Lawrence, D. & Vandecar, K. Effects of tropical deforestation on climate and agriculture. Nat. Clim. Change 5, 27–36 (2015).
Google Scholar
Spracklen, D. V., Baker, J. C. A., Garcia-Carreras, L. & Marsham, J. H. The effects of tropical vegetation on rainfall. Annu. Rev. Environ. Resour. 43, 193–218 (2018).
Google Scholar
Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).
Google Scholar
Spracklen, D. V., Arnold, S. R. & Taylor, C. M. Observations of increased tropical rainfall preceded by air passage over forests. Nature 489, 282–285 (2012).
Google Scholar
Staal, A. et al. Forest-rainfall cascades buffer against drought across the Amazon. Nat. Clim. Change 8, 539–543 (2018).
Google Scholar
Baker, J. C. A. & Spracklen, D. V. Divergent representation of precipitation recycling in the Amazon and the Congo in CMIP6 models. Geophys. Res. Lett. 49, e2021GL095136 (2022).
Google Scholar
Guan, K. et al. Photosynthetic seasonality of global tropical forests constrained by hydroclimate. Nat. Geosci. 8, 284–289 (2015).
Google Scholar
Staal, A. et al. Hysteresis of tropical forests in the 21st century. Nat. Commun. 11, 4978 (2020).
Google Scholar
Zemp, D. C. et al. Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks. Nat. Commun. 8, 14681 (2017).
Google Scholar
Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–854 (2013).
Google Scholar
Chagnon, F. J. F. & Bras, R. L. Contemporary climate change in the Amazon. Geophys. Res. Lett. 32, L13703 (2005).
Google Scholar
Khanna, J., Medvigy, D., Fueglistaler, S. & Walko, R. Regional dry-season climate changes due to three decades of Amazonian deforestation. Nat. Clim. Change 7, 200–204 (2017).
Google Scholar
Garcia-Carreras, L. & Parker, D. J. How does local tropical deforestation affect rainfall? Geophys. Res. Lett. 38, L19802 (2011).
Google Scholar
Leite-Filho, A. T., Soares-Filho, B. S., Davis, J. L., Abrahão, G. M. & Börner, J. Deforestation reduces rainfall and agricultural revenues in the Brazilian Amazon. Nat. Commun. 12, 2591 (2021).
Google Scholar
McAlpine, C. A. et al. Forest loss and Borneo’s climate. Environ. Res. Lett. 13, 044009 (2018).
Chapman, S. et al. Compounding impact of deforestation on Borneo’s climate during El Niño events. Environ. Res. Lett. 15, 084006 (2020).
Spracklen, D. V. & Garcia-Carreras, L. The impact of Amazonian deforestation on Amazon basin rainfall. Geophys. Res. Lett. 42, 9546–9552 (2015).
Google Scholar
Jiang, Y. et al. Modeled response of South American climate to three decades of deforestation. J. Clim. 34, 2189–2203 (2021).
Google Scholar
Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).
Google Scholar
Fassoni-Andrade, A. C. et al. Amazon hydrology from space: scientific advances and future challenges. Rev. Geophys. 59, e2020RG000728 (2021).
Google Scholar
Haiden, T., Janousek, M., Vitart, F., Ferranti, L. & Prates, F. Evaluation of ECMWF Forecasts, Including the 2019 Upgrade. ECMWF Technical Memorandum No. 853 (ECMWF, 2019).
Esquivel-Muelbert, A. et al. Compositional response of Amazon forests to climate change. Glob. Change Biol. 25, 39–56 (2019).
Google Scholar
Brum, M. et al. ENSO effects on the transpiration of eastern Amazon trees. Philos. Trans. R. Soc. B 373, 20180085 (2018).
Google Scholar
Bagley, J. E., Desai, A. R., Harding, K. J., Snyder, P. K. & Foley, J. A. Drought and deforestation: has land cover change influenced recent precipitation extremes in the Amazon? J. Clim. 27, 345–361 (2014).
Google Scholar
Wunderling, N. et al. Recurrent droughts increase risk of cascading tipping events by outpacing adaptive capacities in the Amazon rainforest. Proc. Natl Acad. Sci. USA 119, e2120777119 (2022).
Google Scholar
Fu, R. & Li, W. The influence of the land surface on the transition from dry to wet season in Amazonia. Theor. Appl. Climatol. 78, 97–110 (2004).
Google Scholar
Leite-Filho, A. T., de Sousa Pontes, V. Y. & Costa, M. H. Effects of deforestation on the onset of the rainy season and the duration of dry spells in southern Amazonia. J. Geophys. Res. Atmos. 124, 5268–5281 (2019).
Google Scholar
Negri, A. J., Adler, R. F., Xu, L. & Surratt, J. The Impact of Amazonian deforestation on dry season rainfall. J. Clim. 17, 1306–1319 (2004).
Google Scholar
Chagnon, F. J. F., Bras, R. L. & Wang, J. Climatic shift in patterns of shallow clouds over the Amazon. Geophys. Res. Lett. 31, L24212 (2004).
Google Scholar
Chambers, J. Q. & Artaxo, P. Biosphere–atmosphere interactions: deforestation size influences rainfall. Nat. Clim. Change 7, 175–176 (2017).
Google Scholar
Baudena, M., Tuinenburg, O. A., Ferdinand, P. A. & Staal, A. Effects of land-use change in the Amazon on precipitation are likely underestimated. Glob. Change Biol. 27, 5580–5587 (2021).
Google Scholar
Duku, C. & Hein, L. The impact of deforestation on rainfall in Africa: a data-driven assessment. Environ. Res. Lett. 16, 064044 (2021).
Akkermans, T., Thiery, W. & Van Lipzig, N. P. M. The regional climate impact of a realistic future deforestation scenario in the Congo basin. J. Clim. 27, 2714–2734 (2014).
Google Scholar
Staal, A. et al. Feedback between drought and deforestation in the Amazon. Environ. Res. Lett. 15, 044024 (2020).
Xu, X. et al. Deforestation triggering irreversible transition in Amazon hydrological cycle. Environ. Res. Lett. 17, 034037 (2022).
Kooperman, G. J. et al. Forest response to rising CO2 drives zonally asymmetric rainfall change over tropical land. Nat. Clim. Change 8, 434–440 (2018).
Google Scholar
Chen, Z. et al. Global land monsoon precipitation changes in CMIP6 projections. Geophys. Res. Lett. 47, e2019GL086902 (2020).
Stickler, C. M. et al. Dependence of hydropower energy generation on forests in the Amazon Basin at local and regional scales. Proc. Natl Acad. Sci. USA 110, 9601–9606 (2013).
Google Scholar
Challinor, A. J. et al. A meta-analysis of crop yield under climate change and adaptation. Nat. Clim. Change 4, 287–291 (2014).
Google Scholar
Strand, J. et al. Spatially explicit valuation of the Brazilian Amazon forest’s ecosystem services. Nat. Sustain. 1, 657–664 (2018).
Google Scholar
Potapov, P. et al. Global maps of cropland extent and change show accelerated cropland expansion in the twenty-first century. Nat. Food 3, 19–28 (2022).
Google Scholar
Li, Y. et al. Deforestation-induced climate change reduces carbon storage in remaining tropical forests. Nat. Commun. 13, 1964 (2022).
Google Scholar
Aragão, L. E. O. C. et al. Interactions between rainfall, deforestation and fires during recent years in the Brazilian Amazonia. Philos. Trans. R. Soc. B 363, 1779–1785 (2008).
Google Scholar
Marengo, J. A. et al. Changes in climate and land use over the Amazon region: current and future variability and trends. Front. Earth Sci. https://doi.org/10.3389/feart.2018.00228 (2018).
Jiang, Y. et al. Widespread increase of boreal summer dry season length over the Congo rainforest. Nat. Clim. Change https://doi.org/10.1038/s41558-019-0512-y (2019).
Van Der Ent, R. J. & Savenije, H. H. G. Length and time scales of atmospheric moisture recycling. Atmos. Chem. Phys. 11, 1853–1863 (2011).
Google Scholar
Sorí, R., Nieto, R., Vicente-Serrano, S. M., Drumond, A. & Gimeno, L. A Lagrangian perspective of the hydrological cycle in the Congo River basin. Earth Syst. Dyn. 8, 653–675 (2017).
Google Scholar
van der Ent, R. J., Savenije, H. H. G., Schaefli, B. & Steele-Dunne, S. C. Origin and fate of atmospheric moisture over continents. Water Resour. Res. 46, W09525 (2010).
Google Scholar
Feng, Y. et al. Doubling of annual forest carbon loss over the tropics during the early twenty-first century. Nat. Sustain. 4, 441–451 (2022).
Tuinenburg, O. A., Bosmans, J. H. C. & Staal, A. The global potential of forest restoration for drought mitigation. Environ. Res. Lett. 17, 034045 (2022).
Met Office. Cartopy: a cartographic python library with a Matplotlib interface 2010–2015. Met Office https://scitools.org.uk/cartopy (2022).
Hoyer, S. & Hamman, J. xarray: N-D labeled arrays and datasets in Python. J. Open Res. Softw. https://doi.org/10.5334/jors.148 (2017).
Zhuang, J. xESMF. Zenodo https://doi.org/10.5281/zenodo.1134365 (2022).
Baker, J. C. A. & Spracklen, D. V. Climate benefits of intact Amazon forests and the biophysical consequences of disturbance. Front. For. Glob. Change https://doi.org/10.3389/ffgc.2019.00047 (2019).
Schaaf, C. & Wang, Z. MCD43A3 MODIS/Terra+Aqua BRDF/Albedo Daily L3 Global – 500m V006. NASA EOSDIS Land Processes DAAC https://doi.org/10.5067/modis/mcd43a3.006 (2015).
Waskom, M. Seaborn: statistical data visualization. J. Open Source Softw. 6, 3021 (2021).
Google Scholar
Chen, M. et al. Global land use for 2015–2100 at 0.05° resolution under diverse socioeconomic and climate scenarios. Sci. Data 7, 320 (2020).
Google Scholar
Funk, C. et al. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Sci. Data 2, 150066 (2015).
Google Scholar
Xie, P. et al. NOAA Climate Data Record (CDR) of CPC Morphing technique (CMORPH) high resolution global precipitation estimates, version 1. NOAA National Centers for Environmental Information https://doi.org/10.25921/w9va-q159 (2019).
Xie, P. et al. A gauge-based analysis of daily precipitation over East Asia. J. Hydrometeorol. 8, 607–626 (2007).
Google Scholar
Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).
Google Scholar
Elke, R., Hänsel, S., Finger, P., Schneider, U. & Ziese, M. GPCC Climatology Version 2022 at 0.25°: monthly land-surface precipitation climatology for every month and the total year from rain-gauges built on GTS-based and historical data. GPCC https://doi.org/10.5676/DWD_GPCC/CLIM_M_V2022_025 (2022).
Huffman, G. J. A., Behrangi, R. F., Adler, D. T., Bolvin, E. J. & Nelkin, G. G. Introduction to the new version 3 GPCP monthly global precipitation analysis. GPCP https://docserver.gesdisc.eosdis.nasa.gov/public/project/MEaSUREs/GPCP/Release_Notes.GPCPV3.2.pdf (2022).
Hou, A. Y. et al. The global precipitation measurement mission. Bull. Am. Meteorol. Soc. 95, 701–722 (2014).
Google Scholar
Kobayashi, S. et al. The JRA-55 reanalysis: general specifications and basic characteristics. J. Meteorol. Soc. Japan 93, 5–48 (2015).
Google Scholar
Gelaro, R. et al. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J. Clim. 30, 5419–5454 (2017).
Google Scholar
Chen, M., Xie, P. & Janowiak, J. E. Global land precipitation: a 50-yr monthly analysis based on gauge observations. J. Hydrometeorol. 3, 249–266 (2002).
Google Scholar
Nguyen, P. et al. The CHRS data portal, an easily accessible public repository for PERSIANN global satellite precipitation data. Sci. Data 6, 1180296 (2019).
Google Scholar
Ashouri, H. et al. PERSIANN-CDR: daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bull. Am. Meteorol. Soc. 96, 69–83 (2015).
Google Scholar
Nguyen, P. et al. Persiann dynamic infrared–rain rate (PDIR-now): a near-real-time, quasi-global satellite precipitation dataset. J. Hydrometeorol. 21, 2893–2906 (2020).
Google Scholar
Sadeghi, M. et al. PERSIANN-CCS-CDR, a 3-hourly 0.04° global precipitation climate data record for heavy precipitation studies. Sci. Data 8, 157 (2021).
Google Scholar
Huffman, G. J. et al. The TRMM Multisatellite Precipitation Analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 8, 38–55 (2007).
Google Scholar
Matsuura, K. & Willmott, C. J. Terrestrial precipitation: 1900-2017 gridded monthly time series. Global Precipitation Archive http://climate.geog.udel.edu/~climate/html_pages/Global2017/README.GlobalTsP2017.html (2018).
Source: Ecology - nature.com