in

Functional susceptibility of tropical forests to climate change

  • Barlow, J. et al. Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature 535, 144–147 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Beech, E., Rivers, M., Oldfield, S. & Smith, P. P. GlobalTreeSearch: the first complete global database of tree species and country distributions. J. Sustain. 36, 454–489 (2017).

    Article 

    Google Scholar 

  • ter Steege, H. et al. The discovery of the Amazonian tree flora with an updated checklist of all known tree taxa. Sci. Rep. 6, 29549 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Maia, V. A. et al. The carbon sink of tropical seasonal forests in southeastern Brazil can be under threat. Sci. Adv. 6, eabd4548 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Malhi, Y. et al. The regional variation of aboveground live biomass in old‐growth Amazonian forests. Glob. Change Biol. 12, 1107–1138 (2006).

    Article 

    Google Scholar 

  • Phillips, O. L. et al. Drought sensitivity of the Amazon rainforest. Science 323, 1344–1347 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Malhi, Y. et al. Climate change, deforestation, and the fate of the Amazon. Science 319, 169–172 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gatti, L. V. et al. Amazonia as a carbon source linked to deforestation and climate change. Nature 595, 388–393 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hisano, M., Searle, E. B. & Chen, H. Y. Biodiversity as a solution to mitigate climate change impacts on the functioning of forest ecosystems. Biol. Rev. 93, 439–456 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Malhi, Y. et al. Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proc. Natl Acad. Sci. USA 106, 20610–20615 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Seager, R. et al. Climatology, variability, and trends in the US vapor pressure deficit, an important fire-related meteorological quantity. J. Appl. Meteorol. Climatol. 54, 1121–1141 (2015).

    Article 

    Google Scholar 

  • Smith, M. N. et al. Empirical evidence for resilience of tropical forest photosynthesis in a warmer world. Nat. Plants 6, 1225–1230 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Yuan, W. et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv. 5, eaax1396 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Costa, F. R. C., Schietti, J., Stark, S. C. & Smith, M. N. The other side of tropical forest drought: do shallow water table regions of Amazonia act as large‐scale hydrological refugia from drought?. New Phytol. https://doi.org/10.1111/nph.17914 (2022).

  • Brodribb, T. J., Powers, J., Cochard, H. & Choat, B. Hanging by a thread? Forests and drought. Science 368, 261–266 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Allen, K. et al. Will seasonally dry tropical forests be sensitive or resistant to future changes in rainfall regimes? Environ. Res. Lett. 12, 023001 (2017).

    Article 

    Google Scholar 

  • Esquivel‐Muelbert, A. et al. Compositional response of Amazon forests to climate change. Glob. Change Biol. 25, 39–56 (2019).

    Article 

    Google Scholar 

  • Aguirre‐Gutiérrez, J. et al. Drier tropical forests are susceptible to functional changes in response to a long‐term drought. Ecol. Lett. 22, 855–865 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Cadotte, M. W., Carscadden, K. & Mirotchnick, N. Beyond species: functional diversity and the maintenance of ecological processes and services. J. Appl. Ecol. 48.5, 1079–1087 (2011).

    Article 

    Google Scholar 

  • Aguirre‐Gutiérrez, J. et al. Butterflies show different functional and species diversity in relationship to vegetation structure and land use. Glob. Ecol. Biogeogr. 26, 1126–1137 (2017).

    Article 

    Google Scholar 

  • Arruda Almeida, B. et al. Comparing species richness, functional diversity and functional composition of waterbird communities along environmental gradients in the neotropics. PLoS ONE 13, e0200959 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Yachi, S. & Loreau, M. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc. Natl Acad. Sci. USA 96, 1463–1468 (1999).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Correia, D. L. P., Raulier, F., Bouchard, M. & Filotas, É. Response diversity, functional redundancy, and post‐logging productivity in northern temperate and boreal forests. Ecol. Appl. 28, 1282–1291 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Elmqvist, T. et al. Response diversity, ecosystem change, and resilience. Front. Ecol. Environ. 1, 488–494 (2003).

    Article 

    Google Scholar 

  • Loreau, M. & de Mazancourt, C. Biodiversity and ecosystem stability: a synthesis of underlying mechanisms. Ecol. Lett. 16, 106–115 (2013).

    PubMed 
    Article 

    Google Scholar 

  • Petchey, O. L., Evans, K. L., Fishburn, I. S. & Gaston, K. J. Low functional diversity and no redundancy in British avian assemblages. J. Anim. Ecol. 76, 977–985 (2007).

    PubMed 
    Article 

    Google Scholar 

  • Jucker, T. et al. Stabilizing effects of diversity on aboveground wood production in forest ecosystems: linking patterns and processes. Ecol. Lett. 17, 1560–1569 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Fonseca, C. R. & Ganade, G. Species functional redundancy, random extinctions and the stability of ecosystems. J. Ecol. 89, 118–125 (2001).

    Article 

    Google Scholar 

  • Aguirre-Gutiérrez, J. et al. Long-term droughts may drive drier tropical forests towards increased functional, taxonomic and phylogenetic homogeneity. Nat. Commun. 11, 3346 (2020).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Fauset, S. et al. Drought‐induced shifts in the floristic and functional composition of tropical forests in Ghana. Ecol. Lett. 15, 1120–1129 (2012).

    PubMed 
    Article 

    Google Scholar 

  • Laliberté, E. & Legendre, P. A distance‐based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Bauman, D. et al. Tropical tree growth sensitivity to climate is driven by species intrinsic growth rate and leaf traits. Glob. Change Biol. 28, 1414–1432 (2022).

    Article 

    Google Scholar 

  • Quesada, C. et al. Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate. Biogeosciences 9, 2203–2246 (2012).

    Article 

    Google Scholar 

  • Bennett, A. C. et al. Resistance of African tropical forests to an extreme climate anomaly. Proc. Natl Acad. Sci. USA 118, e2003169118 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems (eds Shukla, P.R. et al.) (IPCC, 2019).

  • Ashton, I. W., Miller, A. E., Bowman, W. D. & Suding, K. N. Niche complementarity due to plasticity in resource use: plant partitioning of chemical N forms. Ecology 91, 3252–3260 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Petchey, O. L. On the statistical significance of functional diversity effects. Funct. Ecol. 18, 297–303 (2004).

    Article 

    Google Scholar 

  • Bruno, J. F., Stachowicz, J. J. & Bertness, M. D. Inclusion of facilitation into ecological theory. Trends Ecol. Evol. 18, 119–125 (2003).

    Article 

    Google Scholar 

  • ter Steege, H. et al. Continental-scale patterns of canopy tree composition and function across Amazonia. Nature 443, 444–447 (2006).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Raes, N. et al. Botanical richness and endemicity patterns of Borneo derived from species distribution models. Ecography 32, 180–192 (2009).

    Article 

    Google Scholar 

  • Shenkin, A. et al. The influence of ecosystem and phylogeny on tropical tree crown size and shape. Front. For. Glob. Change 3, 501757 (2020).

    Article 

    Google Scholar 

  • Harrison, S., Spasojevic, M. J. & Li, D. Climate and plant community diversity in space and time. Proc. Natl Acad. Sci. USA 117, 4464–4470 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Grossman, J. J., Cavender‐Bares, J., Hobbie, S. E., Reich, P. B. & Montgomery, R. A. Species richness and traits predict overyielding in stem growth in an early‐successional tree diversity experiment. Ecology 98, 2601–2614 (2017).

    PubMed 
    Article 

    Google Scholar 

  • Williams, L. J. et al. Remote spectral detection of biodiversity effects on forest biomass. Nat. Ecol. Evol. 5, 46–54 (2021).

    PubMed 
    Article 

    Google Scholar 

  • Hutchison, C., Gravel, D., Guichard, F. & Potvin, C. Effect of diversity on growth, mortality, and loss of resilience to extreme climate events in a tropical planted forest experiment. Sci. Rep. 8, 15443 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • González-M, R. et al. Diverging functional strategies but high sensitivity to an extreme drought in tropical dry forests. Ecol. Lett. 24, 451–463 (2021).

    PubMed 
    Article 

    Google Scholar 

  • Hoegh-Guldberg, O. et al. in IPCC Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) Ch. 3 (WMO, 2018).

  • de la Riva, E. G. et al. The importance of functional diversity in the stability of Mediterranean shrubland communities after the impact of extreme climatic events. J. Plant Ecol. 10, 281–293 (2017).

    Google Scholar 

  • Reich, P. B. The world-wide “fast-slow” plant economics spectrum: a traits manifesto. J. Ecol. 102, 275–301 (2014).

    Article 

    Google Scholar 

  • Oliveira, R. S. et al. Linking plant hydraulics and the fast–slow continuum to understand resilience to drought in tropical ecosystems. New Phytol. 230, 904–923 (2021).

    PubMed 
    Article 

    Google Scholar 

  • Anderegg, W. R. L. & Meinzer, F. C. in Functional and Ecological Xylem Anatomy (ed Hacke, U.) Ch. 9 (Springer, 2015).

  • Chave, J. et al. Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351–366 (2009).

    PubMed 
    Article 

    Google Scholar 

  • Pratt, R., Jacobsen, A., Ewers, F. & Davis, S. Relationships among xylem transport, biomechanics and storage in stems and roots of nine Rhamnaceae species of the California chaparral. New Phytol. 174, 787–798 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zanne, A. E. et al. Angiosperm wood structure: global patterns in vessel anatomy and their relation to wood density and potential conductivity. Am. J. Bot. 97, 207–215 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Bucci, S. J. et al. The stem xylem of Patagonian shrubs operates far from the point of catastrophic dysfunction and is additionally protected from drought‐induced embolism by leaves and roots. Plant Cell Environ. 36, 2163–2174 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Meinzer, F. C. et al. Coordination of leaf and stem water transport properties in tropical forest trees. Oecologia 156, 31–41 (2008).

    PubMed 
    Article 

    Google Scholar 

  • Scholz F. G., Phillips N. G., Bucci S. J., Meinzer F. C. & Goldstein G. in Size- and Age-Related Changes in Tree Structure and Function (eds Meinzer F. C. C. et al.) 341–361 (Springer, 2011).

  • Mitchell, P. J. et al. Using multiple trait associations to define hydraulic functional types in plant communities of south-western Australia. Oecologia 158, 385–397 (2008).

    PubMed 
    Article 

    Google Scholar 

  • Villagra, Mariana et al. Functional relationships between leaf hydraulics and leaf economic traits in response to nutrient addition in subtropical tree species. Tree Physiol. 33, 1308–1318 (2013).

    PubMed 
    Article 

    Google Scholar 

  • Ishida, Atsushi et al. Coordination between leaf and stem traits related to leaf carbon gain and hydraulics across 32 drought-tolerant angiosperms. Oecologia 156, 193–202 (2008).

    PubMed 
    Article 

    Google Scholar 

  • Malhi, Y. et al. The Global Ecosystems Monitoring network: monitoring ecosystem productivity and carbon cycling across the tropics. Biol. Conserv. 253, 108889 (2021).

    Article 

    Google Scholar 

  • Martin, R. E. et al. Covariance of sun and shade leaf traits along a tropical forest elevation gradient. Front. Plant Sci. 10, 1810 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Enquist, B. J. et al. Assessing trait‐based scaling theory in tropical forests spanning a broad temperature gradient. Glob. Ecol. Biogeogr. 26, 1357–1373 (2017).

    Article 

    Google Scholar 

  • Both, S. et al. Logging and soil nutrients independently explain plant trait expression in tropical forests. New Phytol. 221, 1853–1865 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Oliveras, I. et al. The influence of taxonomy and environment on leaf trait variation along tropical abiotic gradients. Front. For. Glob. Change https://doi.org/10.3389/ffgc.2020.00018 (2020).

  • Gvozdevaite, A. et al. Leaf-level photosynthetic capacity dynamics in relation to soil and foliar nutrients along forest–savanna boundaries in Ghana and Brazil. Tree Physiol. 38, 1912–1925 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Aguirre-Gutiérrez, J. et al. Pantropical modelling of canopy functional traits using Sentinel-2 remote sensing data. Remote Sens. Environ. 252, 112122 (2021).

    Article 

    Google Scholar 

  • Pavoine, S. adiv: an R package to analyse biodiversity in ecology. Methods Ecol. Evol. 11, 1106–1112 (2020).

    Article 

    Google Scholar 

  • Pavoine, S. & Ricotta, C. A simple translation from indices of species diversity to indices of phylogenetic diversity. Ecol. Ind. 101, 552–561 (2019).

    Article 

    Google Scholar 

  • Ricotta, C. et al. Measuring the functional redundancy of biological communities: a quantitative guide. Methods Ecol. Evol. 7, 1386–1395 (2016).

    Article 

    Google Scholar 

  • Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • van der Plas, F., Van Klink, R., Manning, P., Olff, H. & Fischer, M. Sensitivity of functional diversity metrics to sampling intensity. Methods Ecol. Evol. 8, 1072–1080 (2017).

    Article 

    Google Scholar 

  • Rao, C. R. Diversity and dissimilarity coefficients: a unified approach. Theor. Popul. Biol. 21, 24–43 (1982).

    Article 

    Google Scholar 

  • Simpson, E. H. Measurement of diversity. Nature https://doi.org/10.1038/163688a0 (1949).

  • R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).

  • Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 170191 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Fan, Y. Groundwater in the earth’s critical zone: relevance to large-scale patterns and processes. Water Resour. Res. 51, 3052–3069 (2015).

    Article 

    Google Scholar 

  • Moulatlet, G. M. et al. Using digital soil maps to infer edaphic affinities of plant species in Amazonia: problems and prospects. Ecol. Evol. 7, 8463–8477 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Dormann, C. F. et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).

    Article 

    Google Scholar 

  • Vehtari, A., Gelman, A. & Gabry, J. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat. Comput. 27, 1413–1432 (2017).

    Article 

    Google Scholar 

  • Makowski, D., Ben-Shachar, M. S. & Lüdecke, D. bayestestR: Describing effects and their uncertainty, existence and significance within the Bayesian framework. J. Open Source Softw. 4, 1541 (2019).

    Article 

    Google Scholar 

  • Kruschke, J. K. Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan (Academic Press, 2014).


  • Source: Ecology - nature.com

    Cohort dominance rank and “robbing and bartering” among subadult male long-tailed macaques at Uluwatu, Bali

    Solar-powered desalination device wins MIT $100K competition