in

Revealing environmental synchronicity that enhances anchovy recruitment in the Mediterranean Sea

  • Cury, P. et al. Small pelagics in upwelling systems: patterns of interaction and structural changes in “wasp-waist” ecosystems. ICES J. Mar. Sci. 57, 603–618 (2000).

    Google Scholar 

  • Fréon, P., Cury, P., Shannon, L. & Roy, C. Sustainable exploitation of small pelagic fish stocks challenged by environmental and ecosystem changes: a review. Bull. Mar. Sci. 76, 385–462 (2005).

    Google Scholar 

  • The State of Mediterranean and Black Sea Fisheries 2020. (FAO, 2020). doi:https://doi.org/10.4060/cb2429en.

  • Checkley, D. M., Asch, R. G. & Rykaczewski, R. R. Climate, Anchovy, and Sardine. Annu. Rev. Mar. Sci. 9, 469–493 (2017).

    ADS 

    Google Scholar 

  • Bakun, A. Patterns in the ocean: Ocean processes and marine population dynamics. Oceanogr. Lit. Rev. 5, 530 (1997).

    Google Scholar 

  • Houde, E. D. Recruitment variability. Fish. Reprod. Biol. 1, 91–171 (2009).

    Google Scholar 

  • Cole, J. & McGlade, J. Clupeoid population variability, the environment and satellite imagery in coastal upwelling systems. Rev. Fish Biol. Fish. 8, 445–471 (1998).

    Google Scholar 

  • Pörtner, H. O. & Peck, M. A. Climate change effects on fishes and fisheries: towards a cause-and-effect understanding. J. Fish Biol. 77, 1745–1779 (2010).

    PubMed 

    Google Scholar 

  • European Commission. Joint Research Centre. Institute for the Protection and the Security of the Citizen. Scientific, technical and economic committee for fisheries (STECF) : Assessment of mediterranean stocks (Part I). (Publications Office, 2010).

  • García, A. & Palomera, I. Anchovy early life history and its relation to its surrounding environment in the Western Mediterranean basin. 12 (1996).

  • Tsikliras, A. C., Antonopoulou, E. & Stergiou, K. I. Spawning period of Mediterranean marine fishes. 40 (2010).

  • Fernández-Corredor, E., Albo-Puigserver, M., Pennino, M. G., Bellido, J. M. & Coll, M. Influence of environmental factors on different life stages of European anchovy (Engraulis encrasicolus) and European sardine (Sardina pilchardus) from the Mediterranean Sea: A literature review. Reg. Stud. Mar. Sci. 41, 1006 (2021).

    Google Scholar 

  • Agostini, V. N. & Bakun, A. Ocean triads’ in the Mediterranean Sea: physical mechanisms potentially structuring reproductive habitat suitability (with example application to European anchovy, Engraulis encrasicolus). Fish. Oceanogr. 11, 129–142 (2002).

    Google Scholar 

  • Lasker, R. The relation between oceanographic conditions and larval anchovy food in the California Current: identification of factors contributing to recruitment failure. Rapp. P-V Reun. Cons. Int. Explor. Mer. 173, 212–230 (1978).

    Google Scholar 

  • Cushing, D. H. Plankton Production and Year-class Strength in Fish Populations: an Update of the Match/Mismatch Hypothesis. in Advances in Marine Biology (eds. Blaxter, J. H. S. & Southward, A. J.) vol. 26 249–293 (Academic Press, 1990).

  • Patti, B. et al. Anchovy (Engraulis encrasicolus) early life stages in the Central Mediterranean Sea: connectivity issues emerging among adjacent sub-areas across the Strait of Sicily. Hydrobiologia 821, 25–40 (2018).

    Google Scholar 

  • Maynou, F., Sabatés, A. & Raya, V. Changes in the spawning habitat of two small pelagic fish in the Northwestern Mediterranean. Fish. Oceanogr. 29, 201–213 (2020).

    Google Scholar 

  • Basilone, G. et al. Spawning site selection by European anchovy ( Engraulis encrasicolus ) in relation to oceanographic conditions in the Strait of Sicily. Fish. Oceanogr. 22, 309–323 (2013).

    Google Scholar 

  • Malavolti, S. et al. Distribution of Engraulis encrasicolus eggs and larvae in relation to coastal oceanographic conditions (the South-western Adriatic Sea case study). Mediterr. Mar. Sci. 19, 180 (2018).

    Google Scholar 

  • Zorica, B. et al. Spatiotemporal distribution of anchovy early life stages in the eastern part of the Adriatic Sea in relation to some oceanographic features. J. Mar. Biol. Assoc. UK 99, 1205–1211 (2019).

    Google Scholar 

  • Punt, A. E. et al. Fisheries management under climate and environmental uncertainty: control rules and performance simulation. ICES J. Mar. Sci. 71, 2208–2220 (2014).

    Google Scholar 

  • Szuwalski, C. S. & Hilborn, R. Environment drives forage fish productivity. Proc. Natl. Acad. Sci. 112, E3314–E3315 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ganias, K. Biology and Ecology of Sardines and Anchovies. 391.

  • Palomera, I. et al. Small pelagic fish in the NW Mediterranean Sea: An ecological review. Prog. Oceanogr. 74, 377–396 (2007).

    ADS 

    Google Scholar 

  • Patti, B., Torri, M. & Cuttitta, A. General surface circulation controls the interannual fluctuations of anchovy stock biomass in the Central Mediterranean Sea. Sci. Rep. 10, 1554 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pisano, A. et al. New evidence of mediterranean climate change and variability from sea surface temperature observations. Rem. Sens. 12, 132 (2020).

    ADS 

    Google Scholar 

  • Regner, S. Effects of environmental changes on early stages and reproduction of anchovy in the Adriatic Sea. Sci. Mar. 60, 167–177 (1996).

    Google Scholar 

  • Lavigne, H. et al. Enhancing the comprehension of mixed layer depth control on the Mediterranean phytoplankton phenology: Mediterranean Phytoplankton Phenology. J. Geophys. Res. Oceans 118, 3416–3430 (2013).

    ADS 

    Google Scholar 

  • Morote, E., Olivar, M. P., Villate, F. & Uriarte, I. A comparison of anchovy (Engraulis encrasicolus) and sardine (Sardina pilchardus) larvae feeding in the Northwest Mediterranean: Influence of prey availability and ontogeny. ICES J. Mar. Sci. 67, 897–908 (2010).

    Google Scholar 

  • Basilone, G. et al. Spawning ecology of the European anchovy (Engraulis encrasicolus) in the Strait of Sicily: Linking variations of zooplankton prey, fish density, growth, and reproduction in an upwelling system. Prog. Oceanogr. 184, 102330 (2020).

    Google Scholar 

  • McBride, R. S. et al. Energy acquisition and allocation to egg production in relation to fish reproductive strategies. Fish Fish. 16, 23–57 (2015).

    Google Scholar 

  • d’Ortenzio, F. & Ribera d’Alcalà, M. On the trophic regimes of the Mediterranean Sea: a satellite analysis. Biogeosciences 6, 139–148 (2009).

    ADS 

    Google Scholar 

  • Escribano, A., Aldanondo, N., Cotano, U., Boyra, G. & Urtizberea, A. Size- and density-dependent overwinter mortality of anchovy juveniles in the Bay of Biscay. Cont. Shelf Res. 183, 28–37 (2019).

    ADS 

    Google Scholar 

  • Bellido, J. M. et al. Identifying essential fish habitat for small pelagic species in Spanish Mediterranean waters. Hydrobiologia 612, 171–184 (2008).

    Google Scholar 

  • Van Beveren, E. et al. The fisheries history of small pelagics in the Northern Mediterranean. ICES J. Mar. Sci. 73, 1474–1484 (2016).

    Google Scholar 

  • Edwards, M., Beaugrand, G., Helaouët, P., Alheit, J. & Coombs, S. Marine ecosystem response to the Atlantic Multidecadal Oscillation. PLoS ONE 8, e57212 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Erauskin-Extramiana, M. et al. Historical trends and future distribution of anchovy spawning in the Bay of Biscay. Deep Sea Res. Part II Top. Stud. Oceanogr. 159, 169–182 (2019).

    Google Scholar 

  • Bertrand, A. et al. Schooling behaviour and environmental forcing in relation to anchoveta distribution: An analysis across multiple spatial scales. Prog. Oceanogr. 79, 264–277 (2008).

    ADS 

    Google Scholar 

  • Giannoulaki, M. et al. Characterizing the potential habitat of European anchovy Engraulis encrasicolus in the Mediterranean Sea, at different life stages: Habitat of anchovy in the Mediterranean. Fish. Oceanogr. 22, 69–89 (2013).

    Google Scholar 

  • Durant, J., Hjermann, D., Ottersen, G. & Stenseth, N. Climate and the match or mismatch between predator requirements and resource availability. Clim. Res. 33, 271–283 (2007).

    Google Scholar 

  • Kharouba, H. M. & Wolkovich, E. M. Disconnects between ecological theory and data in phenological mismatch research. Nat. Clim. Change 10, 406–415 (2020).

    ADS 

    Google Scholar 

  • Kodama, T. et al. Improvement in recruitment of Japanese sardine with delays of the spring phytoplankton bloom in the Sea of Japan. Fish. Oceanogr. 27, 289–301 (2018).

    Google Scholar 

  • Platt, T., Fuentes-Yaco, C. & Frank, K. T. Spring algal bloom and larval fish survival. Nature 423, 398–399 (2003).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Schweigert, J. F. et al. Factors linking Pacific herring (Clupea pallasi) productivity and the spring plankton bloom in the Strait of Georgia, British Columbia. Canada. Prog. Oceanogr. 115, 103–110 (2013).

    ADS 

    Google Scholar 

  • Laurel, B. J. et al. Regional warming exacerbates match/mismatch vulnerability for cod larvae in Alaska. Progress Oceanogr. 193, 1055 (2021).

    Google Scholar 

  • Brosset, P. et al. A fine-scale multi-step approach to understand fish recruitment variability. Sci. Rep. 10, 16064 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ferreira, A. et al. Match-mismatch dynamics in the Norwegian-Barents Sea system. Mar. Ecol. Prog. Ser. 650, 81–94 (2020).

    ADS 

    Google Scholar 

  • Ferreira, A. S. A., Hátún, H., Counillon, F., Payne, M. R. & Visser, A. W. Synoptic-scale analysis of mechanisms driving surface chlorophyll dynamics in the North Atlantic. Biogeosciences 12, 3641–3653 (2015).

    ADS 

    Google Scholar 

  • Taboada, F. G. & Anadón, R. Determining the causes behind the collapse of a small pelagic fishery using Bayesian population modeling. Ecol. Appl. 26, 886–898 (2016).

    Google Scholar 

  • Katara, I., Pierce, G. J., Illian, J. & Scott, B. E. Environmental drivers of the anchovy/sardine complex in the Eastern Mediterranean. Hydrobiologia 670, 49–65 (2011).

    Google Scholar 

  • Robinson, A. R. et al. The Atlantic Ionian Stream. J. Mar. Syst. 20, 129–156 (1999).

    Google Scholar 

  • Di Lorenzo, M., Sinerchia, M. & Colloca, F. The North sector of the Strait of Sicily: A priority area for conservation in the Mediterranean Sea. Hydrobiologia 821, 235–253 (2018).

    Google Scholar 

  • García Lafuente, J. et al. Hydrographic phenomena influencing early life stages of the Sicilian Channel anchovy: Hydrographic relations with the Sicilian Channel anchovy. Fish. Oceanogr. 11, 31–44 (2002).

    Google Scholar 

  • Patti, B. et al. Role of physical forcings and nutrient availability on the control of satellite-based chlorophyll a concentration in the coastal upwelling area of the Sicilian Channel. Sci. Mar. 74, 577–588 (2010).

    Google Scholar 

  • Marini, M., Jones, B. H., Campanelli, A., Grilli, F. & Lee, C. M. Seasonal variability and Po River plume influence on biochemical properties along western Adriatic coast. J. Geophys. Res. 113, C0590 (2008).

    Google Scholar 

  • Artegiani et al. The Adriatic Sea General Circulation. Part I Air–.pdf. (1997)

  • Artegiani, A. et al. The Adriatic Sea general circulation. Part II: Baroclinic circulation structure. J. Phys. Oceanogr. 27, 18 (1997).

    Google Scholar 

  • Millot, C. The Gulf of Lions’ hydrodynamics. Cont. Shelf Res. 10, 885–894 (1990).

    ADS 

    Google Scholar 

  • Petrenko, A., Leredde, Y. & Marsaleix, P. Circulation in a stratified and wind-forced Gulf of Lions, NW Mediterranean Sea: In situ and modeling data. Cont. Shelf Res. 25, 7–27 (2005).

    ADS 

    Google Scholar 

  • Sverdrup, H. U. On conditions for the vernal blooming of phytoplankton. J. Cons. Int. Explor. Mer. 18, 287–295 (1953).

    Google Scholar 

  • Wilcox, R. R. Introduction to robust estimation and hypothesis testing. (Elsevier, 2016).

  • Pernet, C. R., Wilcox, R. R. & Rousselet, G. A. Robust correlation analyses: False positive and power validation using a new open source Matlab toolbox. Front. Psychol. 1, 1 (2013).

    Google Scholar 

  • Mair, P. & Wilcox, R. Robust statistical methods in R using the WRS2 package. Behav. Res. Methods 52, 464–488 (2020).

    PubMed 

    Google Scholar 

  • Fox, J., & Weisberg, S. “Robust regression.” An R and S-Plus companion to applied regression 91 (2002).

  • Crawley, M. J. The R book. John Wiley & Sons (2012).

  • Fox, J. Bootstrapping Regression Models Appendix to An R and S-PLUS Companion to Applied Regression (2002).


  • Source: Ecology - nature.com

    Black Kites on a flyway between Western Siberia and the Indian Subcontinent

    Chemical reactions for the energy transition