Herbert, E. R. et al. A global perspective on wetland salinization: Ecological consequences of a growing threat to freshwater wetlands. Ecosphere. https://doi.org/10.1890/es14-00534.1 (2015).
Google Scholar
Kelly, V. R. et al. Long-term sodium chloride retention in a rural watershed: Legacy effects of road salt on streamater concentration. Environ. Sci. Tech. 42, 410–415. https://doi.org/10.1021/es071391l (2008).
Google Scholar
Tiwari, A. & Rachlin, J. W. A review of road salt ecological impacts. Northeast. Nat. 25, 123–142. https://doi.org/10.1656/045.025.0110 (2018).
Google Scholar
Hintz, W. D. & Relyea, R. A. A review of the species, community, and ecosystem impacts of road salt salinisation in fresh waters. Freshwater Biol. 64, 1081–1097. https://doi.org/10.1111/fwb.13286 (2019).
Google Scholar
Dugan, H. A. et al. Salting our freshwater lakes. Proc. Natl. Acad. of Sci. U.S.A 114, 4453–4458. https://doi.org/10.1073/pnas.1620211114 (2017).
Google Scholar
Kaushal, S. S. et al. Increased salinization of fresh water in the northeastern United States. Proc. Natl. Acad. of Sci. U.S.A. 102, 13517–13520. https://doi.org/10.1073/pnas.0506414102 (2005).
Google Scholar
Kaushal, S. S. et al. Freshwater salinization syndrome: from emerging global problem to managing risks. Biogeochemistry 154, 255–292. https://doi.org/10.1007/s10533-021-00784-w (2021).
Google Scholar
Kaushal, S. S. et al. Freshwater salinization syndrome on a continental scale. Proc. Natl. Acad. of Sci. U.S.A. 115, E574–E583. https://doi.org/10.1073/pnas.1711234115 (2018).
Google Scholar
Hintz, W. D., Fay, L. & Relyea, R. A. Road salts, human safety, and the rising salinity of our fresh waters. Front. Ecol. Environ. 9, 22–30. https://doi.org/10.1002/fee.2433 (2022).
Google Scholar
Petranka, J. W. & Doyle, E. J. Effects of road salts on the composition of seasonal pond communities: Can the use of road salts enhance mosquito recruitment?. Aquat. Ecol. 44, 155–166. https://doi.org/10.1007/s10452-009-9286-z (2010).
Google Scholar
Petranka, J. W. & Francis, R. A. Effects of road salts on seasonal wetlands: Poor prey performance may compromise growth of predatory salamanders. Wetlands 33, 707–715. https://doi.org/10.1007/s13157-013-0428-7 (2013).
Google Scholar
Searle, C. L., Shaw, C. L., Hunsberger, K. K., Prado, M. & Duffy, M. A. Salinization decreases population densities of the freshwater crustacean Daphnia dentifera. Hydrobiologia 770, 165–172. https://doi.org/10.1007/s10750-015-2579-4 (2016).
Google Scholar
Hebert, M. P. et al. Lake salinization drives consistent losses of zooplankton abundance and diversity across coordinated mesocosm experiments. Limnol. Oceanogr. Let. https://doi.org/10.1002/lol2.10239 (2022).
Google Scholar
Collins, S. J. & Russell, R. W. Toxicity of road salt to nova scotia amphibians. Environ. Pollut. 157, 320–324. https://doi.org/10.1016/j.envpol.2008.06.032 (2009).
Google Scholar
Milotic, D., Milotic, M. & Koprivnikar, J. Effects of road salt on larval amphibian susceptibility to parasitism through behavior and immunocompetence. Aquat. Toxicol. 189, 42–49. https://doi.org/10.1016/j.aquatox.2017.05.015 (2017).
Google Scholar
Sanzo, D. & Hecnar, S. J. Effects of road de-icing salt (NaCl) on larval wood frogs (Rana sylvatica). Environ. Pollut. 140, 247–256. https://doi.org/10.1016/j.envpol.2005.07.013 (2006).
Google Scholar
Arnott, S. E. et al. Road salt impacts freshwater zooplankton at concentrations below current water quality guidelines. Envir. Sci. Tech. 54, 9398–9407. https://doi.org/10.1021/acs.est.0c02396 (2020).
Google Scholar
Elphick, J. R. F., Bergh, K. D. & Bailey, H. C. Chronic toxicity of chloride to freshwater species effects of hardness and implications for water quality guidelines. Environ. Toxicol. Chem. 30, 239–246. https://doi.org/10.1002/etc.365 (2011).
Google Scholar
Mount, D. R. et al. The acute toxicity of major ion salts to Ceriodaphnia dubia: I. Influence of background water chemistry. Environ. Toxicol. Chem. 35, 3039–3057. https://doi.org/10.1002/etc.3487 (2016).
Google Scholar
Soucek, D. J. Comparison of hardness- and chloride-regulated acute effects of sodium sulfate on two freshwater crustaceans. Environ. Toxicol. Chem. 26, 773–779. https://doi.org/10.1897/06-229r.1 (2007).
Google Scholar
Bhateria, R. & Jain, D. Water quality assessment of lake water: A review. Sustain. Wat. Res. Manag. 2, 161–173. https://doi.org/10.1007/s40899-015-0014-7 (2016).
Google Scholar
USGS. Hardness of Water. https://www.usgs.gov/special-topics/water-science-school/science/hardness-water#overview, Accessed: 1 August 2022 (2018).
Brown, A. H. & Yan, N. D. Food quantity affects the sensitivity of Daphnia to Road Salt. Environ. Sci. Tech. 49, 4673–4680. https://doi.org/10.1021/es5061534 (2015).
Google Scholar
Smith, D. W. & Cooper, S. D. Competition among cladocera. Ecology 63, 1004–1015. https://doi.org/10.2307/1937240 (1982).
Google Scholar
Soucek, D. J. et al. Influence of water hardness and sulfate on the acute toxicity of chloride to sensitive freshwater invertebrates. Environ. Toxicol. Chem. 30, 930–938. https://doi.org/10.1002/etc.454 (2011).
Google Scholar
Gust, K. A. et al. Daphnia magna’s sense of competition: Intra-specific interactions (ISI) alter life history strategies and increase metals toxicity. Ecotoxicology 25, 1126–1135. https://doi.org/10.1007/s10646-016-1667-1 (2016).
Google Scholar
Liu, X. & Steiner, C. F. Ecotoxicology of salinity tolerance in Daphnia pulex: Interactive effects of clonal variation, salinity stress and predation. J. Plankton Res. 39, 687–697. https://doi.org/10.1093/plankt/fbx027 (2017).
Google Scholar
Evans, M. & Frick, C. The effects of road salts on aquatic ecosystems. Report No. 02-308, (Environment Canada – Water Science and Technology Directorate, 2001).
USEPA. (U.S. Environmental Protection Agency, 1988).
Schuler, M. S. et al. Regulations are needed to protect freshwater ecosystems from salinization. Phil. Trans. R. Soc. B. https://doi.org/10.1098/rstb.2018.0019 (2019).
Google Scholar
Canadian Council of Ministers for the Environment. Candadian water Quality Guidelines for the Protection of Aquatic Life: Chloride. (Environment Canada, Gatineau, Canada, 2011).
Valleau, R. E., Paterson, A. M. & Smol, J. P. Effects of road-salt application on Cladocera assemblages in shallow precambrian shield lakes in south-central Ontario, Canada. Freshwat. Sci. 39, 824–836. https://doi.org/10.1086/711666 (2020).
Google Scholar
Hintz, W. D. et al. Current water quality guidelines across North America and Europe do not protect lakes from salinization. Proc. Natl. Acad. of Sci. U.S.A. https://doi.org/10.1073/pnas.2115033119 (2022).
Google Scholar
Valleau, R. E., Celis-Salgado, M. P., Arnott, S. E., Paterson, A. M. & Smol, J. P. Assessing the effect of salinization (NaCl) on the survival and reproduction of two ubiquitous cladocera species (Bosmina longirostris and Chydorus brevilabris). Wat. Air Soil Pollut. 233, 135. https://doi.org/10.1007/s11270-021-05482-9 (2022).
Google Scholar
Celis-Salgado, M. P., Cairns, A., Kim, N. & Yan, N. D. The FLAMES medium: A new, soft-water culture and bioassay medium for Cladocera. SIL Proc. 1922–2010(30), 265–271. https://doi.org/10.1080/03680770.2008.11902123 (2008).
Google Scholar
USEPA. Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms, 5th ed. Office of Water Washington, DC (2002).
Hintz, W. D. et al. Concurrent improvement and deterioration of epilimnetic water quality in an oligotrophic lake over 37 years. Limnol. Oceanogr. 65, 927–938. https://doi.org/10.1002/lno.11359 (2020).
Google Scholar
Winner, R. W. Interactive effects of water hardness and humic acid on the chronic toxicity of cadmium to Daphnia pulex. Aquat. Toxicol. 8, 281–293. https://doi.org/10.1016/0166-445X(86)90080-9 (1986).
Google Scholar
Kaushal, S. S. et al. Novel “chemical cocktails” in inland waters are a consequence of the freshwater salinization syndrome. Phil. Trans. R. Soc. B. https://doi.org/10.1098/rstb.2018.0017 (2019).
Google Scholar
Kaushal, S. S. et al. Making “chemical cocktails”: Evolution of urban geochemical processes across the periodic table of elements. Appl. Geochem. https://doi.org/10.1016/j.apgeochem.2020.104632 (2020).
Google Scholar
Cremona, F. et al. How warming and other stressors affect zooplankton abundance, biomass and community composition in shallow eutrophic lakes. Clim. Change 159, 565–580. https://doi.org/10.1007/s10584-020-02698-2 (2020).
Google Scholar
Lind, L. et al. Salty fertile lakes: How salinization and eutrophication alter the structure of freshwater communities. Ecosphere. https://doi.org/10.1002/ecs2.2383 (2018).
Google Scholar
Stoler, A. B. et al. Effects of a common insecticide on wetland communities with varying quality of leaf litter inputs. Environ. Pollut. 226, 452–462. https://doi.org/10.1016/j.envpol.2017.04.019 (2017).
Google Scholar
Riessen, H. P. & Sprules, W. G. Demographic costs of antipredator defenses in Daphnia pulex. Ecology 71, 1536–1546. https://doi.org/10.2307/1938290 (1990).
Google Scholar
Source: Ecology - nature.com