in

Seasonal distribution of fish larvae in mangrove-seagrass seascapes of Zanzibar (Tanzania)

  • Beck, M. W. et al. The role of near shore ecosystems as fish and shellfish nurseries. Issues Ecol. 11, 1–12 (2003).

    Google Scholar 

  • De la Torre-Castro, M., Di Carlo, G. & Jiddawi, N. S. Seagrass importance for a small-scale fishery in the tropics: The need for seascape management. Mar. Poll. Bull. 83, 398–407 (2014).

    Google Scholar 

  • Sheaves, M., Baker, R., Nagelkerken, I. & Connolly, R. M. True value of estuarine and coastal nurseries for fish: incorporating complexity and dynamics. Estuar. Coasts 38, 401–414 (2014).

    Google Scholar 

  • Nordlund, L. M., Unsworth, R. K. F., Gullström, M. & Cullen-Unsworth, L. C. Global significance of seagrass fishery activity. Fish. Fish. 19, 399–412 (2018).

    Google Scholar 

  • Kimirei, I. A., Nagelkerken, I., Griffioen, B., Wagner, C. & Mgaya, Y. D. Ontogenetic habitat use by mangrove/seagrass-associated coral reef fishes shows flexibility in time and space. Estuar. Coast. Shelf Sci. 92, 47–58 (2011).

    ADS 

    Google Scholar 

  • Unsworth, R. K. F. et al. Structuring of Indo-Pacific fish assemblages along the mangrove-seagrass continuum. Aquat. Biol. 5, 85–95 (2009).

    Google Scholar 

  • Cocheret De La Morinière, E., Pollux, B. J. A., Nagelkerken, I. & van Der Velde, G. Post-settlement life cycle migration patterns and habitat preference of coral reef fish that use seagrass and mangrove habitats as nurseries. Estuar. Coast. Shelf Sci. 55, 309–321 (2002).

  • Berkström, C., Lindborg, R., Thyresson, M. & Gullström, M. Assessing connectivity in a tropical embayment: fish migrations and seascape ecology. Biol. Conserv. 166, 43–53 (2013).

    Google Scholar 

  • Saenger, P., Gartside, D. & Funge-Smith, S. A review of mangrove and seagrass ecosystems and their linkage to fisheries and fisheries management. FAO Regional Office for Asia and the Pacific, Bangkok, Thailand, 74 (RAP Publication, 2013).

  • King, A. J. Density and distribution of potential prey for larval fish in the main channel of a floodplain river: pelagic versus epibenthic meiofauna. River Res. Appl. 20, 883–897 (2004).

    Google Scholar 

  • Carassou, L., Ponton, D., Mellin, C. & Galzin, R. Predicting the structure of larval fish assemblages by a hierarchical classification of meteorological and water column forcing factors. Coral Reefs 27, 867–880 (2008).

    ADS 

    Google Scholar 

  • Pinho Costa, A. C., Martins Garcia, T., Pereira Paiva, B., Ximenes Neto, A. R. & de Oliveira Soares, M. Seagrass and rhodolith beds are important seascapes for the development of fish eggs and larvae in tropical coastal areas. Mar. Environ. Res. 161, 105064 (2020).

  • Muzaki, F. K., Giffari, A. & Saptarini, D. Community structure of fish larvae in mangroves with different root types in Labuhan coastal area, Sepulu–Madura. AIP Conf. Proc. 1854, 020025 (2017).

  • Isari, S. et al. Exploring the larval fish community of the central Red Sea with an integrated morphological and molecular approach. PLoS ONE, 12, e0182503 (2017).

  • Levin, P. S. Fine-scale temporal variation in recruitment of a temperate demersal fish: the importance of settlement versus post-settlement loss. Oecologia 97, 124–133 (1994).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Mwaluma, J. M., Boaz Kaunda-Arara, B., Rasowo, J., Osore, M. K. & Vidar Øresland V. Seasonality in fish larval assemblage structure within marine reef National Parks in coastal Kenya. Environ. Biol. Fish. 90, 393–404 (2011).

  • Reglero, P., Tittensor, D. P., Álvarez-Berastegui, D., Aparicio-González, A. & Worm, B. Worldwide distributions of tuna larvae: revisiting hypotheses on environmental requirements for spawning habitats. Mar. Ecol. Prog. Ser. 501, 207–224 (2014).

    ADS 

    Google Scholar 

  • Leis, J. M. Ontogeny of behaviour in larvae of marine demersal fishes. Ichthyol. Res. 57, 325–342 (2010).

    Google Scholar 

  • Tzeng, W. N. & Wang, Y. T. Hydrography and distribution dynamics of larval and juvenile fishes in the coastal waters of the Tanshui River estuary, Taiwan, with reference to estuarine larval transport. Mar. Biol. 116, 205–217 (1993).

    Google Scholar 

  • Leis, J. M., Sweatman, H. P. A. & Reader, S. E. What the pelagic stages of coral reef fishes are doing out in blue water: Daytime field observations of larval behavioural capabilities. Mar. Freshw. Res. 47, 401–411 (1996).

    Google Scholar 

  • Leis, J. M. & Carson-Ewart, B. M. Complex behaviour by coral-reef fish larvae in open-water and near-reef pelagic environments. Environ. Biol. Fish. 53, 259–266 (1998).

    Google Scholar 

  • Leis, J. M. Are larvae of demersal fishes plankton or nekton?. Adv. Mar. Biol. 51, 57–141 (2006).

    PubMed 

    Google Scholar 

  • Faillettaz, R., Paris, C. B. & Irisson, J. O. Larval fish swimming behavior alters dispersal patterns from marine protected areas in the North-Western Mediterranean Sea. Front. Mar. Sci. 5, 1–12 (2018).

    ADS 

    Google Scholar 

  • Azeiteiro, U. M., Bacelar-Nicolau, L., Resende, P., Gonçalves, F. & Pereira, M. J. Larval fish distribution in shallow coastal waters off North Western Iberia (NE Atlantic). Estuar. Coast. Shelf Sci. 69, 554–566 (2006).

    ADS 

    Google Scholar 

  • Irisson, J. O. & Lecchini, D. In situ observation of settlement behaviour in larvae of coral reef fishes at night. J. Fish Biol. 72, 2707–2713 (2008).

    Google Scholar 

  • Teixeira Bonecker, F., de Castro, M. S. & Teixeira Bonecker, A. C. Larval fish assemblage in a tropical estuary in relation to tidal cycles, day/night and seasonal variations. Pan-Am. J. Aquat. Sci. 4, 239–246 (2009).

  • Strydom, N. A. Patterns in larval fish diversity, abundance, and distribution in temperate South African estuaries. Estuar. Coasts 38, 268–284 (2014).

    Google Scholar 

  • Lana, P. C. & Bernardino, A. F. (Eds). Brazilian estuaries: a benthic perspective. Brazilian Marine Biodiversity series. 212 (Springer, Cham, 2018).

  • Donahue, M. J., Karnauskas, M., Toews, C. & Paris, C. B. Location isn’t everything: Timing of spawning aggregations optimizes larval replenishment. PLoS ONE 10, 1–15 (2015).

    Google Scholar 

  • Reynalte-Tataje, D. A., Zaniboni-Filho, E., Bialetzki, A. & Agostinho, A. A. Temporal variability of fish larvae assemblages: influence of natural and anthropogenic disturbances. Neotrop. Ichthyol. 10, 837–846 (2012).

    Google Scholar 

  • Somarakis, S., Tsoukali, S., Giannoulaki, M., Schismenou, E. & Nikolioudakis, N. Spawning stock, egg production and larval survival in relation to small pelagic fish recruitment. Mar. Ecol. Prog. Ser. 2018, 113–136 (2018).

    Google Scholar 

  • Sampey, A., Meekan, M. G., Carleton, J. H., McKinnon, A. D. & McCormick, M. I. Temporal patterns in distributions of tropical fish larvae on the North West Shelf of Australia. Mar. Freshw. Res. 55, 473–487 (2004).

    Google Scholar 

  • Rezagholinejad, S., Arshad, A., Nurul Amin, S. M. & Ehteshami, F. The influence of environmental parameters on fish larval distribution and abundance in the mangrove estuarine area of Marudu bay, Sabah, Malaysia. J. Surv. Fish. Sci. 2, 67–78 (2016).

  • Shuai, F. et al. Temporal patterns of larval fish occurrence in a large subtropical river. PLoS ONE 11, e0156556 (2016).

  • Nordlund, L. M. et al. Intertidal zone management in the Western Indian Ocean: assessing current status and future possibilities using expert opinions. Ambio 43, 1006–1019 (2014).

    PubMed 

    Google Scholar 

  • De Oliveira, E. C. & Ferreira, E. J. G. Spawning areas, dispersion and microhabitats of fish larvae in the Anavilhanas Ecological Station, rio Negro, Amazonas State Brazil. Neotrop. Ichthyol. 6, 559–566 (2008).

    Google Scholar 

  • Caley, M. J. et al. Recruitment and the local dynamics of open marine populations. Ann. Rev. Ecol. Syst. 27, 477–500 (1996).

    Google Scholar 

  • Crochelet, E. et al. Validation of a fish larvae dispersal model with otolith data in the Western Indian Ocean and implications for marine spatial planning in data-poor regions. Ocean Coast Manag. 86, 13–21 (2013).

    Google Scholar 

  • Gilroy, J. J. & Edwards, D. P. Source-sink dynamics: a neglected problem for landscape-scale biodiversity conservation in the tropics. Curr. Landsc. Ecol. Rep. 2, 51–60 (2017).

    Google Scholar 

  • Little, M. C., Reay, P. J. & Grove, S. J. Distribution gradients of ichthyoplankton in an East African mangrove creek. Estuar. Coast. Shelf Sci. 26, 669–677 (1988).

    ADS 

    Google Scholar 

  • Hedberg, P., Rybak, F. F., Gullström, M., Jiddawi, N. S. & Winder, M. Fish larvae distribution among different habitats in coastal East Africa. J. Fish Biol. 94, 29–39 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Heylen, B. C. & Nachtsheim, D. A. Bio-telemetry as an essential tool in movement ecology and marine conservation. In: Jungblut, S., Liebich, V. & Bode, M. (Eds), YOUMARES 8–Oceans Across Boundaries: Learning From Each Other. 83–107 (Springer, 2018).

  • Parrish, J. Fish communities of interacting shallow-water habitats in tropical oceanic regions. Mar. Ecol. Prog. Ser. 58, 143–160 (1989).

    ADS 

    Google Scholar 

  • McMahon, K. W., Berumen, M. L. & Thorrold, S. R. Linking habitat mosaics and connectivity in a coral reef seascape. Proc. Natl. Acad. Sci. USA 109, 15372–15376 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Carlson, R. R. et al. Synergistic benefits of conserving land-sea ecosystems. Glob. Ecol. Conserv. 28, e01684 (2021).

  • Mwaluma, J. M. et al. Assemblage structure and distribution of fish larvae on the North Kenya Banks during the Southeast Monsoon season. Ocean Coast. Manag. 212, 105800 (2021).

  • Joyeux, J. C. The abundance of fish larvae in estuaries: Within-tide variability at inlet and immigration. Estuaries 22, 889–904 (1999).

    Google Scholar 

  • Able, K. W., Valenti, J. L. & Grothues, T. M. Fish larval supply to and within a lagoonal estuary: Multiple sources for Barnegat Bay New Jersey. Environ. Biol. Fish. 100, 663–683 (2017).

    Google Scholar 

  • McClanahan, T. R. Seasonality in East Africa’s coastal waters. Mar. Ecol. Prog. Ser. 44, 191–199 (1988).

    ADS 

    Google Scholar 

  • Aceves-Medina, G. et al. Distribution and abundance of the ichthyoplankton assemblages and its relationships with the geostrophic flow along the southern region of the California current. Lat. Am. J. Aquat. Res. 46, 104–119 (2018).

    Google Scholar 

  • Gray, C. A. & Miskiewicz, A. G. Larval fish assemblages in south-east Australian coastal waters: Seasonal and spatial structure. Estuar. Coast. Shelf Sci. 50, 549–570 (2000).

    ADS 

    Google Scholar 

  • Jiménez, M. P., Sánchez-Leal, R. F., González, C., García-Isarch, E. & García, A. Oceanographic scenario and fish larval distribution off Guinea-Bissau (north-west Africa). J. Mar. Biolog. Assoc. UK 95, 435–452.

  • Mwaluma, J. M., Kaunda-Arara, B. & Rasowo, J. Diel and lunar variations in larval supply to Malindi Marine Park, Kenya. West Ind. Ocean J. Mar. Sci. 13, 57–67 (2014).

    Google Scholar 

  • Stephens, J. S. Jr., Jordan, G. A., Morris, P. A., Singer, M. M. & McGowen, G. E. Can we relate larval fish abundance to recruitment or population stability? A preliminary analysis of recruitment to a temperate rocky reef. CalCOFI Rep. 27, 65–83 (1986).

    Google Scholar 

  • Green, B. C., Smith, D. J., Grey, J. & Underwood, G. J. C. High site fidelity and low site connectivity in temperate salt marsh fish populations: A stable isotope approach. Oecologia 168, 245–255 (2012).

    ADS 
    PubMed 

    Google Scholar 

  • Green, J. M. & Wroblewski, J. S. Movement patterns of Atlantic cod in Gilbert Bay, Labrador: Evidence for bay residency and spawning site fidelity. J. Mar. Biolog. Assoc. UK 80, 1077–1085 (2000).

    Google Scholar 

  • Grüss, A., Kaplan, D. M. & Hart, D. R. Relative impacts of adult movement, larval dispersal and harvester movement on the effectiveness of reserve networks. PLoS ONE 6, e19960 (2011).

  • Luiz, O. J. et al. Adult and larval traits as determinants of geographic range size among tropical reef fishes. Proc. Natl. Acad. Sci. USA 110, 16498–16502 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Macpherson, E. & Raventos, N. Relationship between pelagic larval duration and geographic distribution of Mediterranean littoral fishes. Mar. Ecol. Prog. Ser. 327, 257–265 (2006).

    ADS 

    Google Scholar 

  • Green, A. L. et al. Larval dispersal and movement patterns of coral reef fishes, and implications for marine reserve network design. Biol. Rev. 90, 1215–1247 (2015).

    PubMed 

    Google Scholar 

  • Taylor, M. D., Laffan, S. D., Fielder, D. S. & Suthers, I. M. Key habitat and home range of mulloway Argyrosomus japonicus in a south-east Australian estuary: Finding the estuarine niche to optimise stocking. Mar. Ecol. Prog. Ser. 328, 237–247 (2006).

    ADS 

    Google Scholar 

  • Manson, F. J., Loneragan, N. R., Skilleter, G. A. & Phinn, S. R. An evaluation of the evidence for linkages between mangroves and fisheries: A synthesis of the literature and identification of research directions. Oceanogr. Mar. Biol. 43, 483–513 (2005).

    Google Scholar 

  • Pattrick, P. & Strydom, N. A. Composition, abundance, distribution and seasonality of larval fishes in the shallow nearshore of the proposed Greater Addo Marine Reserve, Algoa Bay South Africa. Estuar. Coast. Shelf Sci. 79, 251–262 (2008).

    ADS 

    Google Scholar 

  • Sato, N., Asahida, T., Terashima, H., Hurbungs, M. D. & Ida, H. Species composition and dynamics of larval and juvenile fishes in the surf zone of Mauritius. Environ. Biol. Fish. 81, 229–238 (2008).

    Google Scholar 

  • Jaonalison, H., Mahafina, J. & Ponton, D. Fish post-larvae assemblages at two contrasted coral reef habitats in southwest Madagascar. Reg. Stud. Mar. Sci 6, 62–74 (2016).

    Google Scholar 

  • Azmir, I. A., Esa, Y., Amin, S. M. N., Yasin, I. S. & Yusof, F. ZMd. Identification of larval fish in mangrove areas of Peninsular Malaysia using morphology and DNA barcoding methods. J. Appl. Ichthyol. 33, 998–1006 (2017).

    CAS 

    Google Scholar 

  • Macedo-Soares, L. C. P., Freire, A. S. & Muelbert, J. H. Small-scale spatial and temporal variability of larval fish assemblages at an isolated oceanic island. Mar. Ecol. Prog. Ser. 444, 207–222 (2012).

    ADS 

    Google Scholar 

  • Monteleone, D. M. Seasonality and abundance of ichthyoplankton in great South Bay, New York. Estuaries 15, 230–238 (1992).

    Google Scholar 

  • Ara, R., Arshad, A., Amin, S. M. & Mazlan, A. G. Temporal and spatial distribution of fish larvae in different ecological habitats. Asian J. Anim. Vet. Adv. 8, 53–62 (2013).

    Google Scholar 

  • Abu El-Regal, M. Abundance and diversity of coral reef fish larvae at Hurghada, Egyptian Red Sea. Egypt. J. Aquat. Biol. Fish. 12, 17–33 (2008).

    Google Scholar 

  • Bialetzki, A., Nakatani, K., Sanches, P. V., Baumgartner, G. & Gomes, L. C. Larval fish assemblage in the Baía River (Mato Grosso do Sul State, Brazil): temporal and spatial patterns. Environ. Biol. Fish. 73, 37–47 (2005).

    Google Scholar 

  • Dudley, B., Tolimieri, N. & Montgomery, J. Swimming ability of the larvae of some reef fishes from New Zealand waters. Mar. Freshw. Res. 51, 783–787. https://doi.org/10.1071/MF00062 (2000).

    Article 

    Google Scholar 

  • Hare, J. A. et al. Biophysical mechanisms of larval fish ingress into Chesapeake Bay. Mar. Ecol. Prog. Ser. 303, 295–310 (2005).

    ADS 

    Google Scholar 

  • Watt-pringle, P. & Strydom, N. A. Habitat use by larval fishes in a temperate South African surf zone. Estuar. Coast. Shelf Sci. 58, 765–774 (2003).

    ADS 

    Google Scholar 

  • Picapedra, P. H. S., Sanches, P. V. & Lansac-Tôha, F. A. Effects of light-dark cycle on the spatial distribution and feeding activity of fish larvae of two co-occurring species (Pisces: Hypophthalmidae and Sciaenidae) in a neotropical floodplain lake. Braz. J. Biol. 78, 763–772 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Cederlöf, U., Rydberg, L., Mgendi, M. & Mwaipopo, O. Tidal exchange in a warm tropical lagoon: Chwaka Bay, Zanzibar. Ambio 24, 458–464 (1995).

    Google Scholar 

  • Gullström, M. et al. Assessment of changes in the seagrass-dominated submerged vegetation of tropical Chwaka Bay (Zanzibar) using satellite remote sensing. Estuar. Coast. Shelf Sci. 67, 399–408 (2006).

    ADS 

    Google Scholar 

  • Gullström, M. et al. Seagrass meadows of Chwaka Bay: ecological, social and management aspects. In: de la Torre-Castro, M., Lyimo, T. J. (Eds) People, nature and research: past, present and future of Chwaka Bay, Zanzibar. ISBN: 978-9987-9559-1-6, Zanzibar Town: 89–109 (WIOMSA, 2012a)

  • Gullström, M. et al. Connectivity and nursery function of shallow-water habitats in Chwaka Bay. In: de la Torre-Castro, M., Lyimo, T. J. (Eds) People, nature and research: past, present and future of Chwaka Bay, Zanzibar. ISBN: 978-9987-9559-1-6, Zanzibar Town: 175–192 (WIOMSA, 2012b)

  • Rehren, J., Wolff, M. & Jiddawi, N. Holistic assessment of Chwaka Bay’s multi-gear fishery—using a trophic modeling approach. J. Mar. Syst. 180, 265–278 (2018).

    Google Scholar 

  • Torell, E., Mmochi, A. & Palmigiano, K. Menai Bay Convernance Baseline. Coastal Resources Center, 1–18 (University of Rhode Island, 2006).

  • Torell, E., Shalli, M., Francis, J., Kalangahe, B. & Munubi, R. Tanzania biodiversity threats assessment: Biodiversity threats and management opportunities for Fumba, Bagamoyo, and Mkuranga. 1–47 (University of Rhode Island, Narragansett, 2007).

  • Jeyaseelan, M. J. P. Manual of fish eggs and larvae from Asian mangrove waters.193 (Paris: UNESCO Publishing, 1998).

  • Mwaluma, J. M., Kaunda-Arara, B. & Strydom, N. A. A guide to commonly occurring larval stages of fishes in Kenyan Coastal Waters. WIOMSA Book Series No. 15. xvi + 73 (WIOMSA, 2014).

  • Leis, J. M. & Carson-Ewart, B. M. (Eds.). The larvae of Indo-Pacific coastal fishes: an identification guide to marine fish larvae (Fauna Malesiana Handbooks 2), 804 (Brill, Leiden, 2000).

  • Strickland, J. D. H. & Parsons, T. R. A practical handbook of seawater analysis, 2nd edn. Vol. 167. 21–26 (Bull. Fish. Res. Bd. Canada, 1972).

  • Clarke, K. R. & Warwick, R. M. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation (PRIMER-E). Plymouth Marine Laboratory, (Plymouth, UK, 2001).


  • Source: Ecology - nature.com

    MIT ReACT welcomes first Afghan cohort to its largest-yet certificate program

    Using nature’s structures in wooden buildings