in

Experimental immune challenges reduce the quality of male antennae and female pheromone output

  • Kraaijeveld, A. R. & Godfray, H. C. J. Trade-off between parasitoid resistance and larval competitive ability in Drosophila melanogaster. Nature 389(6648), 278–280 (1997).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Lochmiller, R. L. & Deerenberg, C. Trade-offs in evolutionary immunology: Just what is the cost of immunity?. Oikos 88(1), 87–98 (2000).

    Article 

    Google Scholar 

  • Zuk, M. & Stoehr, A. M. Immune defense and host life history. Am. Nat. 160(4), S9–S22 (2002).

    Article 

    Google Scholar 

  • McKean, K. A. & Nunney, L. Increased sexual activity reduces male immune function in Drosophila melanogaster. Proc. Natl. Acad. Sci. 98(14), 7904–7909 (2001).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Schwenke, R., Lazzaro, B. P. & Wolfner, M. F. Reproduction–immunity trade-offs in insects. Annu. Rev. Entomol. 61(1), 239–256. https://doi.org/10.1146/annurev-ento-010715-023924 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • McNamara, K. B., Wedell, N. & Simmons, L. W. Experimental evolution reveals trade-offs between mating and immunity. Biol. Lett. 9(4), 20130262. https://doi.org/10.1098/rsbl.2013.0262 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nystrand, M. & Dowling, D. K. Effects of immune challenge on expression of life-history and immune trait expression in sexually reproducing metazoans—a meta-analysis. BMC Biol. 18(1), 135. https://doi.org/10.1186/s12915-020-00856-7 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lawniczak, M. K. N. et al. Mating and immunity in invertebrates. Trends Ecol. Evol. 22(1), 48–55 (2007).

    Article 

    Google Scholar 

  • Ahtiainen, J. J., Alatalo, R. V., Kortet, R. & Rantala, M. J. A trade-off between sexual signalling and immune function in a natural population of the drumming wolf spider Hygrolycosa rubrofasciata. J. Evol. Biol. 18(4), 985–991. https://doi.org/10.1111/j.1420-9101.2005.00907.x (2005).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Simmons, L. W., Zuk, M. & Rotenberry, J. T. Immune function reflected in calling song characteristics in a natural population of the cricket Teleogryllus commodus. Anim. Behav. 69, 1235–1241. https://doi.org/10.1016/j.anbehav.2004.09.011 (2005).

    Article 

    Google Scholar 

  • Spencer, K. A., Buchanan, K. L., Leitner, S., Goldsmith, A. R. & Catchpole, C. K. Parasites affect song complexity and neural development in a songbird. Proc. R. Soc. B 272(1576), 2037–2043. https://doi.org/10.1098/rspb.2005.3188 (2005).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rantala, M. J., Koskimaki, J., Taskinen, J., Tynkkynen, K. & Suhonen, J. Immunocompetence, developmental stability and wingspot size in the damselfly Calopteryx splendens L. Proc R Soc B 267(1460), 2453–2457 (2000).

    CAS 
    Article 

    Google Scholar 

  • Clotfelter, E. D., Ardia, D. R. & McGraw, K. J. Red fish, blue fish: Trade-offs between pigmentation and immunity in Betta splendens. Behav. Ecol. 18(6), 1139–1145. https://doi.org/10.1093/beheco/arm090 (2007).

    Article 

    Google Scholar 

  • Rantala, M., Jokinen, I., Kortet, R., Vainikka, A. & Suhonen, J. Do pheromones reveal male immunocompetence?. Proc. R. Soc. B 269, 1681–1685 (2002).

    Article 

    Google Scholar 

  • Worden, B., Parker, P. & Pappas, P. Parasites reduce attractiveness and reproductive success in male grain beetles. Anim. Behav. 59, 543–550 (2000).

    CAS 
    Article 

    Google Scholar 

  • Barthel, A., Staudacher, H., Schmaltz, A., Heckel, D. G. & Groot, A. T. Sex-specific consequences of an induced immune response on reproduction in a moth. BMC Evol. Biol. 15(1), 282. https://doi.org/10.1186/s12862-015-0562-3 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sadd, B. et al. Modulation of sexual signalling by immune challenged male mealworm beetles (Tenebrio molitor L.): Evidence for terminal investment and dishonesty. J. Evol. Biol. 19(2), 321–325. https://doi.org/10.1111/j.1420-9101.2005.01062.x (2006).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Chemnitz, J., Bagrii, N., Ayasse, M. & Steiger, S. Variation in sex pheromone emission does not reflect immunocompetence but affects attractiveness of male burying beetles—a combination of laboratory and field experiments. Sci. Nat. 104(7), 53. https://doi.org/10.1007/s00114-017-1473-5 (2017).

    CAS 
    Article 

    Google Scholar 

  • Johansson, B. G. & Jones, T. M. The role of chemical communication in mate choice. Biol. Rev. 82(2), 265–289. https://doi.org/10.1111/j.1469-185X.2007.00009.x (2007).

    Article 
    PubMed 

    Google Scholar 

  • Rantala, M. J., Kortet, R., Kotiaho, J. S., Vainikka, A. & Suhonen, J. Condition dependence of pheromones and immune function in the grain beetle Tenebrio molitor. Funct. Ecol. 17(4), 534–540 (2003).

    Article 

    Google Scholar 

  • Niven, J. E. & Laughlin, S. B. Energy limitation as a selective pressure on the evolution of sensory systems. J. Exp. Biol. 211(11), 1792. https://doi.org/10.1242/jeb.017574 (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Stöckl, A. et al. Differential investment in visual and olfactory brain areas reflects behavioural choices in hawk moths. Sci. Rep. 6(1), 26041. https://doi.org/10.1038/srep26041 (2016).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Elgar, M. A. et al. Insect antennal morphology: The evolution of diverse solutions to odorant perception. Yale J. Biol. Med. 91(4), 457–469 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Symonds, M. R. E., Johnson, T. L. & Elgar, M. A. Pheromone production, male abundance, body size, and the evolution of elaborate antennae in moths. Ecol. Evol. 2(1), 227–246. https://doi.org/10.1002/ece3.81 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chapman, R. F. Chemoreception: The significance of receptor numbers. In Advances in Insect Physiology (eds Berridge, M. J. et al.) 247–356 (Academic Press, Cambridge, 1982).

    Google Scholar 

  • Symonds, M. R. E. & Elgar, M. A. The evolution of pheromone diversity. Trends Ecol. Evol. 23(4), 220–228. https://doi.org/10.1016/j.tree.2007.11.009 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Wyatt, T. Pheromones and Animal Behaviour: Communication by Smell and Taste (Cambridge University Press, Cambridge, 2003).

    Book 

    Google Scholar 

  • Elgar, M. A., Johnson, T. L. & Symonds, M. R. E. Sexual selection and organs of sense: Darwin’s neglected insight. Anim. Biol. 69(1), 63–82. https://doi.org/10.1163/15707563-00001046 (2019).

    Article 

    Google Scholar 

  • Wang, Q. et al. 2018 Antennal scales improve signal detection efficiency in moths. Proc. R. Soc. B 285, 20172832. https://doi.org/10.1098/rspb.2017.2832 (1874).

    CAS 
    Article 

    Google Scholar 

  • Johnson, T. L., Symonds, M. & Elgar, M. Sexual selection on receptor organ traits: Younger females attract males with longer antennae. Sci. Nat. 104, 1–6 (2017).

    CAS 
    Article 

    Google Scholar 

  • Xu, J. & Wang, Q. Male moths undertake both pre- and in-copulation mate choice based on female age and weight. Behav. Ecol. Sociobiol. 63(6), 801–808. https://doi.org/10.1007/s00265-009-0713-x (2009).

    MathSciNet 
    Article 

    Google Scholar 

  • Fricke, C., Adler, M. I., Brooks, R. C. & Bonduriansky, R. The complexity of male reproductive success: Effects of nutrition, morphology, and experience. Behav. Ecol. 26(2), 617–624. https://doi.org/10.1093/beheco/aru240 (2015).

    Article 

    Google Scholar 

  • Bernays, E. A. & Chapman, R. F. Phenotypic plasticity in numbers of antennal chemoreceptors in a grasshopper: Effects of food. J. Comp. Physiol. 183(1), 69–76. https://doi.org/10.1007/s003590050235 (1998).

    CAS 
    Article 

    Google Scholar 

  • Johnson, T. L., Symonds, M. R. E. & Elgar, M. A. 2017 Anticipatory flexibility: Larval population density in moths determines male investment in antennae, wings and testes. Proc. R. Soc. B 284(1866), 2017–2087. https://doi.org/10.1098/rspb.2017.2087 (1866).

    Article 

    Google Scholar 

  • Pomiankowski, A. & Møller, A. P. A resolution of the lek paradox. Proc. R. Soc. Lond. B 260(1357), 21–29. https://doi.org/10.1098/rspb.1995.0054 (1995).

    ADS 
    Article 

    Google Scholar 

  • Cardé, R. & Baker, T. Sexual communication with pheromones. In Chemical Ecology of Insects (eds Bell, W. & Cardé, R.) (Chapman and Hall, London, 1984).

    Google Scholar 

  • Kokko, H. & Wong, B. B. M. What determines sex roles in mate searcing?. Evolution 61(5), 1162–1175. https://doi.org/10.1111/j.1558-5646.2007.00090.x (2007).

    Article 
    PubMed 

    Google Scholar 

  • Alberts, A. Constraints on the design of chemical communication systems in terrestrial vertebrates. Am. Nat. 139, S62–S89 (1992).

    Article 

    Google Scholar 

  • van Dongen, S., Matthysen, E., Sprengers, E. & Dhondt, A. A. Mate selection by male winter moths Operophtera brumata (Lepidoptera, Geometridae): Adaptive male choice or female control?. Behaviour 135, 29–42 (1998).

    Article 

    Google Scholar 

  • Henneken, J., Goodger, J. Q. D., Jones, T. M. & Elgar, M. A. Diet-mediated pheromones and signature mixtures can enforce signal reliability. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2016.00145 (2017).

    Article 

    Google Scholar 

  • Harari, A. R., Zahavi, T. & Thiéry, D. Fitness cost of pheromone production in signaling female moths. Evolution 65(6), 1572–1582. https://doi.org/10.1111/j.1558-5646.2011.01252.x (2011).

    Article 
    PubMed 

    Google Scholar 

  • Pham, H. T., McNamara, K. B. & Elgar, M. A. Socially cued anticipatory adjustment of female signalling effort in a moth. Biol. Lett. 16(12), 20200614. https://doi.org/10.1098/rsbl.2020.0614 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Morgan, F. D. & Cobbinah, J. R. Oviposition and establishment of Uraba lugens (Walker), the gum leaf skeletoniser. Aust. For. 40(1), 44–55. https://doi.org/10.1080/00049158.1977.10675665 (1977).

    Article 

    Google Scholar 

  • Pham, H. T., McNamara, K. B. & Elgar, M. A. Age-dependent chemical signalling and its consequences for mate attraction in the gumleaf skeletonizer moth, Uraba lugens. Anim. Behav. 173, 207–213. https://doi.org/10.1016/j.anbehav.2020.12.010 (2021).

    Article 

    Google Scholar 

  • McNamara, K. B., van Lieshout, E., Jones, T. M. & Simmons, L. W. Age-dependent trade-offs between immunity and male, but not female, reproduction. J. Anim. Ecol. 82(1), 235–244. https://doi.org/10.1111/j.1365-2656.2012.02018.x (2012).

    Article 
    PubMed 

    Google Scholar 

  • Simmons, L. W. Resource allocation trade-off between sperm quality and immunity in the field cricket, Teleogryllus oceanicus. Behav. Ecol. 23(1), 168–173. https://doi.org/10.1093/beheco/arr170 (2012).

    Article 

    Google Scholar 

  • Triseleva, T. A. & Safonkin, A. F. Variation in antennal sensory system in different phenotypes of large fruit-tree tortrix Archips podana Scop (Lepidoptera: Tortricidae). Biol Bull 33(6), 568–572. https://doi.org/10.1134/s1062359006060069 (2006).

    Article 

    Google Scholar 

  • Rasband, W. S. ImageJ (National Institutes of Health, Maryland USA, 2009).

    Google Scholar 

  • R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Austria, 2013).

    Google Scholar 

  • Sanes, J. R. & Hildebrand, J. G. Origin and morphogenesis of sensory neurons in an insect antenna. Dev. Biol. 51(2), 300–319. https://doi.org/10.1016/0012-1606(76)90145-7 (1976).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Gill, K. P., Wilgenburg, E. V., Macmillan, D. L. & Elgar, M. A. Density of antennal sensilla influences efficacy of communication in a social insect. Am. Nat. 182(6), 834–840. https://doi.org/10.1086/673712 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Jayaweera, A. & Barry, K. L. Male antenna morphology and its effect on scramble competition in false garden mantids. Sci. Nat. 104(9), 75. https://doi.org/10.1007/s00114-017-1494-0 (2017).

    CAS 
    Article 

    Google Scholar 

  • Greenfield, M. D. Moth sex pheromones: An evolutionary perspective. Fla Entomol. 64(1), 4–17. https://doi.org/10.2307/3494597 (1981).

    Article 

    Google Scholar 

  • McNamara, K. B., van Lieshout, E. & Simmons, L. W. The effect of maternal and paternal immune challenge on offspring immunity and reproduction in a cricket. J. Evol. Biol. 27(6), 1020–1028. https://doi.org/10.1111/jeb.12376 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Foster, S. P. & Anderson, K. G. 2020 Sex pheromone biosynthesis, storage and release in a female moth: Making a little go a long way. Proc. R. Soc. B 287, 20202775. https://doi.org/10.1098/rspb.2020.2775 (1941).

    CAS 
    Article 

    Google Scholar 

  • Gibb, A. R. et al. Major sex pheromone components of the Australian gum leaf skeletonizer Uraba lugens: (10E,12Z)-hexadecadien-1-yl acetate and (10E,12Z)-hexadecadien-1-ol. J. Chem. Ecol. 34(9), 1125–1133. https://doi.org/10.1007/s10886-008-9523-2 (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Kerr, A. M., Gershman, S. N. & Sakaluk, S. K. Experimentally induced spermatophore production and immune responses reveal a trade-off in crickets. Behav. Ecol. 21(3), 647–654. https://doi.org/10.1093/beheco/arg035 (2010).

    Article 

    Google Scholar 

  • Ahmed, A. M., Baggott, S. L., Maingon, R. & Hurd, H. The costs of mounting an immune response are reflected in the reproductive fitness of the mosquito Anopheles gambiae. Oikos 97(3), 371–377 (2002).

    Article 

    Google Scholar 

  • Hurd, H. Host fecundity reduction: A strategy for damage limitation?. Trends Parasitol. 17(8), 363–368. https://doi.org/10.1016/S1471-4922(01)01927-4 (2001).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Adamo, S. A. Evidence for adaptive changes in egg laying in crickets exposed to bacteria and parasites. Anim. Behav. 57(1), 117–124. https://doi.org/10.1006/anbe.1998.0999 (1999).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Arnqvist, G. & Nilsson, T. The evolution of polyandry: Multiple mating and female fitness in insects. Anim. Behav. 60, 145–164 (2000).

    CAS 
    Article 

    Google Scholar 

  • Parker, G. A., Lessells, C. M. & Simmons, L. W. Sperm competition games: A general model for precopulatory male-male competition. Evolution 67(1), 95–109. https://doi.org/10.1111/j.1558-5646.2012.01741.x (2013).

    Article 
    PubMed 

    Google Scholar 

  • Simmons, L. W., Lüpold, S. & Fitzpatrick, J. L. Evolutionary trade-off between secondary sexual traits and ejaculates. Trends Ecol. Evol. 32(12), 964–976. https://doi.org/10.1016/j.tree.2017.09.011 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Parker, G. A. & Pizzari, T. Sperm competition and ejaculate economics. Biol. Rev. 85(4), 897–934. https://doi.org/10.1111/j.1469-185X.2010.00140.x (2010).

    Article 
    PubMed 

    Google Scholar 

  • Katsuki, M. & Lewis, Z. A trade-off between pre- and post-copulatory sexual selection in a bean beetle. Behav. Ecol. Sociobiol. 69(10), 1597–1602. https://doi.org/10.1007/s00265-015-1971-4 (2015).

    Article 

    Google Scholar 

  • Gage, M. J. G. Continuous variation in reproductive strategy as an adaptive response to population-density in the moth Plodia interpunctella. Proc. R. Soc. B 261(1360), 25–30 (1995).

    ADS 
    Article 

    Google Scholar 

  • Shiel, B. P., Sherman, C. D. H., Elgar, M. A., Johnson, T. L. & Symonds, M. R. E. Investment in sensory structures, testis size, and wing coloration in males of a diurnal moth species: Trade-offs or correlated growth?. Ecol. Evol. 5(8), 1601–1608. https://doi.org/10.1002/ece3.1459 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rolff, J. Bateman’s principle and immunity. Proc. R. Soc. B 269(1493), 867–872. https://doi.org/10.1098/rspb.2002.1959 (2002).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Calabrese, E. J. & Baldwin, L. A. Hormesis: A generalizable and unifying hypothesis. Crit. Rev. Toxicol. 31(4–5), 353–424. https://doi.org/10.1080/20014091111730 (2001).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Calabrese, E. J. & Mattson, M. P. How does hormesis impact biology, toxicology, and medicine?. NPJ Aging Mech. Dis. 3(1), 13. https://doi.org/10.1038/s41514-017-0013-z (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rapid remote monitoring reveals spatial and temporal hotspots of carbon loss in Africa’s rainforests

    Density of invasive western honey bee (Apis mellifera) colonies in fragmented woodlands indicates potential for large impacts on native species