in

Ovaries and testes of Lithobius forficatus (Myriapoda, Chilopoda) react differently to the presence of cadmium in the environment

  • Sieńczuk, W. Toksykologia (PZWL Warszawa, 1999) (in Polish).

    Google Scholar 

  • Kabata-Pendias, A. & Pendias, H. Biochemia pierwiastków śladowych (PZWL Warszawa, 1999) (in Polish).

    Google Scholar 

  • Sharma, H., Rawal, N. & Mathew, B. B. The characteristics, toxicity and effects of cadmium. Int. J. Nanosci. Nanotechnol. 3, 1–9 (2015).

    Google Scholar 

  • Duarte, A. et al. (eds) Soil pollution: From Monitoring to Remediation 1st edn. (Academic Press, 2017).

    Google Scholar 

  • Zhang, H. & Reynolds, M. Cadmium exposure in living organisms: A short review. Sci. Total Environ. 678, 761–767 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lane, T. W. et al. A cadmium enzyme from a marine diatom. Nature 435, 42 (2005).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Jӓrup, L. Hazards of heavy metal contamination. Br. Med. Bull. 68, 167–182 (2003).

    Article 

    Google Scholar 

  • Massányi, P., Massányi, M., Madeddu, R., Stawarz, R. & Lukáč, N. Effects of cadmium, lead, and mercury on the structure and function of reproductive organs. Toxics 8, 94 (2020).

    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Roy, S. Cadmium accumulation in crops and the increasing risk of dietary cadmium exposure: An overview. In Cadmium Tolerance in Plants: Agronomic, Molecular, Signaling, and Omic Approaches (eds Hasanuzzaman, M. et al.) 247–254 (Academic Press, 2019).

    Chapter 

    Google Scholar 

  • Templeton, D. M. & Liu, Y. Multiple roles of cadmium in cell death and survival. Chem. Biol. Interact. 188, 267–275 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Stojsavljević, A. et al. Evaluation of trace metals in thyroid tissues: Comparative analysis with benign and malignant thyroid diseases. Ecotoxicol. Environ. Saf. 183, 109479 (2019).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Lewis, J. G. E. The Biology of Centipedes 1st edn. (Cambridge University Press, 1981).

    Book 

    Google Scholar 

  • Hopkin, S. P. Ecophysiology of Metals in Terrestrial Invertebrates 1st edn. (Elsevier Applied Science, 1989).

    Google Scholar 

  • Hopkin, S. P. & Read, H. J. The Biology of Millipedes (Oxford University Press, 1992).

    Google Scholar 

  • Lipovšek, S., Letofsy-Papst, I., Hofer, F. & Pabst, M. A. Seasonal- and age-dependent changes of the structure and chemical composition of the spherites in the midgut gland of the harvestmen Gyas annulatus (Opiliones). Micron 33, 647–654 (2002).

    PubMed 
    Article 

    Google Scholar 

  • Chajec, Ł, Rost-Roszkowska, M. M., Vilimova, J. & Sosinka, A. Ultrastructure and regeneration of midgut epithelial cells in Lithobius forficatus (Chilopoda, Lithobiidae). Invertebr. Biol. 131, 119–132 (2012).

    Article 

    Google Scholar 

  • Hopkin, S. P., Watson, K., Martin, M. H. & Mould, M. L. The assimilation of heavy metals by Lithobius variegatus and Glomeris marginata (Chilopoda; Diplopoda). Bijdr. Dierkd. 55, 88–94 (1985).

    Google Scholar 

  • Adiyodi, K. G. & Adiyodi, R. G. (eds) Reproductive Biology of Invertebrates. Volume I. Oogenesis, Oviposition, and Oosorption (Wiley, 1983).

    Google Scholar 

  • Adiyodi, K. G. & Adiyodi, R. G. (eds) Reproductive Biology of Invertebrates. Volume II. Spermatogenesis and Sperm Function (Wiley, 1983).

    Google Scholar 

  • Sareen, M. L. & Adiyodi, K. G. Arthropoda – Myriapoda. In Reproductive Biology of Invertebrates. Volume I. Oogenesis, Oviposition, and Oosorption (eds Adiyodi, K. G. & Adiyodi, R. G.) 497–520 (Wiley, 1983).

    Google Scholar 

  • Minelli, A. Chilopoda – Reproduction. In Treatise on Zoology – Anatomy, Taxonomy, Biology. The Myriapoda. Vol. 1. Chilopoda (ed. Minelli, A.) 279–294 (Brill, 2011).

    Chapter 

    Google Scholar 

  • Parolini, M. Toxicity of the non-steroidal anti-inflammatory drugs (NSAIDs) acetylsalicylic acid, paracetamol, diclofenac, ibuprofen and naproxen towards freshwater invertebrates: A review. Sci. Total Environ. 740, 140043 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Nath, V. Oogenesis of Lithobius forficatus. Biol. Rev. 1, 148–157 (1924).

    Article 

    Google Scholar 

  • Nath, V. Spermathogenesis of Lithobius forficatus. Biol. Rev. 1, 270–277 (1925).

    Article 

    Google Scholar 

  • Descamps, M. Etude ultrastructurale des spermatogonies et de la croissance spermatocytaire chez Lithobius forficatus L. (Myriapode Chilopode). Z. Zellforsch. 121, 14–26 (1971).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Descamps, M. Le cycle spermatogenétique chez Lithobius forficatus L. (Myriapode, Chilopode). I. Evolution et etude quantitative des populations cellulaires du tes ticle au cours du développement post-embryonnaire. Arch. Zool. Exp. Gen. 112, 199–209 (1971).

    Google Scholar 

  • Herbaut, C. Etude cytochimique et ultrastructurale de l’ovogenése chez Lithobius forficatus L. (Myriapode Chilopode). Evolution des constituants cellulaires. Wilhelm Roux’ Arch. 170, 115–134 (1972).

    CAS 
    Article 

    Google Scholar 

  • Descamps, M., Fabre, M. C., Grelle, C. & Gerard, S. Cadmium and lead kinetics during experimental contamination of the centipede Lithobius forficatus L. Arch. Environ. Contam. Toxicol. 31, 350–353 (1996).

    CAS 
    Article 

    Google Scholar 

  • Vandenbulcke, F., Grelle, C., Fabre, M.-C. & Descamps, M. Implication of the midgut of the centipede Lithobius forficatus in the heavy metal detoxification process. Ecotoxicol. Environ. Saf. 41, 258–268 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Rost-Roszkowska, M. et al. Influence of soil contaminated with cadmium on cell death in the digestive epithelium of soil centipede Lithobius forficatus (Myriapoda, Chilopoda). Eur. Zool. J. 87, 242–262 (2020).

    CAS 
    Article 

    Google Scholar 

  • Rost-Roszkowska, M. et al. Effects of short- and long-term exposure to cadmium on salivary glands and fat body of soil centipede Lithobius forficatus (Myriapoda, Chilopoda): Histology and ultrastructure. Micron 137, 102915 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Rost-Roszkowska, M. et al. Effects of cadmium on mitochondrial structure and function in different organs: Studies on the soil centipede Lithobius forficatus (Myriapoda, Chilopoda). Eur. Zool. J. 88, 632–664 (2021).

    CAS 
    Article 

    Google Scholar 

  • Włodarczyk, A., Student, S. & Rost-Roszkowska, M. Autophagy and apoptosis in starved and refed Neocaridina davidi (Crustacea, Malacostraca) midgut. Can. J. Zool. 97, 294–303 (2019).

    Article 

    Google Scholar 

  • Bradford, M. M. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wieser, W. Conquering terra firma: The copper problem from the isopod’s point of view. Helgolander Wiss. Meeresunters. 15, 282–293 (1967).

    ADS 
    Article 

    Google Scholar 

  • Gräff, S., Berkus, M., Alberti, G. & Köhler, H. R. Metal accumulation strategies in saprophagous and phytophagous soil invertebrates: A quantitative comparison. Biometals 10, 45–53 (1997).

    Article 

    Google Scholar 

  • Siekierska, E. & Urbańska-Jasik, D. The effect of cadmium and selenium ions on the ovary structure in leech Herpobdella octooculata (L.). Folia Morphol. 57, 61 (1998).

    Google Scholar 

  • Siekierska, E. & Urbańska-Jasik, D. Cadmium effect on the ovarian structure in earthworm Dendrobaena veneta (Rosa). Environ. Pollut. 120, 289–297 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Osman, W., El-Samad, L. M., Mokhamer, E.L.-H., El-Touhamy, A. & Shonouda, M. Ecological, morphological, and histological studies on Blaps polycresta (Coleoptera: Tenebrionidae) as biomonitors of cadmium soil pollution. Environ. Sci. Pollut. Res. Int. 22, 14104–14115 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Siekierska, E. & Brzozowa, M. Cadmium effect on the seminal vesicles structure and spermatogenesis in the earthworm Dendrobaena veneta (Rosa). In 8th International Symposium on Earthworm Ecology. Book of abstracts, 231 (2006).

  • Siekierska, E. & Brzozowa, M. Changes in primary and secondary spermatocytes in seminal vesicles in the earthworm Dendrobaena veneta (Rosa) after 10 days of cadmium exposure. Acta Biol. Cracov. Bot. 50, 68 (2008).

    Google Scholar 

  • Brzozowa, M. Wpływ kadmu na przebieg spermiogenezy u dżdżownicy Dendrobaena veneta (Rosa). PhD Thesis, University of Silesia in Katowice Poland (2009).

  • Papathanassiou, E. Cadmium accumulation and ultrastructural alterations in oogenesis of the prawn Palaemon serratus (Pennant). Bull. Environ. Contam. Toxicol. 36, 192–198 (1986).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Au, D. W. T., Chiang, M. W. L. & Wu, R. Effect of cadmium and phenol on mortality and ultrastructure of sea urchin and mussel spermatozoa. Arcg. Environ. Contam. Toxicol. 38, 455–463 (2000).

    CAS 
    Article 

    Google Scholar 

  • Au, D. W. T., Lee, C. Y., Chan, K. L. & Wu, R. Reproductive impairment of sea urchins upon chronic exposure to cadmium. Part I: Effects on gamete quality. Environ. Pollut. 111, 1–9 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Au, D. W. T., Reunov, A. A. & Wu, R. Reproductive impairment of sea urchins upon chronic exposure to cadmium. Part II: Effects on sperm development. Environ. Pollut. 111, 11–20 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Eckelbarger, K. J. Diversity of metazoan ovaries and vitellogenic mechanisms – implications for life history theory. Proc. Biol. Soc. Wash. 107, 193–218 (1994).

    Google Scholar 

  • Suzuki, K. T., Yamamura, M. & Mori, T. Cadmium-binding proteins induced in earthworm. Arch. Environ. Contam. Toxicol. 9, 415–424 (1980).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Maroni, G., Wise, J., Young, J. E. & Otto, E. Metallothionein gene duplications and metal tolerance in natural populations of Drosophila melanogaster. Genetics 117, 739–744 (1987).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Luo, M., Finet, C., Cong, H., Wei, H. & Chung, H. The evolution of insect metallothioneins. Proc. R. Soc. B 287, 20202189 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Turbeck, B. O. A study of the concentrically laminated concretions, ‘spherites’, in the regenerative cells of the midgut of Lepidopterous larvae. Tissue Cell. 6, 627–640 (1974).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Cruz-Landim, C. Localization of calcium and acid phosphatase in the Malpighian tubules of nurse workers of Melipona quadrifasciata anthidioides Lep. (Hymenoptera, Apidae, Meliponini). Biosci. J. 16, 87–99 (2000).

    Google Scholar 

  • Lipovšek, S., Letofsky-Papst, I., Hofer, F., Pabst, M. A. & Devetak, D. Application of analytical electron microscopic methods to investigate the function of spherites in the midgut of the larval antlion Euroleon nostras (Neuroptera: Myrmeleontidae). Microsc. Res. Tech. 75, 397–407 (2012).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Pinheiro, D. O., Conte, H. & Gregório, E. A. Spherites in the midgut epithelial cells of the sugarcane borer parasitized by Cotesia flavipes. Biocell 32, 61–67 (2008).

    Article 

    Google Scholar 

  • Rost-Roszkowska, M. M., Kszuk-Jendrysik, M., Marchewka, A. & Poprawa, I. Fine structure of the midgut epithelium in the millipede Telodeinopus aoutii (Myriapoda, Diplopoda) with special emphasis on epithelial regeneration. Protoplasma 255, 43–55 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lipovšek, S. et al. Ultrastructure of spherites in the midgut diverticula and Malpighian tubules of the harvestman Amilenus aurantiacus during the winter diapause. Histochem. Cell Biol. 157, 107–118 (2022).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Kramarz, P. Dynamics of accumulation and decontamination of cadmium and zinc in carnivorous invertebrates. 2. The centipede Lithobius mutabilis Koch. Bull. Environ. Contam. Toxicol. 63, 538–545 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Rost-Roszkowska, M. M. et al. Structure of the midgut epithelium in four diplopod species: Histology, histochemistry and ultrastructure. Arthropod Syst. Phylogeny 79, 295–308 (2021).

    Article 

    Google Scholar 

  • Köhler, H.-R. Localization of metals in cells of saprophagous soil arthropods (Isopoda, Diplopoda, Collembola). Microsc. Res. Tech. 56, 393–401 (2002).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Cervera, A., Maymó, A. C., Martínez-Pardo, R. & Garcerá, M. D. Vitellogenesis inhibition in Oncopeltus fasciatus females (Heteroptera: Lygaeidae) exposed to cadmium. J. Insect Physiol. 51, 895–911 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Cervera, A., Maymó, A. C., Martínez-Pardo, R. & Garcerá, M. D. Vitellogenin polypeptide levels in one susceptible and one cadmium-resistant strain of Oncopeltus fasciatus (Heteroptera: Lygaeidae), and its role in cadmium resistance. J. Insect Physiol. 52, 158–168 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Sehgal, A., Osgood, C. & Zimmering, S. Aneuploid in Drosophila. III: Aneuploidogens inhibit in vitro assembly of taxol-purified Drosophila microtubules. Environ. Mol. Mutagen. 16, 217–224 (1990).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Li, W., Zhao, Y. & Cou, I. N. Alterations in cytoskeletal protein sulfhydryls and cellular glutathione in cultured cells exposed to cadmium and nickel ions. Toxicology 77, 65–79 (1993).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • dos Santos, D. C., Gregorio, E. A. & Moreli Silva de Moraes, R. L. Programmed cell death during early oogenesis in the Diatraea saccharalis germarium. Acta Microsc. 16, 311–312 (2007).

    Google Scholar 

  • Hoeppner, D. J., Hengartner, M. O. & Schnabel, R. Engulfment genes cooperate with ced-3 to promote cell death in Caenorhabditis elegans. Nature 412, 202–206 (2001).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hikim, A. P. S. et al. Key apoptotic pathways for heat-induced programmed germ cell death in the testis. Endocrinology 144, 3167–3175 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Russell, L. D., Chiarini-Garcia, H., Korsmeyer, S. J. & Knudson, C. M. Bax-dependent spermatogonia apoptosis is required for testicular development and spermatogenesis. Biol. Reprod. 66, 950–958 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Shaha, C., Tripathi, R. & Mishra, D. P. Male germ cell apoptosis: Regulation and biology. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365, 1501–1515 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Devine, P. J., Payne, C. M., McCuskey, M. K. & Hoyer, P. B. Ultrastructural evaluation of oocytes during atresia in rat ovarian follicles. Biol. Reprod. 63, 1245–1252 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hussein, M. R. Apoptosis in the ovary: Molecular mechanisms. Hum. Reprod. Update 11, 162–177 (2005).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Miller, M. A., Technau, U., Smith, K. M. & Steele, R. E. Oocyte development in Hydra involves selection from competent precursor cells. Dev. Biol. 224, 326–338 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Matova, N. & Cooley, L. Comparative aspects of animal oogenesis. Dev. Biol. 231, 291–320 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Technau, U., Miller, M. A., Bridge, D. & Steele, R. E. Arrested apoptosis of nurse cells during Hydra oogenesis and embryogenesis. Dev. Biol. 260, 191–206 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Mpakou, V. E., Nezis, I. P., Stravopodis, D. J., Margaritis, L. H. & Papassideri, I. S. Programmed cell death of the ovarian nurse cells during oogenesis of the silkmoth Bombyx mori. Dev. Growth Differ. 48, 419–428 (2006).

    PubMed 
    Article 

    Google Scholar 

  • Mpakou, V. E. et al. Different modes of programmed cel death during oogenesis of the silkmoth Bombyx mori. Autophagy 4, 97–100 (2008).

    PubMed 
    Article 

    Google Scholar 

  • Mpakou, V. E. et al. Programmed cell death of the ovarian nurse cells during oogenesis of the ladybird beetle Adalia bipunctata (Coleoptera: Coccinellidae). Dev. Growth Differ. 53, 804–815 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Poprawa, I., Hyra, M., Kszuk-Jendrysik, M. & Rost-Roszkowska, M. M. Ultrastructural changes and programmed cell death of trophocytes in the gonad of Isohypsibius granulifer granulifer Thulin, 1928 (Tardigrada, Eutardigrada, Isohypsibiidae). Micron 70, 26–33 (2015).

    PubMed 
    Article 

    Google Scholar 

  • Janelt, K., Jezierska, M. & Poprawa, I. The female reproductive system and oogenesis in Thulinius ruffoi (Tardigrada, Eutardigrada, Isohypsibiidae). Arthropod. Struct. Dev. 50, 53–63 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Mooyottu, S., Anees, C. & Cherian, S. Ovarian stem cells and neo-oogenesis: A breakthrough in reproductive biology research. Vet. World 4, 89–91 (2011).

    Google Scholar 

  • Tiwari, M. et al. Apoptosis in mammalian oocytes: A review. Apoptosis 20, 1019–1025 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Xiu, Y.-R. & Yang, W.-X. Roles of three Es-Caspases during spermatogenesis and cadmium-induced apoptosis in Eriocheir sinensis. Aging 10, 1146–1165 (2018).

    Article 

    Google Scholar 

  • Redza-Dutordoir, M. & Averill-Bates, D. A. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Biophys. Acta 1863, 2977–2992 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Sonakowska, L. et al. Cell death in the epithelia of the intestine and hepatopancreas in Neocaridina heteropoda (Crustacea, Malacostraca). PLoS ONE 11, e0147582 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Włodarczyk, A. et al. The effect of starvation and re-feeding on mitochondrial potential in the midgut of Neocaridina davidi (Crustacea, Malacostraca). PLoS ONE 12, e0173563 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Zorova, L. D. et al. Mitochondrial membrane potential. Anal. Biochem. 552, 50–59 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ossola, J. O. & Tomaro, M. L. Heme oxygenase induction by cadmium chloride: Evidence for oxidative stress involvement. Toxicology 104, 141–147 (1995).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Levine, B. & Klionsky, D. J. Development by self-digestion: Molecular mechanisms and biological functions of autophagy. Dev. Cell. 6, 463–477 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kourtis, N. & Tavernarakis, N. Autophagy and cell death in model organisms. Cell Death Differ. 16, 21–30 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kliosnky, D. et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12, 1–222 (2016).

    Article 

    Google Scholar 

  • Kliosnky, D. et al. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition). Autophagy 17, 1–382 (2021).

    Article 

    Google Scholar 

  • Velentzas, A. D., Nezis, I. P., Stravopodis, D. J., Papassideri, I. S. & Margaritis, L. H. Apoptosis and autophagy function cooperatively for the efficacious execution of programmed nurse cell death during Drosophila virilis oogenesis. Autophagy 3, 130–132 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lipovšek, S. et al. Changes in the midgut cells in the European cave spider, Meta menardi, during starvation in spring and autumn. Histochem. Cell Biol. 149, 245–260 (2018).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Rost-Roszkowska, M. M. et al. Autophagy and apoptosis in the midgut epithelium of millipedes. Microsc. Microanal. 25, 1004–1016 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Nezis, I. P. et al. Autophagy as a trigger for cell death: Autophagic degradation of inhibitor of apoptosis dBruce controls DNA fragmentation during late oogenesis in Drosophila. Autophagy 6, 1214–1215 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rost-Roszkowska, M. M., Janelt, K. & Poprawa, I. The role of autophagy in the midgut epithelium of Parachela (Tardigrada). Zoomorphology 137, 501–509 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Leist, M., Single, B., Castoldi, A. F., Kühnle, S. & Nicotera, P. Intracellular adenosine triphosphate (ATP) concentration: A switch in the decision between apoptosis and necrosis. J. Exp. Med. 185, 1481–1486 (1997).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Nikoletopoulou, V., Markaki, M., Palikaras, K. & Tavernarakis, N. Crosstalk between apoptosis, necrosis and autophagy. Biochim. Biophys. Acta. 1833, 3448–3459 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Tests of rubber granules used as artificial turf for football fields in terms of toxicity to human health and the environment

    Role of trade agreements in the global cereal market and implications for virtual water flows