in

Leucistic plumage as a result of progressive greying in a cryptic nocturnal bird

  • Rutz, C. Predator fitness increases with selectivity for odd prey. Curr. Biol. 22, 820–824 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Santos, C. D. et al. Personality and morphological traits affect pigeon survival from raptor attacks. Sci. Rep. 5, 1–8 (2015).

    Google Scholar 

  • Brown, M. B. & Wells, E. Skeletal dysplasia-like syndromes in wild giraffe. BMC Res. Notes 13, 569 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • van Grouw, H. What colour is that bird? The causes and recognition of common colour aberrations in birds. Br. Birds 106, 17–29 (2013).

    Google Scholar 

  • Slagsvold, T., Rofstad, G. & Sandvik, J. Partial albinism and natural selection in the hooded crow Corvus corone cornix. J. Zool. 214, 157–166 (1988).

    Google Scholar 

  • Stevens, M. et al. Revealed by conspicuousness: distractive markings reduce camouflage. Behav. Ecol. 24, 213–222 (2013).

    Google Scholar 

  • van Grouw, H. What’s in a name? Nomenclature for colour aberrations in birds reviewed. Bull. Br. Ornithol. Club 141, 276–299 (2021).

    Google Scholar 

  • Parsons, G. J. & Bonderup-Nielsen, S. Partial albinism in an island population of Meadow Voles, Microtus pennsylvanicus, from Nova Scotia. Can. Field-Nat. 109, 263–264 (1995).

    Google Scholar 

  • Reis, A. da S., Zampaulo, R. de A. & Talamoni, S. A. Frequency of leucism in a colony of Anoura geoffroyi (Chiroptera: Phyllostomidae) roosting in a ferruginous cave in Brazil. Biota Neotropica 19(3): e20180676. https://doi.org/10.1590/1676-0611-BN-2018-0676 (2019).

  • Jehl, J. R. Leucism in Eared Grebes in western north America. Condor 87, 439–441 (1985).

    Google Scholar 

  • Forrest, S. & Naveen, R. Prevalence of leucism in Pygoscelid penguins of the Antarctic peninsula. Waterbirds 23, 283–285 (2000).

    Google Scholar 

  • González-Ortegón, E., Drake, P., Quigley, D. T. G. & Cuesta, J. A. Leucism in the European sardine Sardina pilchardus (Clupeidae). Ecol. Indic. 117, 106544 (2020).

    Google Scholar 

  • David, B. Z. First report of partial leucism in the poison frog Epipedobates anthonyi (Anura: Dendrobatidae) in El Oro, Ecuador. Neotrop. Biodivers. 7, 1–4 (2021).

    Google Scholar 

  • Krecsák, L. Albinism and leucism among European Viperinae: a review. Russ. J. Herpetol. 15, 97–102 (2008).

    Google Scholar 

  • Ritland, K., Newton, C. & Marshall, H. D. Inheritance and population structure of the white-phased “Kermode” black bear. Curr. Biol. 11, 1468–1472 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Galván, I., Bijlsma, R. G., Negro, J. J., Jarén, M. & Garrido-Fernández, J. Environmental constraints for plumage melanization in the northern goshawk Accipiter gentilis. J. Avian Biol. 41, 523–531 (2010).

    Google Scholar 

  • Pijpe, A., Gardien, K. L. M., Meijeren-Hoogendoorn, R. E. van, Middelkoop, E. & Zuijlen, P. P. M. van. Scar Symptoms: Pigmentation Disorders in Textbook On Scar Management (eds. Téot, L., Mustoe, T. A., Middelkoop, E. & Gauglitz, G. G.) 109–115 (Springer, 2020).

  • Edelaar, P. et al. Apparent selective advantage of leucism in a coastal population of Southern caracaras (Falconidae). Evol. Ecol. Res. 13, 187–196 (2011).

    Google Scholar 

  • Ellegren, H., Lindgren, G., Primmer, C. R. & Møller, A. P. Fitness loss and germline mutations in barn swallows breeding in Chernobyl. Nature 389, 593–596 (1997).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Benítez-López, A. & García-Egea, I. First record of an aberrantly colored Pin-tailed Sandgrouse (Pterocles alchata). Wilson J. Ornithol. 127, 755–759 (2015).

    Google Scholar 

  • Zbyryt, A., Mikula, P., Ciach, M., Morelli, F. & Tryjanowski, P. A large-scale survey of bird plumage colour aberrations reveals a collection bias in Internet-mined photographs. Ibis 163, 566–578 (2020).

    Google Scholar 

  • Bensch, S., Hansson, B., Hasselquist, D. & Nielsen, B. Partial albinism in a semi-isolated population of Great Reed Warblers. Hereditas 133, 167–170 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Izquierdo, L. et al. Factors associated with leucism in the common blackbird Turdus merula. J. Avian Biol. 49, e01778 (2018).

    Google Scholar 

  • Møller, A. P. & Mousseau, T. A. Albinism and phenotype of barn swallows (Hirundo rustica) from Chernobyl. Evolution 55, 2097–2104 (2001).

    PubMed 

    Google Scholar 

  • Troscianko, J., Wilson-Aggarwal, J., Stevens, M. & Spottiswoode, C. N. Camouflage predicts survival in ground-nesting birds. Sci. Rep. 6, 1–8 (2016).

    Google Scholar 

  • Aragonés, J., Arias de Reyna, L. & Recuerda, P. Visual communication and sexual selection in a nocturnal bird species, Caprimulgus ruficollis, a balance between crypsis and conspicuousness. Wilson Bull. 111, 340–345 (1999).

    Google Scholar 

  • Negro, J. J., Bortolotti, G. R. & Sarasola, J. H. Deceptive plumage signals in birds: manipulation of predators or prey? Biol. J. Linn. Soc. 90, 467–477 (2007).

    Google Scholar 

  • Brooke, M. de L. Unexplained recurrent features of the plumage of birds. Ibis 152, 845–847 (2010).

  • Forero, M. G., Tella, J. L. & García, L. Age related evolution of sexual dimorphism in the Red-necked Nightjar Caprimulgus ruficollis. J. Ornithol. 136, 447–451 (1995).

    Google Scholar 

  • Camacho, C. Early age at first breeding and high natal philopatry in the Red-necked Nightjar Caprimulgus ruficollis. Ibis 156, 442–445 (2014).

    Google Scholar 

  • Camacho, C. et al. The road to opportunities: landscape change promotes body-size divergence in a highly mobile species. Curr. Zool. 62, 7–14 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Forero, M. G., Tella, J. L. & Oro, D. Annual survival rates of adult Red-necked Nightjars Caprimulgus ruficollis. Ibis 143, 273–277 (2001).

    Google Scholar 

  • Henner, J. et al. Genetic mapping of the (G)-locus responsible for the coat color phenotype “Progressive Greying with Age” in horses (Equus caballus). Mamm. Genome 13, 535–537 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • Edson, J. M. An epidemic of albinism. Auk 45, 377–378 (1928).

    Google Scholar 

  • Camacho, C., Palacios, S., Sáez, P., Sánchez, S. & Potti, J. Human-induced changes in landscape configuration influence individual movement routines: lessons from a versatile, highly mobile species. PLoS ONE 9, e104974 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Enders, F. & Post, W. White-spotting in the genus Ammospiza and other grassland sparrows. Bird-Band. 42, 210–219 (1971).

    Google Scholar 

  • Sage, B. L. Albinism and melanism in birds. Br. Birds 55, 201–225 (1962).

    Google Scholar 

  • O’Sullivan, J. D. B. et al. The biology of human hair greying. Biol. Rev. 96, 107–128 (2021).

    PubMed 

    Google Scholar 

  • Nichols, J. D., Hines, J. E. & Blums, P. Tests for senescent decline in annual survival probabilities of common pochards, Aythya ferina. Ecology 78, 1009–1018 (1997).

    Google Scholar 

  • Owen, M. & Skimmings, P. The occurrence and performance of leucistic Barnacle Geese Branta leucopsis. Ibis 134, 22–26 (1992).

    Google Scholar 

  • Mulder, T., Campbell, C. J. & Ruxton, G. D. Evaluation of disruptive camouflage of avian cup-nests. Ibis 163, 150–158 (2021).

    Google Scholar 

  • Holyoak, D. Variable albinism of the flight feathers as an adaptation for recognition of individual birds in some Polynesian populations of Acrocephalus warblers. Ardea 66, 112–117 (1978).

    Google Scholar 

  • Griffith, S. C., Parker, T. H. & Olson, V. A. Melanin- versus carotenoid-based sexual signals: is the difference really so black and red? Anim. Behav. 71, 749–763 (2006).

    Google Scholar 

  • Galván, I., Jorge, A., Nielsen, J. T. & Møller, A. P. Pheomelanin synthesis varies with protein food abundance in developing goshawks. J. Comp. Physiol. B 189, 441–450 (2019).

    PubMed 

    Google Scholar 

  • Zaragoza-Trello, C., Vilà, M., Botías, C. & Bartomeus, I. Interactions among global change pressures act in a non-additive way on bumblebee individuals and colonies. Funct. Ecol. 35, 420–434 (2021).

    Google Scholar 

  • Rollin, N. A note on abnormally marked Song Thrushes and Blackbirds. Trans. Nat. Hist. Soc. Northumberl. Durh. Newctle upon Tyne 10, 183–184 (1953).

  • Guerrero-Bosagna, C. et al. Transgenerational epigenetic inheritance in birds. Environ. Epigenet. 4, dvy008 (2018).

  • Camacho, C., Negro, J. J., Redondo, I., Palacios, S. & Sáez-Gómez, P. Correlates of individual variation in the porphyrin-based fluorescence of red-necked nightjars (Caprimulgus ruficollis). Sci. Rep. 9, 1–9 (2019).

    Google Scholar 

  • Camacho, C. Tropical phenology in temperate regions: extended breeding season in a long-distance migrant. Condor 115, 830–837 (2013).

    Google Scholar 

  • Cleere, N. Nightjars: a guide to nightjars and related birds (A&C Black, London, 2010).

    Google Scholar 

  • Gargallo, G. Flight feather moult in the red-necked nightjar Caprimulgus ruficollis. J. Avian Biol. 25, 119–124 (1994).

    Google Scholar 

  • Jackson, H. D. A field survey to investigate why nightjars frequent roads at night. Ostrich 74, 97–101 (2003).

    Google Scholar 

  • Jackson, H. D. Finding and trapping nightjars. Bokmakierie 36, 86–89 (1984).

    Google Scholar 

  • Sénar, J. C. & Pascual, J. Keel and tarsus length may provide a good predictor of avian body size. Ardea 85, 269–274 (1997).

    Google Scholar 

  • Svensson, L. Identification Guide To European Passerines (Lars Svensson, Cleveland, 1992).

    Google Scholar 

  • van de Pol, M. & Wright, J. A simple method for distinguishing within-versus between-subject effects using mixed models. Anim. Behav. 77, 753–758 (2009).

    Google Scholar 

  • Schielzeth, H. & Forstmeier, W. Conclusions beyond support: overconfident estimates in mixed models. Behav. Ecol. 20, 416–420 (2009).

    PubMed 

    Google Scholar 

  • Rising, J. D. & Somers, K. M. The measurement of overall body size in birds. Auk 106, 666–674 (1989).

    Google Scholar 

  • Magnusson, A. et al. Package “glmmTMB”. R Package Version 0.2.0. (2017).

  • Hartig, F. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. R package version 0.2, 4. (2019).

  • Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).

    Google Scholar 

  • Barton, K. MuMIn: Multi-Model inference. Model selection and model averaging based on information criteria (AICc and alike). R package version 1.43.17. (2020).

  • An integrated multiple driver mesocosm experiment reveals the effect of global change on planktonic food web structure

    Diversity of prokaryotic microorganisms in alkaline saline soil of the Qarhan Salt Lake area in the Qinghai–Tibet Plateau