in

Even modest climate change may lead to major transitions in boreal forests

  • Price, D. T. et al. Anticipating the consequences of climate change for Canada’s boreal forest ecosystems. Environ. Rev. 21, 322–365 (2013).

    Article 

    Google Scholar 

  • Wang, Y., Hogg, H. E., Price, T. D., Edwards, J. & Williamson, T. Past and projected future changes in moisture conditions in the Canadian boreal forest. Forestry Chron. 90, 678–691 (2014).

    Article 

    Google Scholar 

  • Piao, S. et al. Plant phenology and global climate change: current progresses and challenges. Glob. Chang. Biol. 25, 1922–1940 (2019).

    ADS 
    MathSciNet 
    Article 

    Google Scholar 

  • Lu, P., Parker, W. C., Colombo, S. J. & Skeates, D. A. Temperature-induced growing season drought threatens survival and height growth of white spruce in southern Ontario, Canada. Forest Ecol. Manag. 448, 355–363 (2019).

    Article 

    Google Scholar 

  • Giorgi, F., Raffaele, F. & Coppola, E. The response of precipitation characteristics to global warming from climate projections. Earth Syst. Dyn. 10, 73–89 (2019).

    ADS 
    Article 

    Google Scholar 

  • Sherwood, S. & Fu, Q. A drier future? Science 343, 737–739 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Seager, R. et al. Dynamical and thermodynamical causes of large-scale changes in the hydrological cycle over North America in response to global warming. J. Clim. 27, 7921–7948 (2014).

    ADS 
    Article 

    Google Scholar 

  • Tam, B. Y. et al. CMIP5 drought projections in Canada based on the Standardized Precipitation Evapotranspiration Index. Can. Water Resour. J. 44, 90–107 (2019).

    Article 

    Google Scholar 

  • Wu, Z., Dijkstra, P., Koch, G. W., Peñuelas, J. & Hungate, B. A. Responses of terrestrial ecosystems to temperature and precipitation change: a meta-analysis of experimental manipulation. Glob. Chang. Biol. 17, 927–942 (2011).

    ADS 
    Article 

    Google Scholar 

  • Zhao, J., Hartmann, H., Trumbore, S., Ziegler, W. & Zhang, Y. High temperature causes negative whole-plant carbon balance under mild drought. New Phytol. 200, 330–339 (2013).

    CAS 
    Article 

    Google Scholar 

  • Reich, P. B. et al. Effects of climate warming on photosynthesis in boreal tree species depend on soil moisture. Nature 562, 263–267 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Hansen, W. D. & Turner, M. G. Origins of abrupt change? Postfire subalpine conifer regeneration declines nonlinearly with warming and drying. Ecol. Monogr. 89, e01340 (2019).

    Article 

    Google Scholar 

  • Girardin, M. P. et al. No growth stimulation of Canada’s boreal forest under half-century of combined warming and CO2 fertilization. Proc. Natl Acad. Sci. USA 113, E8406–E8414 (2016).

    CAS 
    Article 

    Google Scholar 

  • Sulla-Menashe, D., Woodcock, C. E. & Friedl, M. A. Canadian boreal forest greening and browning trends: an analysis of biogeographic patterns and the relative roles of disturbance versus climate drivers. Environ. Res. Lett. 13, 014007 (2018).

    ADS 
    Article 

    Google Scholar 

  • Peng, C. et al. A drought-induced pervasive increase in tree mortality across Canada’s boreal forests. Nat. Clim. Chang. 1, 467–471 (2011).

    ADS 
    Article 

    Google Scholar 

  • Ma, Z. et al. Regional drought-induced reduction in the biomass carbon sink of Canada’s boreal forests. Proc. Natl Acad. Sci. USA 109, 2423–2427 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Ju, J. & Masek, J. G. The vegetation greenness trend in Canada and US Alaska from 1984–2012 Landsat data. Remote Sens. Environ. 176, 1–16 (2016).

    ADS 
    Article 

    Google Scholar 

  • D’Orangeville, L. et al. Beneficial effects of climate warming on boreal tree growth may be transitory. Nat. Commun. 9, 3213 (2018).

    ADS 
    Article 

    Google Scholar 

  • Johnstone, J. F. et al. Changing disturbance regimes, ecological memory and forest resilience. Front. Ecol. Environ. 14, 369–378 (2016).

    Article 

    Google Scholar 

  • Rodgers, V. L., Smith, N. G., Hoeppner, S. S. & Dukes, J. S. Warming increases the sensitivity of seedling growth capacity to rainfall in six temperate deciduous tree species. AoB Plants 10, ply003 (2018).

    Article 

    Google Scholar 

  • Moyes, A. B., Castanha, C., Germino, M. J. & Kueppers, L. M. Warming and the dependence of limber pine (Pinus flexilis) establishment on summer soil moisture within and above its current elevation range. Oecologia 171, 271–282 (2013).

    ADS 
    Article 

    Google Scholar 

  • Balducci, L. et al. How do drought and warming influence survival and wood traits of Picea mariana saplings? J. Exp. Bot. 66, 377–389 (2015).

    CAS 
    Article 

    Google Scholar 

  • Reich, P. B. et al. Geographic range predicts photosynthetic and growth response to warming in co-occurring tree species. Nat. Clim. Chang. 5, 148–152 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Coursolle, C. et al. Moving towards carbon neutrality: CO2 exchange of a black spruce forest ecosystem during the first 10 years of recovery after harvest. Can. J. Forest Res. 42, 1908–1918 (2012).

    CAS 
    Article 

    Google Scholar 

  • Khomik, M., Williams, C. A., Vanderhoof, M. K., MacLean, R. G. & Dillen, S. Y. On the causes of rising gross ecosystem productivity in a regenerating clearcut environment: leaf area vs. species composition. Tree Physiol. 34, 686–700 (2014).

    Article 

    Google Scholar 

  • Engelbrecht, B. et al. Drought sensitivity shapes species distribution patterns in tropical forests. Nature 447, 80–82 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Friedman, S. K. & Reich, P. B. Regional legacies of logging: departure from presettlement forest conditions in northern Minnesota. Ecol. Appl. 15, 726–744 (2005).

    Article 

    Google Scholar 

  • Burrill, E. A. et al. The Forest Inventory and Analysis Database: Database Description and User Guide Version 9.0.1 for Phase 2 https://www.fia.fs.fed.us/library/database-documentation/ (Forest Service, US Department of Agriculture, 2022).

  • Cumming, S. G. et al. A gap analysis of tree species representation in the protected areas of the Canadian boreal forest: applying a new assemblage of digital Forest Resource Inventory data. Can. J. Forest Res. 45, 163–173 (2015).

    Article 

    Google Scholar 

  • Brook, B. W., Ellis, E. C., Perring, M. P., Mackay, A. W. & Blomqvist, L. Does the terrestrial biosphere have planetary tipping points? Trends Ecol. Evol. 28, 396–401 (2013).

    Article 

    Google Scholar 

  • Reyer, C. P. O. et al. Forest resilience and tipping points at different spatio-temporal scales: approaches and challenges. J. Ecol. 103, 5–15 (2015).

    ADS 
    Article 

    Google Scholar 

  • Stralberg, D. et al. Climate‐change refugia in boreal North America: what, where, and for how long? Front. Ecol. Environ. 18, 261–270 (2020).

    Article 

    Google Scholar 

  • Etterson, J. R., Cornett, M. W., White, M. A. & Kavajecz, L. C. Assisted migration across fixed seed zones detects adaptation lags in two major North American tree species. Ecol. Appl. 30, e02092 (2020).

    Article 

    Google Scholar 

  • Solarik, K. A., Cazelles, K., Messier, C., Bergeron, Y. & Gravel, D. Priority effects will impede range shifts of temperate tree species into the boreal forest. J. Ecol. 108, 1155–1173 (2020).

    Article 

    Google Scholar 

  • Stefanski, A., Bermudez, R., Sendall, K. M., Montgomery, R. A. & Reich, P. B. Surprising lack of sensitivity of biochemical limitation of photosynthesis of nine tree species to open‐air experimental warming and reduced rainfall in a southern boreal forest. Glob. Chang. Biol. 26, 746–759 (2020).

    ADS 
    Article 

    Google Scholar 

  • Perala, D. A. How endemic injuries affect early growth of aspen suckers. Can. J. Forest Res. 14, 755–762 (1984).

    Article 

    Google Scholar 

  • Buckman, R. E. Effects of prescribed burning on hazel in Minnesota. Ecology 45, 626–629 (1964).

    Article 

    Google Scholar 

  • Harvey, B. D. & Bergeron, Y. Site patterns of natural regeneration following clear-cutting in northwestern Quebec. Can. J. Forest Res. 19, 1458–1469 (1989).

    Article 

    Google Scholar 

  • Harris, I. et al. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).

    Article 

    Google Scholar 

  • Peters, M. P., Prasad, A. M., Matthews, S. N. & Iverson, L. R. Climate Change Tree Atlas, Version 4 https://www.nrs.fs.fed.us/atlas (Northern Research Station and Northern Institute of Applied Climate Science, US Forest Service, 2020)

  • Niinemets, Ü. & Valladares, F. Tolerance to shade, drought, and waterlogging of temperate Northern Hemisphere trees and shrubs. Ecol. Monogr. 76, 521–547 (2006).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Solving a longstanding conundrum in heat transfer

    Thermal adaptation best explains Bergmann’s and Allen’s Rules across ecologically diverse shorebirds