in

Hardship at birth alters the impact of climate change on a long-lived predator

  • Seneviratne, S. I. et al. Changes in climate extremes and their impacts on the natural physical environment. in Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change (Field, C.B. et al. eds) vol. 9781107025 109–230 (Cambridge University Press, 2012).

  • Tan, X., Gan, T. Y. & Horton, D. E. Projected timing of perceivable changes in climate extremes for terrestrial and marine ecosystems. Glob. Chang. Biol. 24, 4696–4708 (2018).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Parmesan, C., Root, T. L. & Willig, M. R. Impacts of extreme weather and climate on terrestrial biota. Bull. Am. Meteorol. Soc. 81, 443–450 (2000).

    ADS 
    <a data-track="click" rel="nofollow noopener" data-track-label="10.1175/1520-0477(2000)0812.3.CO;2″ data-track-action=”article reference” href=”https://doi.org/10.1175%2F1520-0477%282000%29081%3C0443%3AIOEWAC%3E2.3.CO%3B2″ aria-label=”Article reference 3″>Article 

    Google Scholar 

  • Van de Pol, M., Jenouvrier, S., Cornelissen, J. H. C. & Visser, M. E. Behavioural, ecological and evolutionary responses to extreme climatic events: challenges and directions. Philos. Trans. R. Soc. B Biol. Sci. 372, 1–16 (2017).

  • Smith, M. D. An ecological perspective on extreme climatic events: a synthetic definition and framework to guide future research. J. Ecol. 99, 656–663 (2011).

    Article 

    Google Scholar 

  • Wingfield, J. C. et al. How birds cope physiologically and behaviourally with extreme climatic events. Philos. Trans. R. Soc. B Biol. Sci. 372, 1–10 (2017).

  • Sergio, F., Blas, J. & Hiraldo, F. Animal responses to natural disturbance and climate extremes: a review. Glob. Planet. Change. 161, 28–40 (2018).

    ADS 
    Article 

    Google Scholar 

  • Aghakouchak, A. et al. Climate Extremes and Compound Hazards in a Warming World. Annu. Rev. Earth Planet. Sci. 48, 519–548 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Schewe, J. et al. State-of-the-art global models underestimate impacts from climate extremes. Nat. Commun. 10, 1–14 (2019).

    CAS 
    Article 

    Google Scholar 

  • Boyce, M. S. et al. Demography in an increasingly variable world. Trends Ecol. Evol. 21, 141–148 (2006).

    PubMed 
    Article 

    Google Scholar 

  • Lindström, J. Early development and fitness in birds and mammals. Trends Ecol. Evol. 14, 343–348 (1999).

    PubMed 
    Article 

    Google Scholar 

  • Monaghan, P. Early growth conditions, phenotypic development and environmental change. Philos. Trans. R. Soc. B Biol. Sci. 363, 1635–1645 (2008).

    Article 

    Google Scholar 

  • Nussey, D. H., Kruuk, L. E. B., Morris, A. & Clutton-Brock, T. H. Environmental conditions in early life influence ageing rates in a wild population of red deer. Curr. Biol. 17, 1000–1001 (2007).

    Article 
    CAS 

    Google Scholar 

  • Van De Pol, M., Bruinzeel, L. W., Heg, D., Van Der Jeugd, H. P. & Verhulst, S. A silver spoon for a golden future: long-term effects of natal origin on fitness prospects of oystercatchers (Haematopus ostralegus). J. Anim. Ecol. 75, 616–626 (2006).

    PubMed 
    Article 

    Google Scholar 

  • Reid, J. M., Bignal, E. M., Bignal, S., McCracken, D. I. & Monaghan, P. Environmental variability, life-history covariation and cohort effects in the red-billed chough Pyrrhocorax pyrrhocorax. J. Anim. Ecol. 72, 36–46 (2003).

    Article 

    Google Scholar 

  • Hamel, S., Gaillard, J. M., Festa-Bianchet, M. & Côté, S. D. Individual quality, early-life conditions, and reproductive success in contrasted populations of large herbivores. Ecology 90, 1981–1995 (2009).

    PubMed 
    Article 

    Google Scholar 

  • Kordosky, J. R. et al. Landscape of stress: tree mortality influences physiological stress and survival in a native mesocarnivore. PLoS One. 16, 1–22 (2021).

    Article 
    CAS 

    Google Scholar 

  • Millon, A., Petty, S. J., Little, B. & Lambin, X. Natal conditions alter age-specific reproduction but not survival or senescence in a long-lived bird of prey. J. Anim. Ecol. 80, 968–975 (2011).

    PubMed 
    Article 

    Google Scholar 

  • Mugabo, M., Marquis, O., Perret, S. & Le Galliard, J. F. Immediate and delayed life history effects caused by food deprivation early in life in a short-lived lizard. J. Evol. Biol. 23, 1886–1898 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Taborsky, B. The influence of juvenile and adult environments on life-history trajectories. Proc. R. Soc. B Biol. Sci. 273, 741–750 (2006).

    Article 

    Google Scholar 

  • Hayward, A. D., Rickard, I. J. & Lummaa, V. Influence of early-life nutrition on mortality and reproductive success during a subsequent famine in a preindustrial population. Proc. Natl Acad. Sci. 110, 13886–13891 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Korpimäki, E. & Lagerström, M. Survival and natal dispersal of fledglings of Tengmalm’s owl in relation to fluctuating food conditions and hatching date. J. Anim. Ecol. 57, 433–441 (1988).

    Article 

    Google Scholar 

  • Gluckman, P. D., Hanson, M. A. & Spencer, H. G. Predictive adaptive responses and human evolution. Trends Ecol. Evol. 20, 527–533 (2005).

    PubMed 
    Article 

    Google Scholar 

  • Gluckman, P. D., Hanson, M. A., Spencer, H. G. & Bateson, P. Environmental influences during development and their later consequences for health and disease: implications for the interpretation of empirical studies. Proc. R. Soc. B Biol. Sci. 272, 671–677 (2005).

    Article 

    Google Scholar 

  • Grafen, A. On the uses of data on lifetime reproductive success. in Reproductive Success (ed. T. H. Clutton-Brock) 454–471 (Chicago University Press, 1988).

  • Jenouvrier, S., Péron, C. & Weimerskirch, H. Extreme climate events and individual heterogeneity shape lifehistory traits and population dynamics. Ecol. Monogr. 85, 605–623 (2015).

    Article 

    Google Scholar 

  • McNamara, J. M. & Houston, A. I. State-dependent life histories. Nature 380, 215–221 (1996).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Douhard, M. et al. Fitness consequences of environmental conditions at different life stages in a long-lived vertebrate. Proc. R. Soc. B Biol. Sci. 281, 1–8 (2014).

  • Monaghan, P. Organismal stress, telomeres and life histories. J. Exp. Biol. 217, 57–66 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Zimmer, C., Larriva, M., Boogert, N. J. & Spencer, K. A. Transgenerational transmission of a stress-coping phenotype programmed by early-life stress in the Japanese quail. Sci. Rep. 7, 1–19 (2017).

    Article 
    CAS 

    Google Scholar 

  • Krause, E. T., Honarmand, M., Wetzel, J. & Naguib, M. Early fasting is long lasting: differences in early nutritional conditions reappear under stressful conditions in adult female zebra finches. PLoS One. 4, 1–6 (2009).

    Article 
    CAS 

    Google Scholar 

  • Martin, T. G. et al. Acting fast helps avoid extinction. Conserv. Lett. 5, 274–280 (2012).

    Article 

    Google Scholar 

  • Lewontin, R. C. & Cohen, D. On population growth in a randomly varying environment. Proc. Natl Acad. Sci. 62, 1056–1060 (1969).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Sæther, B. E. & Bakke, Ø. Avian life history variation and contribution of demographic traits to the population growth rate. Ecology 81, 642–653 (2000).

    Article 

    Google Scholar 

  • Morris, W. F. & Doak, D. F. Buffering of Life Histories against Environmental Stochasticity: Accounting for a Spurious Correlation between the Variabilities of Vital Rates and Their Contributions to Fitness. Am. Nat. 163, 579–590 (2004).

    PubMed 
    Article 

    Google Scholar 

  • Rodríguez-Caro, R. C. et al. The limits of demographic buffering in coping with environmental variation. Oikos 130, 1346–1358 (2021).

    Article 

    Google Scholar 

  • Bakker, V. J., Doak, D. F. & Ferrara, F. J. Understanding extinction risk and resilience in an extremely small population facing climate and ecosystem change. Ecosphere 12, 1–20 (2021).

  • Beissinger, S. R. Modeling extinction in periodic environments: Everglades water levels and Snail Kite population viability. Ecol. Appl. 5, 618–631 (1995).

    Article 

    Google Scholar 

  • Simberloff, D. Small and declining populations. in Conservation science and action (ed. Sutherland, W. J.) 116–134 (Blackwell, 1998).

  • Caughley, G. Directions in conservation biology. J. Anim. Ecol. 63, 215–244 (1994).

  • Blake, J. G. & Loiselle, B. A. Enigmatic declines in bird numbers in lowland forest of eastern Ecuador may be a consequence of climate change. PeerJ. 2015, 1–20 (2015).

    Google Scholar 

  • Whitfield, S. M. et al. Amphibian and reptile declines over 35 years at La Selva, Costa Rica. Proc. Natl Acad. Sci. 104, 8352–8356 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS One 12, (2017).

  • González, L. M., Margalida, A., Sánchez, R. & Oria, J. Supplementary feeding as an effective tool for improving breeding success in the Spanish imperial eagle (Aquila adalberti). Biol. Conserv. 129, 477–486 (129AD).

  • García, F. & Marín, C. Doñana: water and biosphere. (Spanish Ministry of the Environment, 2006).

  • Díaz-Paniagua, C. & Aragonés, D. Permanent and temporary ponds in Doñana National Park (SW Spain) are threatened by desiccation. Limnetica 34, 407–424 (2015).

    Google Scholar 

  • Schmidt, G. et al. The state of water in Doñana: an evaluation of the state of the water and of the ecosystems of the protected space. (WWF/Adena, Madrid, 2017).

  • Camacho, C. et al. Groundwater extraction poses extreme threat to Doñana World Heritage Site. Nat. Ecol. Evol. 6, 654–655 (2022).

  • Navedo, J. G., Piersma, T., Figuerola, J. & Vansteelant, W. Spain’s Doñana World Heritage Site in danger. Science 376, 144 (2022).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Giorgi, F. & Lionello, P. Climate change projections for the Mediterranean region. Glob. Planet. Change. 63, 90–104 (2008).

    ADS 
    Article 

    Google Scholar 

  • Goubanova, K. & Li, L. Extremes in temperature and precipitation around the Mediterranean basin in an ensemble of future climate scenario simulations. Glob. Planet. Change 57, 27–42 (2007).

    ADS 
    Article 

    Google Scholar 

  • Hertig, E. & Tramblay, Y. Regional downscaling of Mediterranean droughts under past and future climatic conditions. Glob. Planet. Change. 151, 36–48 (2017).

    ADS 
    Article 

    Google Scholar 

  • Bustamante, J., Pacios, F., Díaz-Delgado, R. & Aragonés, D. Predictive models of turbidity and water depth in the Doñana marshes using Landsat TM and ETM+ images. J. Environ. Manag. 90, 2219–2225 (2009).

    Article 

    Google Scholar 

  • Veiga, J. P. & Hiraldo, F. Food habits and the survival and growth of nestlings in two sympatric kites (Milvus milvus and Milvus migrans). Ecography (Cop.). 13, 62–71 (1990).

    Article 

    Google Scholar 

  • Viñuela, J. & Bustamante, J. Effect of growth and hatching asynchrony on the fledging age of Black and Red Kites. Auk 109, 748–757 (1992).

    Article 

    Google Scholar 

  • Newton, I., Davis, P. E. & Davis, J. E. Age of first breeding, dispersal and survival of Red Kites Milvus milvus in Wales. Ibis (Lond. 1859). 131, 16–21 (1989).

    Article 

    Google Scholar 

  • Katzenberger, J., Gottschalk, E., Balkenhol, N. & Waltert, M. Density-dependent age of first reproduction as a key factor for population dynamics: stable breeding populations mask strong floater declines in a long-lived raptor. Anim. Conserv. 24, 862–875 (2021).

    Article 

    Google Scholar 

  • Sergio, F., Tavecchia, G., Blas, J., Tanferna, A. & Hiraldo, F. Demographic modeling to fine-tune conservation targets: importance of pre-adults for the decline of an endangered raptor. Ecol. Appl. 31, 1–12 (2021).

    Article 

    Google Scholar 

  • Sergio, F. et al. Protected areas under pressure: decline, redistribution, local eradication and projected extinction of a threatened predator, the red kite, in Doñana National Park, Spain. Endanger. Species Res. 38, 189–204 (2019).

    Article 

    Google Scholar 

  • Sergio, F. et al. Preservation of wide-ranging top predators by site-protection: black and red kites in Doñana National Park. Biol. Conserv. 125, 11–21 (2005).

    Article 

    Google Scholar 

  • Sofaer, H. R., Chapman, P. L., Sillett, T. S. & Ghalambor, C. K. Advantages of nonlinear mixed models for fitting avian growth curves. J. Avian Biol. 44, 469–478 (2013).

    Google Scholar 

  • Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed effects models and extensions in ecology with R (Springer, New York, 2009).

  • Lebreton, J. D., Burnham, K. P., Clobert, J. & Anderson, D. R. Modeling survival and testing biological hypotheses using marked animals: a unified approach with case studies. Ecol. Monogr. 62, 67–118 (1992).

    Article 

    Google Scholar 

  • Anderson, D. R. Model based inference in the life sciences: a primer on evidence (Springer, 2008).

  • White, G. C. & Burnham, K. P. Program mark: survival estimation from populations of marked animals. Bird. Study. 46, S120–S139 (1999).

    Article 

    Google Scholar 

  • Grosbois, V. & Tavecchia, G. Modeling dispersal with capture-recapture data: disentangling decisions of leaving and settlement. Ecology 84, 1225–1236 (2003).

    Article 

    Google Scholar 

  • Caswell, H. Matrix population models (Sinauer, 2001).

  • Ballerini, T., Tavecchia, G., Pezzo, F., Jenouvrier, S. & Olmastroni, S. Predicting responses of the Adélie penguin population of Edmonson Point to future sea ice changes in the Ross Sea. Front. Ecol. Evol. 3, 1–11 (2015).

  • Bateson, P. et al. Developmental plasticity and human health. Nature 430, 419–421 (2004).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Waste slag benefits for correction of soil acidity

    Honey bees save energy in honey processing by dehydrating nectar before returning to the nest