in

Short and long-term costs of inbreeding in the lifelong-partnership in a termite

  • Shellman-Reeve, J. S. Courting strategies and conflicts in a monogamous, biparental termite. Proc. R. Soc. Lond. Ser. B: Biol. Sci. 266, 137–144 (1999).

    Article 

    Google Scholar 

  • Boomsma, J. J. Beyond promiscuity: mate-choice commitments in social breeding. Philos. Trans. R. Soc. B: Biol. Sci. 368 (2013).

  • Nichols, H. J. The causes and consequences of inbreeding avoidance and tolerance in cooperatively breeding vertebrates. J. Zool. 303, 1–14 (2017).

    Article 

    Google Scholar 

  • Clutton-Brock, T. H. Female transfer and inbreeding avoidance in social mammals. Nature 337, 70–72 (1989).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Wolff, J. O. Parents suppress reproduction and stimulate dispersal in opposite-sex juvenile white-footed mice. Nature 359, 409–410 (1992).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Abbott, D. In Primate Social Conflict (eds W. A. Mason & S. P. Mendoza) 331–372 (State University of New York Press, 1993).

  • Koenig, W. D., Haydock, J. & Stanback, M. T. Reproductive roles in the cooperatively breeding acorn woodpecker: incest avoidance versus reproductive competition. Am. Nat. 151, 243–255 (1998).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Hanby, J. P. & Bygott, J. D. Emigration of subadult lions. Anim. Behav. 35, 161–169 (1987).

    Article 

    Google Scholar 

  • Brooked, M. G., Rowley, I., Adams, M. & Baverstock, P. R. Promiscuity: an inbreeding avoidance mechanism in a socially monogamous species? Behav. Ecol. Sociobiol. 26, 191–199 (1990).

    Article 

    Google Scholar 

  • Amos, B., Schlotterer, C. & Tautz, D. Social structure of pilot whales revealed by analytical DNA proftling. Science 260, 670–672 (1993).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Sillero-Zubiri, C., Gottelli, D. & Macdonald, D. W. Male philopatry, extra-pack copulations and inbreeding avoidance in Ethiopian wolves (Canis simensis). Behav. Ecol. Sociobiol. 38, 331–340 (1996).

    Article 

    Google Scholar 

  • Husseneder, C., Simms, D. M. & Ring, D. R. Genetic diversity and genotypic differentiation between the sexes in swarm aggregations decrease inbreeding in the Formosan subterranean termite. Insectes Sociaux 53, 212–219 (2006).

    Article 

    Google Scholar 

  • Blouin, S. F. & Blouin, M. Inbreeding avoidance behaviors. Trends Ecol. Evol. 3, 230–233 (1988).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Pusey, A. & Wolf, M. Inbreeding avoidance in animals. Trends Ecol. Evol. 11, 201–206 (1996).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Gerlach, G. & Lysiak, N. Kin recognition and inbreeding avoidance in zebrafish, Danio rerio, is based on phenotype matching. Anim. Behav. 71, 1371–1377 (2006).

    Article 

    Google Scholar 

  • Hurst, J. L. et al. Individual recognition in mice mediated by major urinary proteins. Nature 414, 631–634 (2001).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Vargo, E. L. & Husseneder, C. In Biology of termites: A modern synthesis (eds D.E. Bignell, Yves Roisin, & Nathan Lo) 133–164 (Springer, 2011).

  • Shellman-Reeve, J. S. Dynamics of biparental care in the dampwood termite, Zootermopsis nevadensis (Hagen): response to nitrogen availability. Behav. Ecol. Sociobiol. 26, 389–397 (1990).

    Article 

    Google Scholar 

  • Cole, E. L., Ilieş, I. & Rosengaus, R. B. Competing physiological demands during incipient colony foundation in a social insect: consequences of pathogenic stress. Front. Ecol. Evol. 6 (2018).

  • Traniello, J. F. A., Rosengaus, R. B. & Savoie, K. The development of immunity in a social insect: evidence for the group facilitation of disease resistance. Proc. Natl Acad. Sci. 99, 6838–6842 (2002).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cremer, S., Armitage, S. A. O. & Schmid-Hempel, P. Social immunity. Curr. Biol. 17, R693–R702 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Rosengaus, R. B., Traniello, J. F. A. & Bulmer, M. In biology of termites: a modern synthesis (eds D. E. Bignell, Yves Roisin & Nathan Lo) 165–191 (Springer, 2011).

  • Cole, E. L., Bayne, H. & Rosengaus, R. B. Young but not defenceless: antifungal activity during embryonic development of a social insect. R. Soc. Open Sci. 7, 191418–191418 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rosengaus, R. B. & Traniello, J. F. Disease susceptibility and the adaptive nature of colony demography in the dampwood termite Zootermopsis angusticollis. Behav. Ecol. Sociobiol. 50, 546–556 (2001).

    Article 

    Google Scholar 

  • Cole, E. L. & Rosengaus, R. B. Pathogenic dynamics during colony ontogeny reinforce potential drivers of termite eusociality: mate assistance and biparental care. Front. Ecol. Evol. 7 (2019).

  • Chouvenc, T. The relative importance of queen and king initial weights in termite colony foundation success. Insectes Sociaux 66, 177–184 (2019).

    Article 

    Google Scholar 

  • Matsuura, K. & Kobayashi, N. Termite queens adjust egg size according to colony development. Behav. Ecol. 21, 1018–1023 (2010).

    Article 

    Google Scholar 

  • Calleri, D. V., McGrail Reid, E., Rosengaus, R. B., Vargo, E. L. & Traniello, J. F. A. Inbreeding and disease resistance in a social insect: effects of heterozygosity on immunocompetence in the termite Zootermopsis angusticollis. Proc. R. Soc. B: Biol. Sci. 273, 2633–2640 (2006).

    Article 

    Google Scholar 

  • DeHeer, C. J. & Vargo, E. L. An indirect test of inbreeding depression in the termites Reticulitermes flavipes and Reticulitermes virginicus. Behav. Ecol. Sociobiol. 59, 753–761 (2006).

    Article 

    Google Scholar 

  • Aguero, C. M., Eyer, P.-A., Martin, J. S., Bulmer, M. S. & Vargo, E. L. Natural variation in colony inbreeding does not influence susceptibility to a fungal pathogen in a termite. Ecol. Evol. 11, 3072–3083 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Aguero, C., Eyer, P. A. & Vargo, E. L. Increased genetic diversity from colony merging in termites does not improve survival against a fungal pathogen. Sci. Rep. 10, 4212 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rosengaus, R. B. & Traniello, J. F. Disease risk as a cost of outbreeding in the termite Zootermopsis angusticollis. Proc. Natl Acad. Sci. 90, 6641–6645 (1993).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Eyer, P.-A. et al. Extensive human-mediated jump dispersal within and across the native and introduced ranges of the invasive termite Reticulitermes flavipes. Mol. Ecol. 30, 3948–3964 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Perdereau, E. et al. Global genetic analysis reveals the putative native source of the invasive termite, Reticulitermes flavipes, in France. Mol. Ecol. 22, 1105–1119 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Sinotte, V. M. et al. Female-biased sex allocation and lack of inbreeding avoidance in Cubitermes termites. Ecol. Evolution 11, 5598–5605 (2021).

    Article 

    Google Scholar 

  • Li, G., Gao, Y., Sun, P., Lei, C. & Huang, Q. Factors affecting mate choice in the subterranean termite Reticulitermes chinensis (Isoptera: Rhinotermitidae). J. Ethol. 31, 159–164 (2013).

    Article 

    Google Scholar 

  • Aguilera-Olivares, D., Flores-Prado, L., Véliz, D. & Niemeyer, H. Mechanisms of inbreeding avoidance in the one-piece drywood termite Neotermes chilensis. Insectes Sociaux 62, 237–245 (2015).

    Article 

    Google Scholar 

  • Miyaguni, Y., Agarie, A., Sugio, K., Tsuji, K. & Kobayashi, K. Caste development and sex ratio of the Ryukyu drywood termite Neotermes sugioi and its potential mechanisms. Sci. Rep. 11, 15037 (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nutting, W. L. In Biology of Termites (eds Kumar Krishna & Frances M. Weesner) 233–282 (Academic Press, 1969).

  • Fougeyrollas, R. et al. Dispersal and mating strategies in two neotropical soil-feeding termites, Embiratermes neotenicus and Silvestritermes minutus (Termitidae, Syntermitinae). Insectes Sociaux 65, 251–262 (2018).

    Article 

    Google Scholar 

  • Shellman-Reeve, J. S. Genetic relatedness and partner preference in a monogamous, wood-dwelling termite. Anim. Behav. 61, 869–876 (2001).

    Article 

    Google Scholar 

  • Zhang, Z.-Y. et al. Biochemical, molecular, and morphological variations of flight muscles before and after dispersal flight in a eusocial termite, Reticulitermes chinensis. Insect Sci. 28, 77–92 (2021).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Mullins, A. J. et al. Dispersal flights of the Formosan subterranean termite (Isoptera: Rhinotermitidae). J. Econ. Entomol. 108, 707–719 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Goodisman, M. A. D. & Crozier, R. H. Population and colony genetic structure of the primitive termite Mastotermes Darwiniensis. Evolution 56, 70–83 (2002).

    Article 
    PubMed 

    Google Scholar 

  • Schmidt, A. M., Jacklyn, P. & Korb, J. Isolated in an ocean of grass: low levels of gene flow between termite subpopulations. Mol. Ecol. 22, 2096–2105 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Thompson, G. J., Lenz, M., Crozier, R. H. & Crespi, B. J. Molecular-genetic analyses of dispersal and breeding behaviour in the Australian termite Coptotermes lacteus: evidence for non-random mating in a swarm-dispersal mating system. Aust. J. Zool. 55, 219–227 (2007).

    CAS 
    Article 

    Google Scholar 

  • Vargo, E. L. Diversity of termite breeding systems. Insects 10, 52 (2019).

    Article 
    PubMed Central 

    Google Scholar 

  • Tranter, C., LeFevre, L., Evison, S. E. F. & Hughes, W. O. H. Threat detection: contextual recognition and response to parasites by ants. Behav. Ecol. 26, 396–405 (2014).

    Article 

    Google Scholar 

  • Hussain, A., Tian, M.-Y., He, Y.-R., Bland, J. M. & Gu, W.-X. Behavioral and electrophysiological responses of Coptotermes formosanus Shiraki towards entomopathogenic fungal volatiles. Biol. Control 55, 166–173 (2010).

    Article 

    Google Scholar 

  • Yanagawa, A., Imai, T., Akino, T., Toh, Y. & Yoshimura, T. Olfactory cues from pathogenic fungus affect the direction of motion of termites, Coptotermes formosanus. J. Chem. Ecol. 41, 1118–1126 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rosengaus, R. B., James, L.-T., Hartke, T. R. & Brent, C. S. Mate preference and disease risk in Zootermopsis angusticollis (Isoptera: Termopsidae). Environ. Entomol. 40, 1554–1565 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Beani, L. et al. Cuticular hydrocarbons as cues of sex and health condition in Polistes dominula wasps. Insectes Sociaux 66, 543–553 (2019).

    Article 

    Google Scholar 

  • Waser, P. M., Austad, S. N. & Keane, B. When should animals tolerate inbreeding? Am. Nat. 128, 529–537 (1986).

    Article 

    Google Scholar 

  • Bengtsson, B. O. Avoiding inbreeding: at what cost? J. Theor. Biol. 73, 439–444 (1978).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Lehmann, L. & Perrin, N. Inbreeding avoidance through kin recognition: Choosy females boost male dispersal. Am. Nat. 162, 638–652 (2003).

    Article 
    PubMed 

    Google Scholar 

  • Basalingappa, S. Environmental hazards to reproductives of Odontotermes assmuthi Holgrem. Indian Zool. 1, 45–50 (1970).

    Google Scholar 

  • Darlington, J., Sands, W. & Pomeroy, D. Distribution and post-settlement survival in the field by reproductive pairs of Hodotermes mossambicus hagen (isoptera, hodotermitida). Insectes Sociaux 24, 353–358 (1977).

    Article 

    Google Scholar 

  • Dial, K. P. & Vaughan, T. A. Opportunistic predation on alate termites in Kenya. Biotropica 19, 185–187 (1987).

    Article 

    Google Scholar 

  • Korb, J. & Salewski, V. Predation on swarming termites by birds. Afr. J. Ecol. 38, 173–174 (2000).

    Article 

    Google Scholar 

  • Schwenke, R. A., Lazzaro, B. P. & Wolfner, M. F. ReproduCtion–immunity Trade-offs In Insects. Annu. Rev. Entomol. 61, 239–256 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Calleri, D. II, Rosengaus, R. & Traniello, J. A. Disease and colony foundation in the dampwood termite Zootermopsis angusticollis: The survival advantage of nestmate pairs. Naturwissenschaften 92, 300–304 (2005).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Fei, H. X. & Henderson, G. Comparative study of incipient colony development in the Formosan subterranean termite, Coptotermes formosanus Shiraki (Isoptera,Rhinotermitidae). Insectes Sociaux 50, 226–233 (2003).

    Article 

    Google Scholar 

  • Rosengaus, R. B., Cornelisse, T., Guschanski, K. & Traniello, J. F. A. Inducible immune proteins in the dampwood termite Zootermopsis angusticollis. Naturwissenschaften 94, 25–33 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Rosengaus, R. B., Traniello, J. F. A., Chen, T., Brown, J. J. & Karp, R. D. Immunity in a social insect. Naturwissenschaften 86, 588–591 (1999).

    CAS 
    Article 

    Google Scholar 

  • Sun, Q., Haynes, K. F., Hampton, J. D. & Zhou, X. Sex-specific inhibition and stimulation of worker-reproductive transition in a termite. Sci. Nat. 104, 79 (2017).

    Article 
    CAS 

    Google Scholar 

  • Eyer, P.-A. et al. Inbreeding tolerance as a pre-adapted trait for invasion success in the invasive ant Brachyponera chinensis. Mol. Ecol. 27, 4711–4724 (2018).

    PubMed 

    Google Scholar 

  • Barrett, S. C. H. & Charlesworth, D. Effects of a change in the level of inbreeding on the genetic load. Nature 352, 522 (1991).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Crnokrak, P. & Spencer, C. H. B. Perspective: purging the genetic load. A review of the experimental evidence. Evolution 56, 2347–2358 (2002).

    Article 
    PubMed 

    Google Scholar 

  • Day, S. B., Bryant, E. H. & Meffert, L. M. The influence of variable rates of inbreeding on fitness, environmental responsiveness, and evolutionary potential. Evolution 57, 1314–1324 (2003).

    Article 
    PubMed 

    Google Scholar 

  • Syren, R. M. & Luykx, P. Permanent segmental interchange complex in the termite Incisitermes schwarzi. Nature 266, 167–168 (1977).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Fontana, F. Multiple reciprocal chromosomal translocations and their role in the evolution of sociality in termites. Ethol. Ecol. Evolution 3, 15–19 (1991).

    CAS 
    Article 

    Google Scholar 

  • Matsuura, K. A test of the haplodiploid analogy hypothesis in the termite Reticulitermes speratus (Isoptera: Rhinotermitidae). Ann. Entomol. Soc. Am. 95, 646–649 (2002).

    Article 

    Google Scholar 

  • Yashiro, T. et al. Enhanced heterozygosity from male meiotic chromosome chains is superseded by hybrid female asexuality in termites. Proc. Natl. Acad. Sci. 118, e2009533118 (2021).

  • Charlesworth, B. & Wall, J. D. Inbreeding, heterozygote advantage and the evolution of neo-X and neo-Y sex chromosomes. Proc. R. Soc. Lond. Ser. B: Biol. Sci. 266, 51–56 (1999).

    Article 

    Google Scholar 

  • Hellemans, S. et al. Widespread occurrence of asexual reproduction in higher termites of the Termes group (Termitidae: Termitinae). BMC Evol. Biol. 19, 131 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vargo, E. L., Labadie, P. E. & Matsuura, K. Asexual queen succession in the subterranean termite Reticulitermes virginicus. Proc. R. Soc. B: Biol. Sci. 279, 813–819 (2012).

    Article 

    Google Scholar 

  • Matsuura, K. et al. Queen succession through asexual reproduction in termites. Science 323, 1687–1687 (2009).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Cremer, S., Pull, C. D. & Fürst, M. A. Social immunity: emergence and evolution of colony-level disease protection. Annu. Rev. Entomol. 63, 105–123 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Van Meyel, S., Körner, M. & Meunier, J. Social immunity: why we should study its nature, evolution and functions across all social systems. Curr. Opin. Insect Sci. 28, 1–7 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Cotter, S. C. & Kilner, R. M. Personal immunity versus social immunity. Behav. Ecol. 21, 663–668 (2010).

    Article 

    Google Scholar 

  • Liu, L., Zhao, X.-Y., Tang, Q.-B., Lei, C.-L. & Huang, Q.-Y. The mechanisms of social immunity against fungal infections in eusocial insects. Toxins 11, 244 (2019).

    CAS 
    Article 
    PubMed Central 

    Google Scholar 

  • Chouvenc, T. & Su, N. Y. When subterranean termites challenge the rules of fungal epizootics. Plos One 7, e34484 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Davis, H. E., Meconcelli, S., Radek, R. & McMahon, D. P. Termites shape their collective behavioural response based on stage of infection. Sci. Rep. 8, 14433–14433 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cassidy, S. T. et al. Disease defences across levels of biological organization: individual and social immunity in acorn ants. Anim. Behav. 179, 73–81 (2021).

    Article 

    Google Scholar 

  • López-Uribe, M. M., Sconiers, W. B., Frank, S. D., Dunn, R. R. & Tarpy, D. R. Reduced cellular immune response in social insect lineages. Biol. Lett. 12, 20150984 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • He, S. et al. Evidence for reduced immune gene diversity and activity during the evolution of termites. Proc. R. Soc. B: Biol. Sci. 288, 20203168 (2021).

    Article 

    Google Scholar 

  • Viljakainen, L. et al. Rapid evolution of immune proteins in social insects. Mol. Biol. Evol. 26, 1791–1801 (2009).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Meusemann, K., Korb, J., Schughart, M. & Staubach, F. No evidence for single-copy immune-gene specific signals of selection in termites. Front. Ecol. Evol. 8 (2020).

  • Otani, S., Bos, N. & Yek, S. H. Transitional complexity of social insect immunity. Front. Ecol. Evol. 4 (2016).

  • Barribeau, S. M. et al. A depauperate immune repertoire precedes evolution of sociality in bees. Genome Biol. 16, 83 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • de Boer, R. A., Vega-Trejo, R., Kotrschal, A. & Fitzpatrick, J. L. Meta-analytic evidence that animals rarely avoid inbreeding. Nat. Ecol. Evol. 5, 949–964 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Szulkin, M., Stopher, K. V., Pemberton, J. M. & Reid, J. M. Inbreeding avoidance, tolerance, or preference in animals? Trends Ecol. Evol. 28, 205–211 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Fox, C. W. & Reed, D. H. Inbreeding depression increases with environmental stress: an experimental study and meta-analysis. Evol. 65, 246–258 (2011).

    Article 

    Google Scholar 

  • Kokko, H., Ots, I. & Tregenza, T. When not to avoid inbreeding. Evolution 60, 467–475 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Zayed, A. & Packer, L. Complementary sex determination substantially increases extinction proneness of haplodiploid populations. Proc. Natl Acad. Sci. USA 102, 10742–10746 (2005).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ross, K. G. & Fletcher, D. J. C. Diploid male production — a significant colony mortality factor in the fire ant Solenopsis invicta (Hymenoptera: Formicidae). Behav. Ecol. Sociobiol. 19, 283–291 (1986).

    Article 

    Google Scholar 

  • Eyer, P.-A., Salin, J., Helms, A. M. & Vargo, E. L. Distinct chemical blends produced by different reproductive castes in the subterranean termite Reticulitermes flavipes. Sci. Rep. 11, 4471 (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kearse, M. et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Queller, D. C. & Goodnight, K. F. Estimating relatedness using genetic markers. Evolution 43, 258–275 (1989).

    Article 
    PubMed 

    Google Scholar 

  • Wang, J. Coancestry: a program for simulating, estimating and analysing relatedness and inbreeding coefficients. Mol. Ecol. Resour. 11, 141–145 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Jombart, T. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Rosengaus, R. B., Moustakas, J. E., Calleri, D. V. & Traniello, J. F. A. Nesting ecology and cuticular microbial loads in dampwood (Zootermopsis angusticollis) and drywood termites (Incisitermes minor, I. schwarzi, Cryptotermes cavifrons). J. Insect Sci. 3, 31 (2003).

  • Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K. & Schloss, P. D. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol. 79, 5112–5120 (2013).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • White, T. J., Burns, T., Lee, S. & Taylor, J. in PCR protocols: A guide to methods and applications (eds. M. A. Innis, D. H. Gelfand, J. J. Snisky, & T. J. White) 315–322 (Academic Press, 1990).

  • Aguero, C. M., Eyer, P.-A., Crippen, T. L. & Vargo, E. L. Reduced environmental microbial diversity on the cuticle and in the galleries of a subterranean termite compared to surrounding soil. Microb. Ecol. 81, 1054–1063 (2021).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hamady, M., Lozupone, C. & Knight, R. Fast UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data. ISME J. 4, 17–27 (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Therneau, T. & Grambsch, P. Modeling Survival Data: Extending the Cox Model (Springer, 2000).

  • Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Tests of rubber granules used as artificial turf for football fields in terms of toxicity to human health and the environment

    Role of trade agreements in the global cereal market and implications for virtual water flows