in

The likely extinction of hundreds of palm species threatens their contributions to people and ecosystems

  • Isbell, F. et al. High plant diversity is needed to maintain ecosystem services. Nature 477, 199–202 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • van der Sande, M. T. et al. Biodiversity in species, traits, and structure determines carbon stocks and uptake in tropical forests. Biotropica 49, 593–603 (2017).

    Article 

    Google Scholar 

  • Grace, O. M. et al. Plant power: opportunities and challenges for meeting sustainable energy needs from the plant and fungal kingdoms. Plants People Planet 2, 446–462 (2020).

    Article 

    Google Scholar 

  • Howes, M. J. R. et al. Molecules from nature: reconciling biodiversity conservation and global healthcare imperatives for sustainable use of medicinal plants and fungi. Plants People Planet 2, 463–481 (2020).

    Article 

    Google Scholar 

  • Ulian, T. et al. Unlocking plant resources to support food security and promote sustainable agriculture. Plants People Planet 2, 421–445 (2020).

    Article 

    Google Scholar 

  • Brondizio, E., Diaz, S., Settele, J. & Ngo, H. T. (eds) Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on biodiversity and ecosystem services. Zenodo https://doi.org/10.5281/zenodo.3831673 (2019).

  • Bennun, L. et al. The value of the IUCN Red List for business decision-making. Conserv. Lett. 11, e12353 (2018).

  • Betts, J. et al. A framework for evaluating the impact of the IUCN Red List of threatened species. Conserv. Biol. 34, 632–643 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Maira, L. et al. Achieving international species conservation targets: closing the gap between top-down and bottom-up approaches. Conserv. Soc. 19, 25–33 (2021).

    Article 

    Google Scholar 

  • IUCN Red List version 2022-2: Table 1a (IUCN, 2022); https://www.iucnredlist.org/resources/summary-statistics#Figure2

  • Rivers, M. The global tree assessment—red listing the world’s trees. BGjournal 14, 16–19 (2017).

    Google Scholar 

  • Nic Lughadha, E. et al. Extinction risk and threats to plants and fungi. Plants People Planet 2, 389–408 (2020).

    Article 

    Google Scholar 

  • Silva, S. V. et al. Global estimation and mapping of the conservation status of tree species using artificial intelligence. Front. Plant Sci. 13, 839792 (2022).

  • ThreatSearch Online Database (Botanic Gardens Conservation International, accessed 12 October 2021); https://tools.bgci.org/threat_search.php

  • Bachman, S. P., Nic Lughadha, E. M. & Rivers, M. C. Quantifying progress toward a conservation assessment for all plants. Conserv. Biol. 32, 516–524 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Rondinini, C., Di Marco, M., Visconti, P., Butchart, S. H. M. & Boitani, L. Update or outdate: long-term viability of the IUCN Red List. Conserv. Lett. 7, 126–130 (2014).

    Article 

    Google Scholar 

  • Cazalis, V. et al. Bridging the research–implementation gap in IUCN Red List assessments. Trends Ecol. Evol. 37, 359–370 (2022).

    PubMed 
    Article 

    Google Scholar 

  • Dauby, G. et al. ConR: an R package to assist large-scale multispecies preliminary conservation assessments using distribution data. Ecol. Evol. 7, 11292–11303 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Stévart, T. et al. A third of the tropical African flora is potentially threatened with extinction. Sci. Adv. 5, eaax9444 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bland, L. M., Collen, B., Orme, C. D. L. & Bielby, J. Predicting the conservation status of data-deficient species. Conserv. Biol. 29, 250–259 (2015).

    PubMed 
    Article 

    Google Scholar 

  • Darrah, S. E., Bland, L. M., Bachman, S. P., Clubbe, C. P. & Trias-Blasi, A. Using coarse-scale species distribution data to predict extinction risk in plants. Divers. Distrib. 23, 435–447 (2017).

    Article 

    Google Scholar 

  • Pelletier, T. A., Carstens, B. C., Tank, D. C., Sullivan, J. & Espíndola, A. Predicting plant conservation priorities on a global scale. Proc. Natl Acad. Sci. USA 115, 13027–13032 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Zizka, A., Silvestro, D., Vitt, P. & Knight, T. M. Automated conservation assessment of the orchid family with deep learning. Conserv. Biol. 35, 897–908 (2021).

    PubMed 
    Article 

    Google Scholar 

  • Walker, B. E., Leão, T. C. C., Bachman, S. P., Bolam, F. C. & Nic Lughadha, E. Caution needed when predicting species threat status for conservation prioritization on a global scale. Front. Plant Sci. 11, 520 (2020).

  • Lughadha, E. N. et al. The use and misuse of herbarium specimens in evaluating plant extinction risks. Philos. Trans. R. Soc. B 374, 20170402 (2019).

    Article 

    Google Scholar 

  • Walker, B. E., Leão, T. C. C., Bachman, S. P., Lucas, E. & Nic Lughadha, E. M. Evidence-based guidelines for developing automated assessment methods. Preprint at https://ecoevorxiv.org/zxq6s/ (2021).

  • Isaac, N. J. B., Turvey, S. T., Collen, B., Waterman, C. & Baillie, J. E. M. Mammals on the EDGE: conservation priorities based on threat and phylogeny. PLoS ONE 2, e296 (2007).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Grenié, M., Denelle, P., Tucker, C. M., Munoz, F. & Violle, C. funrar: an R package to characterize functional rarity. Divers. Distrib. 23, 1365–1371 (2017).

    Article 

    Google Scholar 

  • Lindegren, M., Holt, B. G., MacKenzie, B. R. & Rahbek, C. A global mismatch in the protection of multiple marine biodiversity components and ecosystem services. Sci. Rep. 8, 4099 (2018).

  • Pollock, L. J. et al. Protecting biodiversity (in all its complexity): new models and methods. Trends Ecol. Evol. 35, 1119–1128 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Arnan, X., Cerdá, X. & Retana, J. Relationships among taxonomic, functional, and phylogenetic ant diversity across the biogeographic regions of Europe. Ecography 40, 448–457 (2017).

    Article 

    Google Scholar 

  • Wong, J. S. Y. et al. Comparing patterns of taxonomic, functional and phylogenetic diversity in reef coral communities. Coral Reefs 37, 737–750 (2018).

    Article 

    Google Scholar 

  • Devictor, V. et al. Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: the need for integrative conservation strategies in a changing world. Ecol. Lett. 13, 1030–1040 (2010).

    PubMed 

    Google Scholar 

  • Brum, F. T. et al. Global priorities for conservation across multiple dimensions of mammalian diversity. Proc. Natl Acad. Sci. USA 114, 7641–7646 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Pollock, L. J., Thuiller, W. & Jetz, W. Large conservation gains possible for global biodiversity facets. Nature 546, 141–144 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Strassburg, B. B. N. et al. Global priority areas for ecosystem restoration. Nature 586, 724–729 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Cámara-Leret, R. et al. Fundamental species traits explain provisioning services of tropical American palms. Nat. Plants 3, 16220 (2017).

  • Saslis-Lagoudakis, C. H. et al. Phylogenies reveal predictive power of traditional,medicinein bioprospecting. Proc. Natl Acad. Sci. USA 109, 15835–15840 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • van Kleunen, M. et al. Economic use of plants is key to their naturalization success. Nat. Commun. 11, 3201 (2020).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Molina-Venegas, R., Rodríguez, M., Pardo-de-Santayana, M., Ronquillo, C. & Mabberley, D. J. Maximum levels of global phylogenetic diversity efficiently capture plant services for humankind. Nat. Ecol. Evol. 5, 583–588 (2021).

    PubMed 
    Article 

    Google Scholar 

  • Molina-Venegas, R. Conserving evolutionarily distinct species is critical to safeguard human well-being. Sci. Rep. 11, 24187 (2021).

  • Zaman, W. et al. Predicting potential medicinal plants with phylogenetic topology: inspiration from the research of traditional Chinese medicine. J. Ethnopharmacol. 281, 114515 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Cámara-Leret, R. et al. Climate change threatens New Guinea’s biocultural heritage. Sci. Adv. 5, eaaz1455 (2019).

  • Lima, V. P. et al. Climate change threatens native potential agroforestry plant species in Brazil. Sci. Rep. 12, 2267 (2022).

  • Johnson, D. V. Tropical Palms 2010 Revision Non-Wood Forest Products 10 (FAO, 2010).

  • Johnson, D. V. & Sunderland, T. C. H. Rattan Glossary and Compendium Glossary with Emphasis on Africa Non-Wood Forest Products 16 (FAO, 2004).

  • Ter Steege, H. et al. Hyperdominance in the Amazonian tree flora. Science 342, 1243092 (2013).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Zona, S. & Henderson, A. A review of animal-mediated seed dispersal of palms. Selbyana 11, 6–21 (1989).

    Google Scholar 

  • Kissling, W. D. et al. PalmTraits 1.0, a species-level functional trait database of palms worldwide. Sci. Data 6, 178 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Tomlinson, P. B. The uniqueness of palms. Bot. J. Linn. Soc. 151, 5–14 (2006).

    Article 

    Google Scholar 

  • Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Muscarella, R. et al. The global abundance of tree palms. Glob. Ecol. Biogeogr. 29, 1495–1514 (2020).

    Article 

    Google Scholar 

  • Dransfield, J. et al. Genera Palmarum: The Evolution and Classification of Palms (Kew Publishing, 2008).

  • Diazgranados, M. et al. World Checklist of Useful Plant Species (Royal Botanic Gardens, Kew, 2020).

  • Couvreur, T. L. P. & Baker, W. J. Tropical rain forest evolution: palms as a model group. BMC Biol. 11, 2–5 (2013).

    Article 

    Google Scholar 

  • Faurby, S., Eiserhardt, W. L., Baker, W. J. & Svenning, J. Molecular phylogenetics and evolution: an all-evidence species-level supertree for the palms (Arecaceae). Mol. Phylogenet. Evol. 100, 57–69 (2016).

    PubMed 
    Article 

    Google Scholar 

  • The IUCN Red List of Threatened Species Version 2021-2 (IUCN, accessed 12 October 2021); https://www.iucnredlist.org

  • Baker, W. J. & Dransfield, J. Beyond genera Palmarum: progress and prospects in palm systematics. Bot. J. Linn. Soc. 182, 207–233 (2016).

    Article 

    Google Scholar 

  • Henderson, A. A revision of Calamus (Arecaceae, Calamoideae, Calameae, Calaminae). Phytotaxa https://doi.org/10.11646/phytotaxa.445.1.1 (2020).

  • Rakotoarinivo, M., Dransfield, J., Bachman, S. P., Moat, J. & Baker, W. J. Comprehensive red list assessment reveals exceptionally high extinction risk to Madagascar palms. PLoS ONE 9, e103684 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Cosiaux, A. et al. Low extinction risk for an important plant resource: conservation assessments of continental African palms (Arecaceae/Palmae). Biol. Conserv. 221, 323–333 (2018).

    Article 

    Google Scholar 

  • Johnson, D. & UICN/SSC Palm Specialist Group (eds) Palms, Their Conservation and Sustained UtilizationStatus Survey and Conservation Action Plan (Union Internationale pour la Conservation de la Nature et de ses Ressources, 1996).

  • Bachman, S., Walker, B. E., Barrios, S., Copeland, A. & Moat, J. Rapid least concern: towards automating red list assessments. Biodivers. Data J. 8, e47018 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Enquist, B. J. et al. The commonness of rarity: global and future distribution of rarity across land plants. Sci. Adv. https://doi.org/10.1126/sciadv.aaz0414 (2019).

  • Vieilledent, G. et al. Combining global tree cover loss data with historical national forest cover maps to look at six decades of deforestation and forest fragmentation in Madagascar. Biol. Conserv. 222, 189–197 (2018).

    Article 

    Google Scholar 

  • Gaveau, D. L. A. et al. Rise and fall of forest loss and industrial plantations in Borneo (2000–2017). Conserv. Lett. 12, e12622 (2019).

  • Gamoga, G., Turia, R., Abe, H., Haraguchi, M. & Iuda, O. The forest extent in 2015 and the drivers of forest change between 2000 and 2015 in Papua New Guinea: deforestation and forest degradation in Papua New Guinea. Case Stud. Environ. 5, 1442018 (2021).

  • Cámara-Leret, R. & Bascompte, J. Language extinction triggers the loss of unique medicinal knowledge. Proc. Natl Acad. Sci. USA 118, e2103683118 (2021).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Henderson, A., Fischer, B., Scariot, A., Whitaker Pacheco, M. A. & Pardini, R. Flowering phenology of a palm community in a central Amazon forest. Brittonia 52, 149–159 (2000).

    Article 

    Google Scholar 

  • Olivares, I. & Galeano, G. Leaf and inflorescence production of the wine palm (Attalea butyracea) in the dry Magdalena river valley, Colombia. Caldasia 35, 37–48 (2013).

    Google Scholar 

  • Voeks, R. A. Disturbance pharmacopoeias: medicine and myth from the humid tropics. Ann. Assoc. Am. Geogr. 94, 868–888 (2004).

    Google Scholar 

  • Pironon, S. et al. Potential adaptive strategies for 29 sub-Saharan crops under future climate change. Nat. Clim. Change 9, 758–763 (2019).

    Article 

    Google Scholar 

  • Govaerts, R., Dransfield, J., Zona, S. & Henderson, A. World Checklist of Arecaceae (Royal Botanic Gardens, Kew, accessed 1 March 2018); http://wcsp.science.kew.org/

  • Chamberlain, S. et al. rgbif: Interface to the Global Biodiversity Information Facility API. R package version 3.6.0 (2021).

  • Zizka, A. et al. CoordinateCleaner: standardized cleaning of occurrence records from biological collection databases. Methods Ecol. Evol. 10, 744–751 (2019).

    Article 

    Google Scholar 

  • Plants of the World Online (Royal Botanic Gardens, Kew, accessed 1 March 2018); http://www.plantsoftheworldonline.org/

  • South, A. rworldmap v.1.3-6: Mapping global data (2016).

  • Bivand, R. et al. maptools v.0.9-2: Tools for handling spatial objects (2017).

  • Arel-Bundock, V., Enevoldsen, N. & Yetman, C. countrycode: an R package to convert country names and country codes. J. Open Source Softw. 3, 848 (2018).

    Article 

    Google Scholar 

  • Becker, R. A., Wilks, A. R., Brownrigg, R., Minka, T. P. & Deckmyn, A. maps v.3.3.0: Draw geographical maps (2018).

  • Pebesma, E. et al. sp v.1.2-7: Classes and methods for spatial data (2018).

  • Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686 (2019).

    Article 

    Google Scholar 

  • Wickham, H., Hester, J. & Chang, W. devtools v.1.13.5: Tools to make developing R packages easier (2018).

  • World Geographic Scheme for Recording Plant Distributions Standard (TDWG, 2001); http://www.tdwg.org/standards/109

  • Brummitt, R. K. World Geographical Scheme for Recording Plant Distributions (Hunt Institute for Botanical Documentation, 2001).

  • Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51, 933–938 (2001).

    Article 

    Google Scholar 

  • Moat, J. & Bachman, S. P. rCAT v.0.1.6: Conservation assessment tools (2017).

  • Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. Bioscience 67, 534–545 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Plants of the World Online (Royal Botanic Gardens, Kew, accessed 10 June 2020); http://www.plantsoftheworldonline.org/

  • Csárdi, G. & FitzJohn, R. progress v.1.2.2: Terminal progress bars (2019).

  • Microsoft Corporation & Weston, S. doParallel: Foreach parallel adaptor for the ‘parallel’ package. R package version 1.0.16 (2020).

  • Microsoft Corporation & Weston, S. foreach: Provides foreach looping construct. R package version 1.5.0 (2020).

  • Ooms, J., Lang, D. T. & Hilaiel, L. jsonlite v.1.7.2: A simple and robust JSON parser and generator for R (2020).

  • Wickham, H. httr v.1.4.2: Tools for working with URLs and HTTP (2020).

  • Global Human Footprint (Geographic), v2 (1995 – 2004) (SEDAC, accessed 14 May 2018); https://doi.org/10.7927/H4M61H5F

  • Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article 

    Google Scholar 

  • Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wickham, H. plyr v.1.8.6: Tools for splitting, applying and combining data (2021).

  • Wickham, H. & RStudio. tidyr v.1.1.4: Tidy messy data (2021).

  • Wickham, H., François, R., Henry, L. & Müller, K. dplyr v.1.0.7: A grammar of data manipulation (2021).

  • Bivand, R. et al. rgdal v.1.5-8: Bindings for the ‘geospatial’ data abstraction library (2020).

  • Greenberg, J. A. & Mattiuzzi, M. gdalUtils v.2.0.3.2: Wrappers for the Geospatial data Abstraction Library (GDAL) utilities (2020).

  • Hijmans, R. J. et al. raster v.3.1-5: Geographic data analysis and modeling (2020).

  • The IUCN Red List of Threatened Species (IUCN, accessed 22 March 2018); https://www.iucnredlist.org/

  • ThreatSearch Online Database (Botanic Gardens Conservation International, accessed 1 March 2018); https://tools.bgci.org/threat_search.php

  • Chamberlain, S., ROpenSci & Salmon, M. rredlist: ‘IUCN’ Red List client (2020).

  • Wickham, H. stringr v.1.4.0: Simple, consistent wrappers for common string operations (2019).

  • Gagolewski, M. & Tartanus, B. stringi v.1.7.5: Character string processing facilities (2021).

  • Kuhn, M. caret: Classification and regression training. R package version 6.0-86 (2020).

  • Torgo, L. Data Mining with R, Learning with Case Studies (Chapman and Hall/CRC, 2010).

  • Chawla, N. V., Bowyer, K. W., Hall, L. O. & Kegelmeyer, P. SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2020).

    Article 

    Google Scholar 

  • Stokely, M. HistogramTools: Utility functions for R histograms. R package version 0.3.2 (2015).

  • Sarkar, D. et al. lattice v.0.20-40: Trellis graphics for R (2020).

  • Wickham, H. ggplot2 Elegant Graphics for Data Analysis (Springer, 2016).

  • Auguie, B. & Antonov, A. gridExtra v.2.3: Miscellaneous functions for ‘grid’ graphics (2017).

  • Pruim, R., Kaplan, D. T. & Horton, N. J. mosaic v.1.6.0: Project MOSAIC statistics and mathematics teaching utilities (2020).

  • Meyer, D. & Buchta, C. proxy v.0.4-23: Distance and similarity measures (2019).

  • Wickham, H. & Seidel, D. scales v.1.1: Scale functions for visualization (2019).

  • Branco, P., Ribeiro, R. & Torgo, L. UBL v.0.0.6: An implementation of re-sampling approaches to utility-based learning for both classification and regression tasks (2017).

  • Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).

    Google Scholar 

  • Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 20, 37–46 (1960).

    Article 

    Google Scholar 

  • Ripley, B. & Venables, W. nnet v.7.3-13: Feed-forward neural networks and multinomial log-linear models (2020).

  • Warnes, G. R. et al. gdata v.2.18.0: Various R programming tools for data manipulation (2017).

  • Wright, M. N., Wager, S. & Probst, P. ranger v.0.12.1: A fast implementation of random forests (2020).

  • Arya, S., Mount, D., Kemp, S. E. & Jefferis, G. RANN v.2.6.1: Fast nearest neighbour search (wraps ANN Library) using L2 metric (2019).

  • Meyer, D. et al. e1071 v.1.7-3: Misc Functions of the Department of Statistics, Probability Theory Group (formerly: E1071), TU Wien (2019).

  • Lundberg, S. M. & Lee, S.-I. A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 30, 4765–4774 (2017).

    Google Scholar 

  • Greenwell, B. fastshap v.0.0.7: Fast approximate Shapley values (2021).

  • Greenwell, B. vip v.0.3.2: Variable importance plots (2020).

  • Donoghoe, M. W. glm2 v.1.2.1: Fitting generalized linear models (2018).

  • Wickham, H. reshape2 v.1.4.4: Flexibly reshape data: a reboot of the reshape package (2020).

  • Robin, X. et al. pROC v.1.18.0: Display and analyze ROC curves (2020).

  • Warnes, G. R. et al. gplots v.3.0.3: Various R programming tools for plotting data (2019).

  • Müller, K. & Bryan, J. here v.1.0.1: A simpler way to find your files (2017).

  • Wickham, H., Hester, J., Francois, R., Jylänki, J. & Jørgensen, M. readr v.1.3.1: Read rectangular text data (2018).

  • Wickham, H. et al. readxl v.1.3.1: Read Excel files (2019).

  • Henry, L. & Wickham, H. purrr v.0.3.4: Functional programming tools (2020).

  • Lin Pedersen, T. ggforce v.0.3.1: Accelerating ‘ggplot2’ (2019).

  • Lin Pedersen, T. patchwork v.1.0.0: The composer of plots (2019).

  • Hester, J. glue v.1.3.1: Interpreted string literals (2019).

  • Ooms, J. & McNamara, J. writexl v.1.2: Export data frames to Excel ‘xlsx’ format (2019).

  • Horikoshi, M. et al. ggfortify v.0.4.8: Data visualization tools for statistical analysis results (2019).

  • Liaw, A. randomForest v.4.6-14: Breiman and Cutler’s random forests for classification and regression (2018).

  • Kassambara, A. ggpubr v.0.2.5: ‘ggplot2’ based publication ready plots (2020).

  • Gruca, M., Blach-Overgaard, A. & Balslev, H. African palm ethno-medicine. J. Ethnopharmacol. 165, 227–237 (2015).

    PubMed 
    Article 

    Google Scholar 

  • Cámara–Leret, R. & Dennehy, Z. Indigenous knowledge of New Guinea’s useful plants: a review. Econ. Bot. 73, 405–415 (2019).

    Article 

    Google Scholar 

  • Macía, M. J. et al. Palm uses in Northwestern South America: a quantitative review. Bot. Rev. 77, 462–570 (2011).

    Article 

    Google Scholar 

  • Orme, D. et al. caper: Comparative analyses of phylogenetics and evolution in R. R package version 1.0.1 https://cran.r-project.org/package=caper (2018).

  • Kowarik, A. & Templ, M. Imputation with the R package VIM. J. Stat. Softw. 74, 1–16 (2016).

  • Alfons, A. & Templ, M. Estimation of social exclusion indicators from complex surveys: the R package laeken. J. Stat. Softw. 54, 1–25 (2013).

    Article 

    Google Scholar 

  • Milliken, W., Walker, B. E., Howes, M. J. R., Forest, F. & Nic Lughadha, E. Plants used traditionally as antimalarials in Latin America: mining the tree of life for potential new medicines. J. Ethnopharmacol. 279, 114221 (2021).

    PubMed 
    Article 

    Google Scholar 

  • Fritz, S. A. & Purvis, A. Selectivity in mammalian extinction risk and threat types: a new measure of phylogenetic signal strength in binary traits. Conserv. Biol. 24, 1042–1051 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 4, vey016 (2018).

  • Paradis, E. & Schliep, K. Ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Govaerts, R., Nic Lughadha, E., Black, N., Turner, R. & Paton, A. The World Checklist of Vascular Plants, a continuously updated resource for exploring global plant diversity. Sci. Data 8, 215 (2021).

  • Yu, G. ggplotify v.0.0.4: Convert plot to ‘grob’ or ‘ggplot’ object (2019).

  • Yu, G. aplot v.0.0.3: Decorate a ‘ggplot’ with associated information (2020).

  • Slowikowski, K. et al. ggrepel v.0.8.1: Automatically position non-overlapping text labels with ‘ggplot2’ (2019).

  • Schloerke, B. et al. GGally v.1.4.0: Extension to ‘ggplot2’ (2018).

  • Rubis, B. et al. hrbrthemes v.0.6.0: Additional themes, theme components and utilities for ‘ggplot2’ (2019).

  • Henry, L., Wickham, H. & Chang, W. ggstance v.0.3.3: Horizontal ‘ggplot2’ components (2019).

  • Yu, G., Smith, D. K., Zhu, H., Guan, Y. & Lam, T. T. Y. Ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol. Evol. 8, 28–36 (2017).

    Article 

    Google Scholar 

  • Brown, C. hash v.2.2.6.1: Full feature implementation of hash/associated arrays/dictionaries (2019).

  • Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).

  • R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).

  • RStudio Team. RStudio: Integrated Development for R (RStudio, 2021).

  • Bellot, S. et al. Workflow and code used to perform palm extinction risk and regional palm use resilience analyses. Zenodo https://doi.org/10.5281/zenodo.6678122 (2022).


  • Source: Ecology - nature.com

    The effects of microclimatic winter conditions in urban areas on the risk of establishment for Aedes albopictus

    The relationships between growth rate and mitochondrial metabolism varies over time