in

Metagenomic, (bio)chemical, and microscopic analyses reveal the potential for the cycling of sulfated EPS in Shark Bay pustular mats

  • Hoffman P. Stromatolite morphogenesis in Shark Bay, Western Australia. In: Developments in sedimentology. Elsevier; 1976.261–71.

  • Golubic S, Hofmann HJ. Comparison of Holocene and Mid-Precambrian Entophysalidaceae (Cyanophyta) in stromatolitic algal mats: Cell division and degradation. J Paleontol. 1976;50:1074–82.

    Google Scholar 

  • Mlewski EC, Pisapia C, Gomez F, Lecourt L, Rueda ES, Benzerara K, et al. Characterization of pustular mats and related Rivularia-rich laminations in oncoids from the Laguna Negra lake (Argentina). Front Microbiol. 2018;9:1–23.

    Article 

    Google Scholar 

  • St Kendall C, Skipwith A. Recent algal mats of a Persian Gulf lagoon. SEPM J Sediment Res. 1968;38:1040–58.

    Google Scholar 

  • Golubic S, Abed R. Entophysalis mats as environmental regulators. In: Microbial mats, modern and ancient microorganisms in stratified systems. Dordrecht: Springer; 2010.237–51.

  • Logan BW, Hoffman P, Gebelien CD. Algal mats, cryptalgal fabrics, and structures, Hamelin Pool, Western Australia. Am Assoc Pet Geol. 1974;22:140–94.

    Google Scholar 

  • Jahnert RJ, Collins LB. Controls on microbial activity and tidal flat evolution in Shark Bay, Western Australia. Sedimentology. 2013;60:1071–99.

    Article 

    Google Scholar 

  • Moore KR, Pajusalu M, Gong J, Sojo V, Matreux T, Braun D, et al. Biologically mediated silicification of marine cyanobacteria and implications for the Proterozoic fossil record. Geology. 2020;48:862–6.

    CAS 
    Article 

    Google Scholar 

  • Decho AW, Visscher PT, Reid RP. Production and cycling of natural microbial exopolymers (EPS) within a marine stromatolite. Geobiology: objectives, concepts, perspectives. 2005;71–86.

  • Visscher PT, Dupont CL, Braissant O, Gallagher KL, Glunk C, Casillas L, et al. Biogeochemistry of carbon cycling in hypersaline mats: Linking the present to the past through biosignatures. In: Microbial mats, modern and ancient microorganisms in stratified systems. Dordrecht: Springer; 2010.443–68.

  • Ruvindy R, White RA, Neilan BA, Burns BP. Unravelling core microbial metabolisms in the hypersaline microbial mats of Shark Bay using high-throughput metagenomics. ISME J. 2016;10:183–96.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Stuart RK, Mayali X, Lee JZ, Craig Everroad R, Hwang M, Bebout BM, et al. Cyanobacterial reuse of extracellular organic carbon in microbial mats. ISME J. 2016;10:1240–51.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wong HL, White RA, Visscher PT, Charlesworth JC, Vázquez-Campos X, Burns BP. Disentangling the drivers of functional complexity at the metagenomic level in Shark Bay microbial mat microbiomes. ISME J. 2018;12:2619–39.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Campbell MA, Coolen MJL, Visscher PT, Morris T, Grice K. Structure and function of Shark Bay microbial communities following tropical cyclone Olwyn: a metatranscriptomic and organic geochemical perspective. Geobiology. 2021;19:642–64.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Braissant O, Decho AW, Przekop KM, Gallagher KL, Glunk C, Dupraz C, et al. Characteristics and turnover of exopolymeric substances in a hypersaline microbial mat. FEMS Microbiol Ecol. 2009;67:293–307.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Cutts EM, Baldes MJ, Skoog EJ, Hall J, Gong J, Moore KR, et al. Using molecular tools to understand microbial carbonates. Geosciences 2022;12:185.

  • Moore KR, Gong J, Pajusalu M, Skoog EJ, Xu M, Soto Feliz T, et al. A new model for silicification of cyanobacteria in Proterozoic tidal flats. Geobiology. 2021;19:438–49.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Pereira S, Zille A, Micheletti E, Moradas-Ferreira P, De Philippis R, Tamagnini P. Complexity of cyanobacterial exopolysaccharides: composition, structures, inducing factors and putative genes involved in their biosynthesis and assembly. FEMS Microbiol Rev. 2009;33:917–41.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wingender J, Neu TR, Flemming H-C. Microbial extracellular polymeric substances. In: Microbial extracellular polymeric substances. Berlin, Heidelberg: Springer; 1999.1–19.

  • Sheng GP, Yu HQ, Li XY. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review. Biotechnol Adv. 2010;28:882–94.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bar-Or Y, Shilo M. Characterization of macromolecular flocculants produced by Phormidium sp. Strain J-1 and by Anabaenopsis circularis PCC 6720. Appl Environ Microbiol. 1987;53:2226–30.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Sudo H, Burgess JG, Takemasa H, Nakamura N, Matsunaga T. Sulfated exopolysaccharide production by the halophilic cyanobacterium Aphanocapsa halophytia. Curr Microbiol. 1995;30:219–22.

    CAS 
    Article 

    Google Scholar 

  • Witvrouw M, De Clercq E. Sulfated polysaccharides extracted from sea algae as potential antiviral drugs. Gen Pharmacol: The Vasc Syst. 1997;29:497–511.

    CAS 
    Article 

    Google Scholar 

  • De Philippis R, Vincenzini M. Exocellular polysaccharides from cyanobacteria and their possible applications. FEMS Microbiol Rev. 1998;22:151–75.

    Article 

    Google Scholar 

  • Chen L, Li T, Guan L, Zhou Y, Li P. Flocculating activities of polysaccharides released from the marine mat-forming cyanobacteria Microcoleus and Lyngbya. Aquat Biol. 2011;11:243–8.

    CAS 
    Article 

    Google Scholar 

  • Wang L, Wang X, Wu H, Liu R. Overview on biological activities and molecular characteristics of sulfated polysaccharides from marine green algae in recent years. Marine Drugs. 2014;12:4984–5020.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hans N, Malik A, Naik S. Antiviral activity of sulfated polysaccharides from marine algae and its application in combating COVID-19: Mini review. Bioresour Technol Rep. 2021;13:100623.2020.

    PubMed 
    Article 

    Google Scholar 

  • Braissant O, Decho AW, Dupraz C, Glunk C, Przekop KM, Visscher PT. Exopolymeric substances of sulfate-reducing bacteria: Interactions with calcium at alkaline pH and implication for formation of carbonate minerals. Geobiology. 2007;5:401–11.

    CAS 
    Article 

    Google Scholar 

  • Barbeyron T, Brillet-Guéguen L, Carré W, Carrière C, Caron C, Czjzek M, et al. Matching the diversity of sulfated biomolecules: Creation of a classification database for sulfatases reflecting their substrate specificity. PLoS ONE. 2016;11:1–33.

    Article 

    Google Scholar 

  • Allen MA, Goh F, Burns BP, Neilan BA. Bacterial, archaeal and eukaryotic diversity of smooth and pustular microbial mat communities in the hypersaline lagoon of Shark Bay. Geobiology. 2009;7:82–96.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Goh F, Allen MA, Leuko S, Kawaguchi T, Decho AW, Burns BP, et al. Determining the specific microbial populations and their spatial distribution within the stromatolite ecosystem of Shark Bay. ISME J. 2009;3:383–96.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Brody SS. New excited state of chlorophyll. Science. 1958;128:838–9.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lamb JJ, Røkke G, Hohmann-Marriott MF. Chlorophyll fluorescence emission spectroscopy of oxygenic organisms at 77 K. Photosynthetica. 2018;56:105–24.

    CAS 
    Article 

    Google Scholar 

  • Hahn T, Schulz M, Stadtmüller R, Zayed A, Muffler K, Lang S, et al. Cationic dye for the specific determination of sulfated polysaccharides. Anal Lett. 2016;49:1948–62.

    CAS 
    Article 

    Google Scholar 

  • Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015;31:1674–6.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Li D, Luo R, Liu CM, Leung CM, Ting HF, Sadakane K, et al. MEGAHIT v1.0: a fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods. 2016;102:3–11.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kang DD, Froula J, Egan R, Wang Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ. 2015;3(e1165).

  • Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics. 2020;36:1925–7.

    CAS 

    Google Scholar 

  • Huntemann M, Ivanova NN, Mavromatis K, James Tripp H, Paez-Espino D, Palaniappan K, et al. The standard operating procedure of the DOE-JGI Microbial Genome Annotation Pipeline (MGAP v.4). Standards in Genomic. Sciences. 2015;10:4–9.

    Google Scholar 

  • Markowitz VM, Ivanova NN, Szeto E, Palaniappan K, Chu K, Dalevi D, et al. IMG/M: a data management and analysis system for metagenomes. Nucleic Acids Res. 2007;36:534–8.SUPPL.1

    Article 

    Google Scholar 

  • Eren AM, Esen ÖC, Quince C, Vineis JH, Morrison HG, Sogin ML, et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ. 2015;3:e1319.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Campbell BJ, Yu L, Heidelberg JF, Kirchman DL. Activity of abundant and rare bacteria in a coastal ocean. Proc National Acad Sci USA 2011;108:12776–81.

    CAS 
    Article 

    Google Scholar 

  • Fukuda M, Hiraoka N, Akama TO, Fukuda MN. Carbohydrate-modifying sulfotransferases: Structure, function, and pathophysiology. J Biol Chem. 2001;276:47747–50.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Roeser D, Preusser-Kunze A, Schmidt B, Gasow K, Wittmann JG, Dierks T, et al. A general binding mechanism for all human sulfatases by the formylglycine-generating enzyme. Proc Natl Acad Sci USA 2006;103:81–6.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Genicot SM, Groisillier A, Rogniaux H, Meslet-Cladière L, Barbeyron T, Helbert W. Discovery of a novel iota carrageenan sulfatase isolated from the marine bacterium Pseudoalteromonas carrageenovora. Front Chem. 2014;2:1–15.

    CAS 
    Article 

    Google Scholar 

  • Almagro Armenteros JJ, Tsirigos KD, Sønderby CK, Petersen TN, Winther O, Brunak S, et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol. 2019;37:420–3.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Fernando IPS, Sanjeewa KKA, Samarakoon KW, Lee WW, Kim HS, Kim EA, et al. FTIR characterization and antioxidant activity of water soluble crude polysaccharides of Sri Lankan marine algae. Algae. 2017;32:75–86.

    CAS 
    Article 

    Google Scholar 

  • Papineau D, Walker JJ, Mojzsis SJ, Pace NR. Composition and structure of microbial communities from stromatolites of Hamelin Pool in Shark Bay, Western Australia. Appl Environ Microbiol. 2005;71:4822–32.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wong HL, Smith DL, Visscher PT, Burns BP. Niche differentiation of bacterial communities at a millimeter scale in Shark Bay microbial mats. Sci Rep. 2015;5:1–17. 15607

    Google Scholar 

  • Pereira SB, Mota R, Vieira CP, Vieira J, Tamagnini P. Phylum-wide analysis of genes/proteins related to the last steps of assembly and export of extracellular polymeric substances (EPS) in cyanobacteria. Sci Rep. 2015;5:1–16.

    CAS 

    Google Scholar 

  • Rossi F, De Philippis R. Role of cyanobacterial exopolysaccharides in phototrophic biofilms and in complex microbial mats. Life. 2015;5:1218–38.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • McCandless EL, Craigie JS. Sulfated polysaccharides in red and brown algae. Ann Rev Plant Physiol. 1979;30:41–53.

    CAS 
    Article 

    Google Scholar 

  • Usov AI, Bilan MI. Fucoidans-sulfated polysaccharides of brown algae. Russ Chem Rev. 2009;78:785–99.

    CAS 
    Article 

    Google Scholar 

  • Jiao G, Yu G, Zhang J, Ewart HS. Chemical structures and bioactivities of sulfated polysaccharides from marine algae. Mar Drugs. 2011;9:196–233.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Al Disi ZA, Zouari N, Dittrich M, Jaoua S, Al-Kuwari HAS, Bontognali TRR. Characterization of the extracellular polymeric substances (EPS) of Virgibacillus strains capable of mediating the formation of high Mg-calcite and protodolomite. Mar Chem. 2019;216:103693.

    CAS 
    Article 

    Google Scholar 

  • Diloreto ZA, Garg S, Bontognali TRR, Dittrich M. Modern dolomite formation caused by seasonal cycling of oxygenic phototrophs and anoxygenic phototrophs in a hypersaline sabkha. Sci Rep. 2021;11:1–13.

    Article 

    Google Scholar 

  • Richert L, Golubic S, Le Guédès R, Ratiskol J, Payri C, Guezennec J. Characterization of exopolysaccharides produced by cyanobacteria isolated from Polynesian microbial mats. Curr Microbiol. 2005;51:379–84.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Raguénès G, Moppert X, Richert L, Ratiskol J, Payri C, Costa B, et al. A novel exopolymer-producing bacterium, Paracoccus zeaxanthinifaciens subsp. payriae, isolated from a “kopara” mat located in Rangiroa, an atoll of French Polynesia. Curr Microbiol. 2004;49:145–51.

    PubMed 
    Article 

    Google Scholar 

  • Moppert X, Le Costaouec T, Raguenes G, Courtois A, Simon-Colin C, Crassous P, et al. Investigations into the uptake of copper, iron and selenium by a highly sulphated bacterial exopolysaccharide isolated from microbial mats. J Ind Microbiol Biotechnol. 2009;36:599–604.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • González-Hourcade M, del Campo EM, Braga MR, Salgado A, Casano LM. Disentangling the role of extracellular polysaccharides in desiccation tolerance in lichen-forming microalgae. First evidence of sulfated polysaccharides and ancient sulfotransferase genes. Environ Microbiol. 2020;22:3096–111.

    PubMed 
    Article 

    Google Scholar 

  • De Souza MCR, Marques CT, Dore CMG, Da Silva FRF, Rocha HAO, Leite EL. Antioxidant activities of sulfated polysaccharides from brown and red seaweeds. J Appl Phycol. 2007;19:153–60.

    Article 

    Google Scholar 

  • Jayawardena TU, Wang L, Asanka Sanjeewa KK, In Kang S, Lee JS, Jeon YJ. Antioxidant potential of sulfated polysaccharides from Padina boryana; protective effect against oxidative stress in in vitro and in vivo zebrafish model. Mar Drugs. 2020;18:1–14.

    Google Scholar 

  • Baba M, Snoeck R, Pauwels R, De Clercq E. Sulfated polysaccharides are potent and selective inhibitors of various enveloped viruses, including herpes simplex virus, cytomegalovirus, vesicular stomatitis virus, and human immunodeficiency virus. Antimicrob Agents Chemother. 1988;32:1742–5.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ghosh T, Chattopadhyay K, Marschall M, Karmakar P, Mandal P, Ray B. Focus on antivirally active sulfated polysaccharides: From structure-activity analysis to clinical evaluation. Glycobiology. 2009;19:2–15.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bakunina IY, Nedashkovskaya OI, Alekseeva SA, Ivanova EP, Romanenko LA, Gorshkova NM, et al. Degradation of fucoidan by the marine proteobacterium Pseudoalteromonas citrea. Mikrobiologiya. 2002;71:49–55.

    Google Scholar 

  • Descamps V, Colin S, Lahaye M, Jam M, Richard C, Potin P, et al. Isolation and culture of a marine bacterium degrading the sulfated fucans from marine brown algae. Mar Biotechnol. 2006;8:27–39.

    CAS 
    Article 

    Google Scholar 

  • Mann AJ, Hahnke RL, Huang S, Werner J, Xing P, Barbeyron T, et al. The genome of the alga-associated marine flavobacterium Formosa agariphila KMM 3901T reveals a broad potential for degradation of algal polysaccharides. Appl Environ Microbiol. 2013;79:6813–22.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hehemann JH, Boraston AB, Czjzek M. A sweet new wave: Structures and mechanisms of enzymes that digest polysaccharides from marine algae. Curr Opin Struct Biol. 2014;28:77–86.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Thomas F, Bordron P, Eveillard D, Michel G. Gene expression analysis of Zobellia galactanivorans during the degradation of algal polysaccharides reveals both substrate-specific and shared transcriptome-wide responses. Front Microbiol. 2017;8:1–14.

    CAS 
    Article 

    Google Scholar 

  • Martinez-Garcia M, Brazel DM, Swan BK, Arnosti C, Chain PSG, Reitenga KG, et al. Capturing single cell genomes of active polysaccharide degraders: an unexpected contribution of verrucomicrobia. PLoS ONE. 2012;7:1–11.

    Google Scholar 

  • Sichert A, Corzett CH, Schechter MS, Unfried F, Markert S, Becher D, et al. Verrucomicrobia use hundreds of enzymes to digest the algal polysaccharide fucoidan. Nat Microbiol. 2020;5:1026–39.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bengtsson MM, Øvreås L. Planctomycetes dominate biofilms on surfaces of the kelp Laminaria hyperborea. BMC Microbiol. 2010;10:1–12.

    Article 

    Google Scholar 

  • Kim JW, Brawley SH, Prochnik S, Chovatia M, Grimwood J, Jenkins J, et al. Genome analysis of Planctomycetes inhabiting blades of the red alga Porphyra umbilicalis. PLoS ONE. 2016;11:1–22.

    Google Scholar 

  • Glöckner FO, Kube M, Bauer M, Teeling H, Lombardot T, Ludwig W, et al. Complete genome sequence of the marine planctomycete Pirellula sp. strain 1. Proc Natl Acad Sci USA 2003;100:8298–303.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bayer K, Jahn MT, Slaby BM, Moitinho-Silva L, Hentschel U. Marine sponges as Chloroflexi hot spots: Genomic insights and high-resolution visualization of an abundant and diverse symbiotic clade. mSystems. 2018;3:1–19.

    Article 

    Google Scholar 

  • Robbins SJ, Song W, Engelberts JP, Glasl B, Slaby BM, Boyd J, et al. A genomic view of the microbiome of coral reef demosponges. ISME J. 2021;15:1641–54.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Salyers AA, O’Brien M. Cellular location of enzymes involved in chondroitin sulfate breakdown by Bacteroides thetaiotaomicron. J Bacteriol. 1980;143:772–80.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Campbell MA, Grice K, Visscher PT, Morris T, Wong HL, White RA, et al. Functional gene expression in Shark Bay hypersaline microbial mats: adaptive responses. Front Microbiol. 2020;11:1–16.

    Article 

    Google Scholar 

  • Van Vliet DM, Ayudthaya SPN, Diop S, Villanueva L, Stams AJM, Sánchez-Andrea I. Anaerobic degradation of sulfated polysaccharides by two novel Kiritimatiellales strains isolated from black sea sediment. Front Microbiol. 2019;10:1–16.

    Article 

    Google Scholar 

  • Bäumgen M, Dutschei T, Bornscheuer UT. Marine polysaccharides: occurrence, enzymatic degradation and utilization. ChemBioChem. 2021;22:2247–56.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Helbert W. Marine polysaccharide sulfatases. Front Mar Sci. 2017;4:1–10.

    Article 

    Google Scholar 

  • Ficko-Blean E, Préchoux A, Thomas F, Rochat T, Larocque R, Zhu Y, et al. Carrageenan catabolism is encoded by a complex regulon in marine heterotrophic bacteria. Nat Commun. 2017;8:1–7.

    CAS 
    Article 

    Google Scholar 

  • McLean MW, Williamson FB. Glycosulphatase from Pseudomonas carrageenovora, purification and some properties. Eur J Biochem. 1979;101:497–505.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Mclean MW, Williamson FB Neocarratetraose 4-O-Monosulphate B-Hydrolase from Pseudomonas carrageenovora. 1981;456:447–56.

  • Suarez-Gonzalez P, Reitner J. Ooids forming in situ within microbial mats (Kiritimati atoll, central Pacific). PalZ. 2021;95:809–21.

    Article 

    Google Scholar 

  • Arp G, Helms G, Karlinska K, Schumann G, Reimer A, Reitner J, et al. Photosynthesis versus exopolymer degradation in the formation of microbialites on the atoll of Kiritimati, Republic of Kiribati, central Pacific. Geomicrobiol J. 2012;29:29–65.

    CAS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Changes in global DNA methylation under climatic stress in two related grasses suggest a possible role of epigenetics in the ecological success of polyploids

    Terrestrial and marine influence on atmospheric bacterial diversity over the north Atlantic and Pacific Oceans