in

Detailed morphological structure and phylogenetic relationships of Degeeriella punctifer (Phthiraptera: Philopteridae), a parasite of the bearded vulture Gypaetus barbatus (Accipitriformes: Accipitridae)

  • Durden, L. Lice (Phthiraptera). In Medical and Veterinary Entomology 3rd edn (eds Mullen, G. & Durden, L.) 79–106 (Academic Press, 2019).

    Chapter 

    Google Scholar 

  • Stork, N. E. & Lyal, C. H. C. Extinction or ‘co-extinction’ rates?. Nature 366, 307. https://doi.org/10.1038/366307a0 (1993).

    Article 
    ADS 

    Google Scholar 

  • Koh, L. P. et al. Species coextinctions and the biodiversity crisis. Science 305, 1632–1634. https://doi.org/10.1126/science.1101101 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Gerlach J (2014) Haematopinus oliveri. The IUCN Red List of Threatened Species 2014: e.T9621A21423551. https://doi.org/10.2305/IUCN.UK.2014-1.RLTS.T9621A21423551.en.

  • Mingozzi, T. & Stève, R. Analysis of a historical extirpation of the bearded vulture Gypaetus barbatus (L.) in the Western Alps (France-Italy): former distribution and causes of extirpation. Biol. Conserv. 79, 155–171. https://doi.org/10.1016/S0006-3207(96)00110-3 (1997).

    Article 

    Google Scholar 

  • Schaub, M., Zink, R., Beissmann, H., Sarrazin, F. & Arlettaz, R. When to end releases in reintroduction programmes: demographic rates and population viability analysis of bearded vultures in the Alps. J. Appl. Ecol. 46, 92–100. https://doi.org/10.1111/j.1365-2664.2008.01585.x (2009).

    Article 

    Google Scholar 

  • BirdLife International. Gypaetus barbatus (amended version of 2017 assessment). The IUCN Red List of Threatened Species 2017: e.T22695174A118590506. https://doi.org/10.2305/IUCN.UK.2017-3.RLTS.T22695174A118590506.en, accessed 07 Apr 2021 (2017).

  • Price, R. D., Hellenthal, R. A., Palma, R. L., Johnson, K. P., & Clayton, D. H. The chewing lice: World checklist and biological overview. Illinois Natural History Survey Special Publication 24. Illinois (2003).

  • Clay, T. Revisions of mallophaga genera. Degeeriella from the Falconiformes. Bull. Br. Mus. (Nat. Hist.) 7, 123–207 (1958).

    Google Scholar 

  • Martín Mateo, M. P. Fauna Ibérica, Vol. 32. Phthiraptera, Ischnocera. Museo Nacional de Ciencias Naturales (CSIC), Madrid (2009).

  • Hoberg, E. P., Brooks, D. R. & Siegel-Causey, D. Host-parasite co-speciation: history, principles, and prospects. In Host-Parasite Evolution: General Principles and Avian Models (eds Clayton, D. H. & Moore, J.) 212–235 (Oxford University Press, 1997).

    Google Scholar 

  • Johnson, K. P., Weckstein, J. D., Witt, C. C., Faucett, R. C. & Moyle, R. G. The perils of using host relationships in parasite taxonomy: phylogeny of the Degeeriella complex. Mol. Phylogenet. Evol. 23, 150–157. https://doi.org/10.1016/S1055-7903(02)00014-3 (2002).

    Article 
    CAS 

    Google Scholar 

  • Catanach, T. A. & Johnson, K. P. Independent origins of the feather lice (Insecta: Degeeriella) of raptors. Biol. J. Linn. Soc. 114, 837–847. https://doi.org/10.1111/bij.12453 (2015).

    Article 

    Google Scholar 

  • Pérez, J. M., Ruiz-Martínez, I. & Cooper, J. E. Occurrence of chewing lice on Spanish raptors. Ardeola 43, 129–138 (1996).

    Google Scholar 

  • Ash, J. S. A study of the mallophagan of birds with particular reference to their ecology. Ibis 102, 93–110. https://doi.org/10.1111/j.1474-919X.1960.tb05095.x (1960).

    Article 

    Google Scholar 

  • Askew, R. R. Parasitic Insects (Heinemann Educational, 1971).

    Google Scholar 

  • Marshall, A. G. The Ecology of Parasitic Insects (Academic Press, 1981).

    Google Scholar 

  • Bartlow, A. W., Villa, S. M., Thompson, M. W. & Bush, S. E. Walk or ride? Phoretic behaviour of amblyceran and ischnoceran lice. Int. J. Parasitol. 46, 221–227. https://doi.org/10.1016/j.ijpara.2016.01.003 (2016).

    Article 

    Google Scholar 

  • Leonardi, M. S., Crespo, E. A., Raga, J. A. & Fernández, M. Scanning electron microscopy of Antarctophthirus microchir (Phthiraptera: Anoplura: Echinophthiriidae): Studying morphological adaptations to aquatic life. Micron 43, 929–936. https://doi.org/10.1016/j.micron.2012.03.009 (2012).

    Article 

    Google Scholar 

  • Ortega Insaurralde, I., Minoli, S., Toloza, A. C., Picollo, M. I. & Barrozo, R. B. The sensory machinery of the head louse Pediculus humanus capitis: from the antennae to the brain. Front. Physiol. 10, 434. https://doi.org/10.3389/fphys.2019.00434 (2019).

    Article 

    Google Scholar 

  • Ortega Insaurralde, I., Picollo, M. I. & Barrozo, R. B. Sensory features of the human louse antenna: New contributions and comparisons between ecotypes. Med. Vet. Entomol. 35, 219–224. https://doi.org/10.1111/mve.12485 (2021).

    Article 
    CAS 

    Google Scholar 

  • Page, R. D. M., Lee, P. L. M., Becher, S. A., Griffiths, R. & Clayton, D. H. A different tempo of mitochondrial DNA evolution in birds and their parasitic lice. Mol. Phylogenet. Evol. 9, 276–293. https://doi.org/10.1006/mpev.1997.0458 (1998).

    Article 
    CAS 

    Google Scholar 

  • Cruickshank, R. H. et al. Phylogenetic analysis of partial sequences of elongation factor 1α identifies major groups of lice (Insecta: Phthiraptera). Mol. Phylogenet. Evol. 19, 202–215. https://doi.org/10.1006/mpev.2001.0928 (2001).

    Article 
    CAS 

    Google Scholar 

  • Murrell, A. & Barker, S. C. Multiple origins of parasitism in lice: phylogenetic analysis of SSU rDNA indicates that the Phthiraptera and Psocoptera are not monophyletic. Parasitol. Res. 97, 274–280. https://doi.org/10.1007/s00436-005-1413-8 (2005).

    Article 

    Google Scholar 

  • Whiteman, N. K., Kimball, R. T. & Parker, P. G. Co-phylogeography and comparative population genetics of the threatened Galápagos hawk and three ectoparasite species: ecology shapes population histories within parasite communities. Mol. Ecol. 16, 4759–4773. https://doi.org/10.1111/j.1365-294X.2007.03512.x (2007).

    Article 
    CAS 

    Google Scholar 

  • Palma, R. L. Slide-mounting of Lice: a detailed description of the Canada Balsam technique. N. Z. Entomol. 6, 432–436. https://doi.org/10.1080/00779962.1978.9722313 (1978).

    Article 

    Google Scholar 

  • Soler-Cruz, M. D. & Martín-Mateo, M. P. Scanning electron microscopy of legs of two species of sucking lice (Anoplura: Phthiraptera). Micron 40, 401–408. https://doi.org/10.1016/j.micron.2008.10.001 (2009).

    Article 
    CAS 

    Google Scholar 

  • Hafner, M. S. et al. Disparate rates of molecular evolution in cospeciating hosts and parasites. Science 265, 1087–1090. https://doi.org/10.1126/science.8066445 (1994).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Simon, C. et al. Evolution, weighting and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann. Entomol. Soc. Am. 87, 651–701. https://doi.org/10.1093/aesa/87.6.651 (1994).

    Article 
    CAS 

    Google Scholar 

  • Danforth, B. N. & Ji, S. Elongation factor-1α occurs as two copies in bees: Implications for phylogenetic analysis of EF-1α sequences in insects. Mol. Biol. Evol. 15, 225–235. https://doi.org/10.1093/oxfordjournals.molbev.a025920 (1998).

    Article 
    CAS 

    Google Scholar 

  • Smith, V. S., Page, R. D. M. & Johnson, K. P. Data incongruence and the problem of avian louse phylogeny. Zool. Scr. 33, 239–259. https://doi.org/10.1111/j.0300-3256.2004.00149.x (2004).

    Article 

    Google Scholar 

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2 (1990).

    Article 
    CAS 

    Google Scholar 

  • Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 9, 772. https://doi.org/10.1038/nmeth.2109 (2012).

    Article 
    CAS 

    Google Scholar 

  • Huelsenbeck, J. P. & Ronquist, F. MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17, 754–755. https://doi.org/10.1093/bioinformatics/17.8.754 (2001).

    Article 
    CAS 

    Google Scholar 

  • Zwickl, D. J. Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Ph.D. Thesis Dissertation, The University of Texas at Austin, Texas (2006).

  • Rambaut, A. FigTree v1.4.2. Institute of Evolutionary Biology (University of Edinburgh, 2014).

    Google Scholar 

  • Brown, C. J. Plumages and measurements of the Bearded Vulture in Southern Africa. Ostrich 60, 165–171 (1989).

    Article 

    Google Scholar 

  • Chatterjee, P., Payra, A. & Sen, S. Insecta: Phthiraptera. In Faunal Diversity of Indian Himalaya (eds Chandra, K. et al.) 297–304 (Zoological Survey of India, 2018).

    Google Scholar 

  • Liébanas, G. et al. The morphology of Colpocephalum pectinatum (Phthiraptera: Amblycera: Menoponidae) under scanning electron microscopy. Arthropod Struct. Dev. 64, 101085. https://doi.org/10.1016/j.asd.2021.101085 (2021).

    Article 

    Google Scholar 

  • Pérez, J. M. Sobre algunos aspectos de la parasitación por malógafos en aves de presa. Ph.D. thesis Dissertation, Granada University (1990).

  • Arya, G., Ahmad, A., Bansal, N., Saxena, R. & Saxena, A. K. Nature of placodean sensilla of four ischnoceran Phthiraptera. Entomon 35, 199–202 (2010).

    Google Scholar 

  • Khan, V., Bansal, N., Arya, G., Ahmad, A. & Saxena, A. K. Contribution to the morphology of Degeeriella regalis (Insecta, Phthiraptera, Ischnocera). J. Entomol. Res. 35, 93–96 (2011).

    Google Scholar 

  • Agarwal, G. P. et al. Bio-ecology of the louse, Upupicola upupae, infesting the Common Hoopoe, Upupa epops. J. Insect. Sci. 11, 46. https://doi.org/10.1673/031.011.4601 (2011).

    Article 
    CAS 

    Google Scholar 

  • Singh, P., Gupta, N., Khan, G., Kumar, S. & Ahmad, A. Diagnostic characters of three nymphal instars and morphological features of adult Collard-dove louse Columbicola bacillus (Phthiraptera: Insecta). J. Appl. Nat. Sci. 11, 7–11. https://doi.org/10.31018/jans.v11i1.1855 (2019).

    Article 

    Google Scholar 

  • Clayton, D. H. & Johnson, K. P. Linking coevolutionary history to ecological process: Doves and lice. Evolution 57, 2335–2341. https://doi.org/10.1111/j.0014-3820.2003.tb00245.x (2003).

    Article 

    Google Scholar 

  • Barker, S. C. Lice, cospeciation and parasitism. Int J Parasitol 26, 219–222 (1996).

    Article 
    CAS 

    Google Scholar 

  • Page, R. D. M., Clayton, D. H. & Paterson, A. A. Lice and cospeciation: A response to Barker. Int. J. Parasitol. 26, 213–218. https://doi.org/10.1016/0020-7519(95)00115-8 (1996).

    Article 
    CAS 

    Google Scholar 

  • Paterson, A. M. & Gray, R. D. Host-parasite cospeciation, host-switching and missing the boat. In Host-Parasite Evolution: General Principles and Avian Models (eds Clayton, D. H. & Moore, J.) 236–250 (Oxford University Press, 1997).

    Google Scholar 

  • Paterson, A. M., Palma, R. L. & Gray, R. D. How frequently do avian lice miss the boat? Implications for coevolutionary studies. Syst. Biol. 48, 214–223. https://doi.org/10.1080/106351599260544 (1999).

    Article 

    Google Scholar 

  • Frey, H. & Walter, W. The reintroduction of the bearded vulture Gypaetus barbatus into the Alps. In Raptors in the Modern World (eds Meyburg, B. U. & Chancellor, R. D.) 341–344 (WWGBP, 1989).

    Google Scholar 

  • Pérez, J. M., Sánchez, I. & Palma, R. L. The dilemma of conserving parasites: the case of Felicola (Lorisicola) isidoroi (Phthiraptera: Trichodectidae) and its host, the endangered Iberian lynx (Lynx pardinus). Insect. Conserv. Divers. 6, 680–686. https://doi.org/10.1111/icad.12021 (2013).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Negotiating Nile infrastructure management should consider climate change uncertainties

    A new way to assess radiation damage in reactors