in

Experimental immune challenges reduce the quality of male antennae and female pheromone output

  • Kraaijeveld, A. R. & Godfray, H. C. J. Trade-off between parasitoid resistance and larval competitive ability in Drosophila melanogaster. Nature 389(6648), 278–280 (1997).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Lochmiller, R. L. & Deerenberg, C. Trade-offs in evolutionary immunology: Just what is the cost of immunity?. Oikos 88(1), 87–98 (2000).

    Article 

    Google Scholar 

  • Zuk, M. & Stoehr, A. M. Immune defense and host life history. Am. Nat. 160(4), S9–S22 (2002).

    Article 

    Google Scholar 

  • McKean, K. A. & Nunney, L. Increased sexual activity reduces male immune function in Drosophila melanogaster. Proc. Natl. Acad. Sci. 98(14), 7904–7909 (2001).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Schwenke, R., Lazzaro, B. P. & Wolfner, M. F. Reproduction–immunity trade-offs in insects. Annu. Rev. Entomol. 61(1), 239–256. https://doi.org/10.1146/annurev-ento-010715-023924 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • McNamara, K. B., Wedell, N. & Simmons, L. W. Experimental evolution reveals trade-offs between mating and immunity. Biol. Lett. 9(4), 20130262. https://doi.org/10.1098/rsbl.2013.0262 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nystrand, M. & Dowling, D. K. Effects of immune challenge on expression of life-history and immune trait expression in sexually reproducing metazoans—a meta-analysis. BMC Biol. 18(1), 135. https://doi.org/10.1186/s12915-020-00856-7 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lawniczak, M. K. N. et al. Mating and immunity in invertebrates. Trends Ecol. Evol. 22(1), 48–55 (2007).

    Article 

    Google Scholar 

  • Ahtiainen, J. J., Alatalo, R. V., Kortet, R. & Rantala, M. J. A trade-off between sexual signalling and immune function in a natural population of the drumming wolf spider Hygrolycosa rubrofasciata. J. Evol. Biol. 18(4), 985–991. https://doi.org/10.1111/j.1420-9101.2005.00907.x (2005).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Simmons, L. W., Zuk, M. & Rotenberry, J. T. Immune function reflected in calling song characteristics in a natural population of the cricket Teleogryllus commodus. Anim. Behav. 69, 1235–1241. https://doi.org/10.1016/j.anbehav.2004.09.011 (2005).

    Article 

    Google Scholar 

  • Spencer, K. A., Buchanan, K. L., Leitner, S., Goldsmith, A. R. & Catchpole, C. K. Parasites affect song complexity and neural development in a songbird. Proc. R. Soc. B 272(1576), 2037–2043. https://doi.org/10.1098/rspb.2005.3188 (2005).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rantala, M. J., Koskimaki, J., Taskinen, J., Tynkkynen, K. & Suhonen, J. Immunocompetence, developmental stability and wingspot size in the damselfly Calopteryx splendens L. Proc R Soc B 267(1460), 2453–2457 (2000).

    CAS 
    Article 

    Google Scholar 

  • Clotfelter, E. D., Ardia, D. R. & McGraw, K. J. Red fish, blue fish: Trade-offs between pigmentation and immunity in Betta splendens. Behav. Ecol. 18(6), 1139–1145. https://doi.org/10.1093/beheco/arm090 (2007).

    Article 

    Google Scholar 

  • Rantala, M., Jokinen, I., Kortet, R., Vainikka, A. & Suhonen, J. Do pheromones reveal male immunocompetence?. Proc. R. Soc. B 269, 1681–1685 (2002).

    Article 

    Google Scholar 

  • Worden, B., Parker, P. & Pappas, P. Parasites reduce attractiveness and reproductive success in male grain beetles. Anim. Behav. 59, 543–550 (2000).

    CAS 
    Article 

    Google Scholar 

  • Barthel, A., Staudacher, H., Schmaltz, A., Heckel, D. G. & Groot, A. T. Sex-specific consequences of an induced immune response on reproduction in a moth. BMC Evol. Biol. 15(1), 282. https://doi.org/10.1186/s12862-015-0562-3 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sadd, B. et al. Modulation of sexual signalling by immune challenged male mealworm beetles (Tenebrio molitor L.): Evidence for terminal investment and dishonesty. J. Evol. Biol. 19(2), 321–325. https://doi.org/10.1111/j.1420-9101.2005.01062.x (2006).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Chemnitz, J., Bagrii, N., Ayasse, M. & Steiger, S. Variation in sex pheromone emission does not reflect immunocompetence but affects attractiveness of male burying beetles—a combination of laboratory and field experiments. Sci. Nat. 104(7), 53. https://doi.org/10.1007/s00114-017-1473-5 (2017).

    CAS 
    Article 

    Google Scholar 

  • Johansson, B. G. & Jones, T. M. The role of chemical communication in mate choice. Biol. Rev. 82(2), 265–289. https://doi.org/10.1111/j.1469-185X.2007.00009.x (2007).

    Article 
    PubMed 

    Google Scholar 

  • Rantala, M. J., Kortet, R., Kotiaho, J. S., Vainikka, A. & Suhonen, J. Condition dependence of pheromones and immune function in the grain beetle Tenebrio molitor. Funct. Ecol. 17(4), 534–540 (2003).

    Article 

    Google Scholar 

  • Niven, J. E. & Laughlin, S. B. Energy limitation as a selective pressure on the evolution of sensory systems. J. Exp. Biol. 211(11), 1792. https://doi.org/10.1242/jeb.017574 (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Stöckl, A. et al. Differential investment in visual and olfactory brain areas reflects behavioural choices in hawk moths. Sci. Rep. 6(1), 26041. https://doi.org/10.1038/srep26041 (2016).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Elgar, M. A. et al. Insect antennal morphology: The evolution of diverse solutions to odorant perception. Yale J. Biol. Med. 91(4), 457–469 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Symonds, M. R. E., Johnson, T. L. & Elgar, M. A. Pheromone production, male abundance, body size, and the evolution of elaborate antennae in moths. Ecol. Evol. 2(1), 227–246. https://doi.org/10.1002/ece3.81 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chapman, R. F. Chemoreception: The significance of receptor numbers. In Advances in Insect Physiology (eds Berridge, M. J. et al.) 247–356 (Academic Press, Cambridge, 1982).

    Google Scholar 

  • Symonds, M. R. E. & Elgar, M. A. The evolution of pheromone diversity. Trends Ecol. Evol. 23(4), 220–228. https://doi.org/10.1016/j.tree.2007.11.009 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Wyatt, T. Pheromones and Animal Behaviour: Communication by Smell and Taste (Cambridge University Press, Cambridge, 2003).

    Book 

    Google Scholar 

  • Elgar, M. A., Johnson, T. L. & Symonds, M. R. E. Sexual selection and organs of sense: Darwin’s neglected insight. Anim. Biol. 69(1), 63–82. https://doi.org/10.1163/15707563-00001046 (2019).

    Article 

    Google Scholar 

  • Wang, Q. et al. 2018 Antennal scales improve signal detection efficiency in moths. Proc. R. Soc. B 285, 20172832. https://doi.org/10.1098/rspb.2017.2832 (1874).

    CAS 
    Article 

    Google Scholar 

  • Johnson, T. L., Symonds, M. & Elgar, M. Sexual selection on receptor organ traits: Younger females attract males with longer antennae. Sci. Nat. 104, 1–6 (2017).

    CAS 
    Article 

    Google Scholar 

  • Xu, J. & Wang, Q. Male moths undertake both pre- and in-copulation mate choice based on female age and weight. Behav. Ecol. Sociobiol. 63(6), 801–808. https://doi.org/10.1007/s00265-009-0713-x (2009).

    MathSciNet 
    Article 

    Google Scholar 

  • Fricke, C., Adler, M. I., Brooks, R. C. & Bonduriansky, R. The complexity of male reproductive success: Effects of nutrition, morphology, and experience. Behav. Ecol. 26(2), 617–624. https://doi.org/10.1093/beheco/aru240 (2015).

    Article 

    Google Scholar 

  • Bernays, E. A. & Chapman, R. F. Phenotypic plasticity in numbers of antennal chemoreceptors in a grasshopper: Effects of food. J. Comp. Physiol. 183(1), 69–76. https://doi.org/10.1007/s003590050235 (1998).

    CAS 
    Article 

    Google Scholar 

  • Johnson, T. L., Symonds, M. R. E. & Elgar, M. A. 2017 Anticipatory flexibility: Larval population density in moths determines male investment in antennae, wings and testes. Proc. R. Soc. B 284(1866), 2017–2087. https://doi.org/10.1098/rspb.2017.2087 (1866).

    Article 

    Google Scholar 

  • Pomiankowski, A. & Møller, A. P. A resolution of the lek paradox. Proc. R. Soc. Lond. B 260(1357), 21–29. https://doi.org/10.1098/rspb.1995.0054 (1995).

    ADS 
    Article 

    Google Scholar 

  • Cardé, R. & Baker, T. Sexual communication with pheromones. In Chemical Ecology of Insects (eds Bell, W. & Cardé, R.) (Chapman and Hall, London, 1984).

    Google Scholar 

  • Kokko, H. & Wong, B. B. M. What determines sex roles in mate searcing?. Evolution 61(5), 1162–1175. https://doi.org/10.1111/j.1558-5646.2007.00090.x (2007).

    Article 
    PubMed 

    Google Scholar 

  • Alberts, A. Constraints on the design of chemical communication systems in terrestrial vertebrates. Am. Nat. 139, S62–S89 (1992).

    Article 

    Google Scholar 

  • van Dongen, S., Matthysen, E., Sprengers, E. & Dhondt, A. A. Mate selection by male winter moths Operophtera brumata (Lepidoptera, Geometridae): Adaptive male choice or female control?. Behaviour 135, 29–42 (1998).

    Article 

    Google Scholar 

  • Henneken, J., Goodger, J. Q. D., Jones, T. M. & Elgar, M. A. Diet-mediated pheromones and signature mixtures can enforce signal reliability. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2016.00145 (2017).

    Article 

    Google Scholar 

  • Harari, A. R., Zahavi, T. & Thiéry, D. Fitness cost of pheromone production in signaling female moths. Evolution 65(6), 1572–1582. https://doi.org/10.1111/j.1558-5646.2011.01252.x (2011).

    Article 
    PubMed 

    Google Scholar 

  • Pham, H. T., McNamara, K. B. & Elgar, M. A. Socially cued anticipatory adjustment of female signalling effort in a moth. Biol. Lett. 16(12), 20200614. https://doi.org/10.1098/rsbl.2020.0614 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Morgan, F. D. & Cobbinah, J. R. Oviposition and establishment of Uraba lugens (Walker), the gum leaf skeletoniser. Aust. For. 40(1), 44–55. https://doi.org/10.1080/00049158.1977.10675665 (1977).

    Article 

    Google Scholar 

  • Pham, H. T., McNamara, K. B. & Elgar, M. A. Age-dependent chemical signalling and its consequences for mate attraction in the gumleaf skeletonizer moth, Uraba lugens. Anim. Behav. 173, 207–213. https://doi.org/10.1016/j.anbehav.2020.12.010 (2021).

    Article 

    Google Scholar 

  • McNamara, K. B., van Lieshout, E., Jones, T. M. & Simmons, L. W. Age-dependent trade-offs between immunity and male, but not female, reproduction. J. Anim. Ecol. 82(1), 235–244. https://doi.org/10.1111/j.1365-2656.2012.02018.x (2012).

    Article 
    PubMed 

    Google Scholar 

  • Simmons, L. W. Resource allocation trade-off between sperm quality and immunity in the field cricket, Teleogryllus oceanicus. Behav. Ecol. 23(1), 168–173. https://doi.org/10.1093/beheco/arr170 (2012).

    Article 

    Google Scholar 

  • Triseleva, T. A. & Safonkin, A. F. Variation in antennal sensory system in different phenotypes of large fruit-tree tortrix Archips podana Scop (Lepidoptera: Tortricidae). Biol Bull 33(6), 568–572. https://doi.org/10.1134/s1062359006060069 (2006).

    Article 

    Google Scholar 

  • Rasband, W. S. ImageJ (National Institutes of Health, Maryland USA, 2009).

    Google Scholar 

  • R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Austria, 2013).

    Google Scholar 

  • Sanes, J. R. & Hildebrand, J. G. Origin and morphogenesis of sensory neurons in an insect antenna. Dev. Biol. 51(2), 300–319. https://doi.org/10.1016/0012-1606(76)90145-7 (1976).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Gill, K. P., Wilgenburg, E. V., Macmillan, D. L. & Elgar, M. A. Density of antennal sensilla influences efficacy of communication in a social insect. Am. Nat. 182(6), 834–840. https://doi.org/10.1086/673712 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Jayaweera, A. & Barry, K. L. Male antenna morphology and its effect on scramble competition in false garden mantids. Sci. Nat. 104(9), 75. https://doi.org/10.1007/s00114-017-1494-0 (2017).

    CAS 
    Article 

    Google Scholar 

  • Greenfield, M. D. Moth sex pheromones: An evolutionary perspective. Fla Entomol. 64(1), 4–17. https://doi.org/10.2307/3494597 (1981).

    Article 

    Google Scholar 

  • McNamara, K. B., van Lieshout, E. & Simmons, L. W. The effect of maternal and paternal immune challenge on offspring immunity and reproduction in a cricket. J. Evol. Biol. 27(6), 1020–1028. https://doi.org/10.1111/jeb.12376 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Foster, S. P. & Anderson, K. G. 2020 Sex pheromone biosynthesis, storage and release in a female moth: Making a little go a long way. Proc. R. Soc. B 287, 20202775. https://doi.org/10.1098/rspb.2020.2775 (1941).

    CAS 
    Article 

    Google Scholar 

  • Gibb, A. R. et al. Major sex pheromone components of the Australian gum leaf skeletonizer Uraba lugens: (10E,12Z)-hexadecadien-1-yl acetate and (10E,12Z)-hexadecadien-1-ol. J. Chem. Ecol. 34(9), 1125–1133. https://doi.org/10.1007/s10886-008-9523-2 (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Kerr, A. M., Gershman, S. N. & Sakaluk, S. K. Experimentally induced spermatophore production and immune responses reveal a trade-off in crickets. Behav. Ecol. 21(3), 647–654. https://doi.org/10.1093/beheco/arg035 (2010).

    Article 

    Google Scholar 

  • Ahmed, A. M., Baggott, S. L., Maingon, R. & Hurd, H. The costs of mounting an immune response are reflected in the reproductive fitness of the mosquito Anopheles gambiae. Oikos 97(3), 371–377 (2002).

    Article 

    Google Scholar 

  • Hurd, H. Host fecundity reduction: A strategy for damage limitation?. Trends Parasitol. 17(8), 363–368. https://doi.org/10.1016/S1471-4922(01)01927-4 (2001).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Adamo, S. A. Evidence for adaptive changes in egg laying in crickets exposed to bacteria and parasites. Anim. Behav. 57(1), 117–124. https://doi.org/10.1006/anbe.1998.0999 (1999).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Arnqvist, G. & Nilsson, T. The evolution of polyandry: Multiple mating and female fitness in insects. Anim. Behav. 60, 145–164 (2000).

    CAS 
    Article 

    Google Scholar 

  • Parker, G. A., Lessells, C. M. & Simmons, L. W. Sperm competition games: A general model for precopulatory male-male competition. Evolution 67(1), 95–109. https://doi.org/10.1111/j.1558-5646.2012.01741.x (2013).

    Article 
    PubMed 

    Google Scholar 

  • Simmons, L. W., Lüpold, S. & Fitzpatrick, J. L. Evolutionary trade-off between secondary sexual traits and ejaculates. Trends Ecol. Evol. 32(12), 964–976. https://doi.org/10.1016/j.tree.2017.09.011 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Parker, G. A. & Pizzari, T. Sperm competition and ejaculate economics. Biol. Rev. 85(4), 897–934. https://doi.org/10.1111/j.1469-185X.2010.00140.x (2010).

    Article 
    PubMed 

    Google Scholar 

  • Katsuki, M. & Lewis, Z. A trade-off between pre- and post-copulatory sexual selection in a bean beetle. Behav. Ecol. Sociobiol. 69(10), 1597–1602. https://doi.org/10.1007/s00265-015-1971-4 (2015).

    Article 

    Google Scholar 

  • Gage, M. J. G. Continuous variation in reproductive strategy as an adaptive response to population-density in the moth Plodia interpunctella. Proc. R. Soc. B 261(1360), 25–30 (1995).

    ADS 
    Article 

    Google Scholar 

  • Shiel, B. P., Sherman, C. D. H., Elgar, M. A., Johnson, T. L. & Symonds, M. R. E. Investment in sensory structures, testis size, and wing coloration in males of a diurnal moth species: Trade-offs or correlated growth?. Ecol. Evol. 5(8), 1601–1608. https://doi.org/10.1002/ece3.1459 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rolff, J. Bateman’s principle and immunity. Proc. R. Soc. B 269(1493), 867–872. https://doi.org/10.1098/rspb.2002.1959 (2002).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Calabrese, E. J. & Baldwin, L. A. Hormesis: A generalizable and unifying hypothesis. Crit. Rev. Toxicol. 31(4–5), 353–424. https://doi.org/10.1080/20014091111730 (2001).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Calabrese, E. J. & Mattson, M. P. How does hormesis impact biology, toxicology, and medicine?. NPJ Aging Mech. Dis. 3(1), 13. https://doi.org/10.1038/s41514-017-0013-z (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    Sustainable strategies to treat urban runoff needed

    Q&A: Climate Grand Challenges finalists on building equity and fairness into climate solutions