in

Metadata analysis indicates biased estimation of genetic parameters and gains using conventional pedigree information instead of genomic-based approaches in tree breeding

  • Beaulieu, J. et al. Genomic selection for resistance to spruce budworm in white spruce and relationships with growth and wood quality traits. Evol. Appl. 13, 2704–2722 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lenz, P. et al. Multi-trait genomic selection for weevil resistance, growth and wood quality in Norway spruce. Evol. Appl. 13, 76–94 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Lebedev, V. G., Lebedeva, T. N., Chernodubov, A. I. & Shestibratov, K. A. Genomic selection for forest tree improvement: Methods, achievements and perspectives. Forests 11, 1190 (2020).

    Google Scholar 

  • Mullin, T. J. et al. Economic importance, breeding objectives and achievements. In Genetics, Genomics and Breeding of Conifers (eds Plomion, C. et al.) (Science Publishers & CRC Press, 2011).

    Google Scholar 

  • Zhang, J., Peter, G. F., Powell, G. L., White, T. L. & Gezan, S. A. Comparison of breeding values estimated between single-tree and multiple-tree plots for a slash pine population. Tree Genet. Genomes 11, 48 (2015).

    CAS 

    Google Scholar 

  • Martínez-García, P. J. et al. Predicting breeding values and genetic components using generalized linear mixed models for categorical and continuous traits in walnut (Juglans regia). Tree Genet. Genomes 13, 109 (2017).

    Google Scholar 

  • Weng, Y., Ford, R., Tong, Z. & Krasowski, M. Genetic parameters for bole straightness and branch angle in Jack pine estimated using linear and generalized linear mixed models. For. Sci. 63, 111–117 (2017).

    Google Scholar 

  • Mrode, R. A. Linear Models for the Prediction of Animal Breeding Values 2nd edn. (CAB International, 2005).

    Google Scholar 

  • Henderson, C. R. Theoretical bias and computational methods for a number of different animal models. J. Dairy Sci. 71, 1–16 (1988).

    Google Scholar 

  • Falconer, D. S. & Mackay, T. F. C. Introduction to Quantitative Genetics 4th edn. (Longman Publishing Group, 1996).

    Google Scholar 

  • Henderson, C. R. A simple method for computing the inverse of a numerator relationship matrix used in prediction of breeding values. Biometrics 32, 69–83 (1976).

    MATH 

    Google Scholar 

  • Wright, S. Coefficients of inbreeding and relationship. Am. Nat. 56, 330–338 (1922).

    Google Scholar 

  • Hill, W. G. & Weir, B. S. Variation in actual relationship as a consequence of Mendelian sampling and linkage. Genet. Res. 93, 47–64 (2011).

    CAS 

    Google Scholar 

  • Doerksen, T. K. & Herbinger, C. M. Male reproductive success and pedigree error in red spruce open-pollinated and polycross mating systems. Can. J. For. Res. 38, 1742–1749 (2008).

    Google Scholar 

  • Godbout, J. et al. Development of a traceability system based on SNP array for the large-scale production of high-value white spruce (Picea glauca). Front. Plant Sci. 8, 1264 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Galeano, E., Bousquet, J. & Thomas, B. R. SNP-based analysis reveals unexpected features of genetic diversity, parental contributions and pollen contamination in a white spruce breeding program. Sci. Rep. 11, 4990 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lenz, P. et al. Genomic prediction for hastening and improving efficiency of forward selection in conifer polycross mating designs: An example from white spruce. Heredity 124, 562–578 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Askew, G. R. & El-Kassaby, Y. A. Estimation of relationship coefficients among progeny derived from wind-pollinated orchard seeds. Theor. Appl. Genet. 88, 267–272 (1994).

    CAS 
    PubMed 

    Google Scholar 

  • Doerksen, T. K., Bousquet, J. & Beaulieu, J. Inbreeding depression in intra-provenance crosses driven by founder relatedness in white spruce. Tree Genet. Genomes 10, 203–212 (2014).

    Google Scholar 

  • Meuwissen, T. H. E., Hayes, B. J. & Goddard, M. E. Prediction of total genetic value using genome-wide dense marker maps. Genetics 157, 1819–1829 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Heffner, E. L., Lorenz, A. J., Jannink, J.-L. & Sorrels, M. E. Plant breeding with genomic selection: Gain per unit time and cost. Crop Sci. 50, 1681–1690 (2010).

    Google Scholar 

  • Grattapaglia, D. & Resende, M. D. V. Genomic selection in forest tree breeding. Tree Genet. Genomes 7, 241–255 (2011).

    Google Scholar 

  • Beaulieu, J., Doerksen, T., Clément, S., MacKay, J. & Bousquet, J. Accuracy of genomic selection models in a large population of open-pollinated families in white spruce. Heredity 113, 342–352 (2014).

    Google Scholar 

  • Habier, D., Tetens, J., Seefried, F.-R., Lichtner, P. & Thaller, G. The impact of genetic relationship information on genomic breeding values in German Holstein cattle. Gen. Select. Evol. 42, 5 (2010).

    Google Scholar 

  • Perkel, J. SNP genotyping: six technologies that keyed a revolution. Nat. Methods 5, 447–454 (2008).

    CAS 

    Google Scholar 

  • Pavy, N. et al. Development of high-density SNP genotyping arrays for white spruce (Picea glauca) and transferability to subtropical and nordic congeners. Mol. Ecol. Res. 13, 324–336 (2013).

    CAS 

    Google Scholar 

  • Thomson, M. J. High-throughput genotyping to accelerate crop improvement. Plant Breed. Biotechnol. 2, 195–212 (2014).

    Google Scholar 

  • Beaulieu, J., Doerksen, T., MacKay, J., Rainville, A. & Bousquet, J. Genomic selection accuracies within and between environments and small breeding groups in white spruce. BMC Genomics 15, 1048 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, L., Chen, R., Fugina, C. J., Siegel, B. & Jackson, D. High-throughput and low-cost genotyping method for plant genome editing. Curr. Prot. 1, e100 (2021).

    CAS 

    Google Scholar 

  • Lenz, P. et al. Factors affecting the accuracy of genomic selection for growth and wood quality traits in an advanced-breeding population of black spruce (Picea mariana). BMC Genomics 18, 335 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • de los Campos, G., Hickey, J. M., Pong-Wong, R., Daetwyler, H. D. & Calus, M. P. L. Whole-genome regression and prediction models applied to plant and animal breeding. Genetics 193, 327–345 (2013).

    PubMed Central 

    Google Scholar 

  • Hoerl, A. E. & Kennard, R. W. Ridge regression: biased estimation for non-orthogonal problems. Technometrics 12, 55–67 (1970).

    MATH 

    Google Scholar 

  • Tibshirani, R. Regression shrinkage and selection via the LASSO. J. R. Stat. Soc. Series B. 58, 267–288 (1996).

    MathSciNet 
    MATH 

    Google Scholar 

  • VanRaden, P. M. Efficient methods to compute genomic predictions. J. Dairy Sci. 91, 4414–4423 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Legarra, A., Aguilar, I. & Misztal, I. A relationship matrix including full pedigree and genomic information. J. Dairy Sci. 92, 4656–4663 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Zapata-Valenzuela, J., Whetten, R. W., Neale, D., McKeand, S. & Isik, F. Genomic estimated breeding values using genomic relationship matrices in a cloned population of loblolly pine. Genes Genomes Genet. 3, 909–916 (2013).

    Google Scholar 

  • Muñoz, P. R. et al. Unraveling additive from non-additive effects using genomic relationship matrices. Genetics 198, 1759–1768 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ratcliffe, B. et al. Single-step BLUP with varying genotyping effort in open-pollinated Picea glauca. Genes Genomes Genet. 7, 935–942 (2017).

    Google Scholar 

  • Gamal El-Dien, O. et al. Multienvironment genomic variance decomposition analysis of open-pollinated Interior spruce (Picea glauca x engelmannii). Mol. Breed. 38, 26 (2018).

    Google Scholar 

  • Zobel, B. J. & Sprague, J. R. Juvenile Wood in Forest Trees (Springer, 1988).

    Google Scholar 

  • Osorio, L. F., White, T. L. & Huber, D. A. Age trends of heritabilities and genotype-by-environment interactions for growth traits and wood density from clonal trials of Eucalyptus grandis Hill ex Maiden. Silv. Genet. 50, 108–117 (2000).

    Google Scholar 

  • Baltunis, B. S., Gapare, W. J. & Wu, H. X. Genetic parameters and genotype by environment interaction in radiata pine for growth and wood quality traits in Australia. Silv. Genet. 59, 113–124 (2010).

    Google Scholar 

  • Gamal El-Dien, O. et al. Prediction accuracies for growth and wood attributes of interior spruce in space using genotyping-by-sequencing. BMC Genomics 16, 370 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Resende, M. D. V. et al. Genomic selection for growth and wood quality in Eucalyptus: Capturing the missing heritability and accelerating breeding for complex traits in forest trees. New Phytol. 194, 116–128 (2012).

    PubMed 

    Google Scholar 

  • Chen, Z.-Q. et al. Accuracy of genomic selection for growth and wood quality traits in two control-pollinated progeny trials using exome capture as the genotyping platform in Norway spruce. BMC Genomics 19, 946 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Beaulieu, J., Perron, M. & Bousquet, J. Multivariate patterns of adaptive genetic variation and seed source transfer in Picea mariana. Can. J. For. Res. 34, 531–545 (2004).

    Google Scholar 

  • Li, P., Beaulieu, J. & Bousquet, J. Genetic structure and patterns of genetic variation among populations in eastern white spruce (Picea glauca). Can. J. For. Res. 27, 189–198 (1997).

    Google Scholar 

  • Namkoong, G. Inbreeding effects on estimation of genetic additive variance. For. Sci. 12, 8–13 (1966).

    Google Scholar 

  • Squillace, A. E. Average genetic correlations among offspring from open-pollinated forest trees. Silv. Genet. 23, 149–156 (1974).

    Google Scholar 

  • Muñoz, P. R. et al. Genomic relationship matrix for correcting pedigree errors in breeding populations: impact on genetic parameters and genomic selection accuracy. Crop Sci. 53, 1115–1123 (2014).

    Google Scholar 

  • Tan, B. et al. Evaluating the accuracy of genomic prediction of growth and wood traits in two Eucalyptus species and their F1 hybrids. BMC Plant Biol. 17, 110 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Weigel, K. A., VanRaden, P. M., Norman, H. D. & Grosu, H. A 100-year review: Methods and impact of genetic selection in dairy cattle—From daughter-dam comparisons to deep learning algorithms. J. Dairy Sci. 100, 10234–10250 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Grattapaglia, D. et al. Quantitative genetics and genomics converge to accelerate forest tree breeding. Front. Plant Sci. 9, 1693 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Park, Y.-S., Beaulieu, J. & Bousquet, J. Multi-varietal forestry integrating genomic selection and somatic embryogenesis. In Vegetative Propagation of Forest Trees (eds Park, Y.-S. et al.) 302–322 (National Institute of Forest Science, 2016).

    Google Scholar 

  • Bousquet, J. et al. Spruce population genomics. In Population Genomics: Forest Trees (ed. Rajora, O. P.) (Springer Nature, 2021).

    Google Scholar 

  • Chamberland, V. et al. Conventional versus genomic selection for white spruce improvement: A comparison of costs and benefits of plantations on Quebec public lands. Tree Genet. Genomes 16, 17 (2020).

    Google Scholar 

  • R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).

    Google Scholar 

  • MacFarland, T. W. & Yates, J. M. Wilcoxon matched-pairs signed-ranks test. In Introduction to Nonparametric Statistics for the Biological Sciences Using R 133–175 (Springer, 2016) https://doi.org/10.1007/978-3-319-30634-6_5.

  • Li, Y. et al. Genomic selection for non-key traits in radiata pine when the documented pedigree is corrected using DNA marker information. BMC Genomics 20, 1026 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Calleja-Rodriguez, A. et al. Evaluation of the efficiency of genomic versus pedigree predictions for growth and wood quality traits in Scots pine. BMC Genomics 21, 796 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ukrainetz, N. K. & Mansfield, S. D. Assessing the sensitivities of genomic selection for growth and wood quality traits in lodgepole pine using Bayesian models. Tree Genet. Genomes 16, 14 (2020).

    Google Scholar 

  • Ukrainetz, N. K. & Mansfield, S. D. Prediction accuracy of single-step BLUP for growth and wood quality traits in the lodgepole pine breeding program in British Columbia. Tree Genet. Genomes 16, 64 (2020).

    Google Scholar 

  • Thistlethwaite, F. R. et al. Genomic prediction accuracies in space and time for height and wood density of Douglas-fir using exome capture as the genotyping platform. BMC Genomics 18, 930 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Suontama, M. et al. Efficiency of genomic prediction across two Eucalyptus nitens seed orchards with different selection histories. Heredity 122, 370–379 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Müller, B. S. F. et al. Genomic prediction in contrast to a genome-wide association study in explaining heritable variation of complex growth traits in breeding populations of Eucalyptus. BMC Genomics 18, 524 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Thavamanikumar, S., Arnold, R. J., Luo, J. & Thumma, B. R. Genomic studies reveal substantial dominant effects and improved genomic predictions in an open-pollinated breeding population of Eucalyptus pellita. Genes Genomes Genet. 10, 3751–3763 (2020).

    CAS 

    Google Scholar 

  • Resende, R. T. et al. Assessing the expected response to genomic selection of individuals and families in Eucalyptus breeding with an additive-dominant model. Heredity 119, 245–255 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Marco de Lima, B. et al. Quantitative genetic parameters for growth and wood properties in Eucalyptus “urograndis” hybrid using near-infrared phenotyping and genome-wide SNP-based relationships. PLoS ONE 14, e0218747 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bouvet, J.-M., Makouanzi, G., Cros, D. & Vigneron, Ph. Modeling additive and non-additive effects in a hybrid population using genome-wide genotyping: Prediction accuracy implications. Heredity 116, 146–157 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Pégard, M. et al. Favorable conditions for genomic evaluation to outperform classical pedigree evaluation highlighted by a proof-of-concept study in poplar. Front. Plant Sci. 11, 581954 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    Using soap to remove micropollutants from water

    Study: Ice flow is more sensitive to stress than previously thought