shortfalls hinder the performance of marine protected areas globally. Nature 543, 665–669 (2017).

    CAS 
    Article 

    Google Scholar 

  • Eklund, J., Coad, L., Geldmann, J. & Cabeza, M. What constitutes a useful measure of protected area effectiveness? A case study of management inputs and protected area impacts in Madagascar. Conserv. Sci. Pract. 1, e107 (2019).

    Google Scholar 

  • Nolte, C. & Agrawal, A. Linking management effectiveness indicators to observed effects of protected areas on fire occurrence in the Amazon rainforest. Conserv. Biol. 27, 155–165 (2013).

    Article 

    Google Scholar 

  • Schleicher, J., Peres, C. A. & Leader-Williams, N. Conservation performance of tropical protected areas: how important is management? Conserv. Lett. 12, e12650 (2019).

    Article 

    Google Scholar 

  • Schroeder, W., Oliva, P., Giglio, L. & Csiszar, I. A. The new VIIRS 375m active fire detection data product: algorithm description and initial assessment. Remote Sens. Environ. 143, 85–96 (2014).

    Article 

    Google Scholar 

  • Forest Monitoring Designed for Action (Global Forest Watch, 2021); https://www.globalforestwatch.org/

  • Musinsky, J. et al. Conservation impacts of a near real-time forest monitoring and alert system for the tropics. Remote Sens. Ecol. Conserv 4, 189–196 (2018).

    Article 

    Google Scholar 

  • Ramo, R. et al. African burned area and fire carbon emissions are strongly impacted by small fires undetected by coarse resolution satellite data. Proc. Natl Acad. Sci. USA 118, e2011160118 (2021).

    CAS 
    Article 

    Google Scholar 

  • Global Economic Prospects, June 2021 (World Bank, 2021).

  • Razanatsoa, E. et al. Fostering local involvement for biodiversity conservation in tropical regions: lessons from Madagascar during the COVID‐19 pandemic. Biotropica 53, 994–1003 (2021).

    Article 

    Google Scholar 

  • Nolte, C., Agrawal, A., Silvius, K. M. & Soares-Filho, B. S. Governance regime and location influence avoided deforestation success of protected areas in the Brazilian Amazon. Proc. Natl Acad. Sci. USA 110, 4956–4961 (2013).

    CAS 
    Article 

    Google Scholar 

  • ArcGIS 10.8 for Desktop (ESRI, 2021).

  • Python Language Reference v.3.8.5 (Python Software Foundation, 2021); http://www.python.org

  • R Core Team R: A Language and Environment for Statistical Computing. R version 4.0.2 (R Foundation for Statistical Computing, 2020); https://www.R-project.org/

  • Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).

  • The World Database on Protected Areas (WDPA) (UNEP-WCMC and IUCN, 2020); www.protectedplanet.net

  • Goodman, S. M., Raherilalao, J. M. & Wohlhauser, S. The Terrestrial Protected Areas of Madagascar: Their History, Description, and Biota (Association Vahatra, 2018).

  • Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. Bioscience 67, 534–545 (2017).

    Article 

    Google Scholar 

  • NRT VIIRS 375 m Active Fire Product VNP14IMGT (NASA, 2020); https://doi.org/10.5067/FIRMS/VIIRS/VNP14IMGT_NRT.002

  • Chen, D., Shevade, V., Baer, A. E. & Loboda, T. V. Missing burns in the high northern latitudes: the case for regionally focused burned area products. Remote Sens. 13, 4145 (2021).

    Article 

    Google Scholar 

  • Schroeder, W. & Giglio, L. NASA VIIRS Land Science Investigator Processing System (SIPS) Visible Infrared Imaging Radiometer Suite (VIIRS) 375 m & 750 m Active Fire Products: Product User’s Guide Version 1.4 (NASA, 2018).

  • Global Precipitation Measurement: Precipitation Data Directory (NASA, 2020); https://gpm.nasa.gov/data/directory

  • Global Precipitation Measurement: The Tropical Rainfall Measuring Mission (TRMM) (NASA, 2020) https://gpm.nasa.gov/missions/trmm

  • Hantson, S. et al. Rare, intense, big fires dominate the global tropics under drier conditions. Sci. Rep. 7, 14374 (2017).

    Article 
    CAS 

    Google Scholar 

  • Zeileis, A., Kleiber, C. & Jackman, S. Regression models for count data in R. J. Stat. Softw. https://doi.org/10.18637/jss.v027.i08 (2008).

  • Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R 261–293 (Springer, 2009).

  • Joseph, M. B. et al. Spatiotemporal prediction of wildfire extremes with Bayesian finite sample maxima. Ecol. Appl. 29, e01898 (2019).

    Article 

    Google Scholar 

  • Guo, F. et al. Comparison of six generalized linear models for occurrence of lightning-induced fires in northern Daxing’an Mountains, China. J. For. Res. 27, 379–388 (2016).

    Article 

    Google Scholar 

  • Garay, A. M., Hashimoto, E. M., Ortega, E. M. M. & Lachos, V. H. On estimation and influence diagnostics for zero-inflated negative binomial regression models. Comput. Stat. Data Anal. 55, 1304–1318 (2011).

    Article 

    Google Scholar 

  • Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009).

  • Shcherbakov, M. V. et al. A survey of forecast error measures. World Appl. Sci. J. 24, 171–176 (2013).

    Google Scholar 

  • Efron, B. Bootstrap methods: another look at the jackknife. Ann. Stat. 7, 1–26 (1979).

    Article 

    Google Scholar 

  • Canty, A. & Ripley, B. boot: Bootstrap R (S-Plus) Functions. R package version 1.3-28 (2021).


  • Source: Ecology - nature.com

    Invasions of an obligate asexual daphnid species support the nearly neutral theory

    Succession comprises a sequence of threshold-induced community assembly processes towards multidiversity