in

Ecological insights from three decades of forest biodiversity experiments


Abstract

Forest biodiversity experiments test how species diversity affects forest ecosystem functioning, typically in terms of forest productivity. In this Review, we discuss key findings from these experiments and put them into context with observational studies from forests. Experimental studies can reveal causal effects of biodiversity on ecosystem functioning, which is extremely challenging in observational studies. The past three decades of experimental research show that increasing tree diversity can promote a multitude of ecosystem functions through resource partitioning, abiotic and biotic facilitation, and other species interactions. The longest-running experiments show that these relationships strengthen over time, and comparative work in natural or planted forests suggests that these effects are likely to persist. Moreover, diversity at other trophic levels can strongly mediate tree diversity effects on forest productivity. New experiments that manipulate both tree diversity and the diversity of other trophic levels as orthogonal treatments are needed to investigate causality in these interactions. Furthermore, experiments crossing tree diversity with global change factors are necessary to understand the context-dependency of tree diversity–ecosystem functioning relationships under global change. Finally, combining insights from observational studies and experiments can help biodiversity–ecosystem function research to inform restoration and forest management targets of the Global Biodiversity Framework.

Access through your institution

Buy or subscribe

This is a preview of subscription content, access via your institution

Access options

Access through your institution

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The locations and types of 45 forest biodiversity experiments covering 72 sites globally.
Fig. 2: Potential mechanisms underlying the tree diversity effect over time.
Fig. 3: Trophic mediation of tree diversity effects via interactions with and among higher trophic levels.
Fig. 4: Experimental and observational BEF approaches.

References

  1. Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).

    Article 
    CAS 

    Google Scholar 

  2. IPBES. Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES Secretariat, 2019).

  3. Loreau, M. et al. Ecology — biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294, 804–808 (2001).

    Article 
    CAS 

    Google Scholar 

  4. Balvanera, P. et al. Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol. Lett. 9, 1146–1156 (2006).

    Article 

    Google Scholar 

  5. Liu, X. et al. Tree species richness increases ecosystem carbon storage in subtropical forests. Proc. Biol. Sci. 285, 20181240 (2018).

    Google Scholar 

  6. Liu, Y. P. et al. Biodiversity and productivity in eastern US forests. Proc. Natl Acad. Sci. USA 121, e2314231121 (2024).

    Article 
    CAS 

    Google Scholar 

  7. Isbell, F. et al. High plant diversity is needed to maintain ecosystem services. Nature 477, 199–202 (2011).

    Article 
    CAS 

    Google Scholar 

  8. Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75, 3–35 (2005).

    Article 

    Google Scholar 

  9. Chen, C., Xiao, W. & Chen, H. Y. H. Meta-analysis reveals global variations in plant diversity effects on productivity. Nature 638, 435–440 (2025).

    Article 
    CAS 

    Google Scholar 

  10. Hector, A. et al. Plant diversity and productivity experiments in European grasslands. Science 286, 1123–1127 (1999).

    Article 
    CAS 

    Google Scholar 

  11. Huston, M. A. et al. No consistent effect of plant diversity on productivity. Science 289, 1255–1255 (2000).

    Article 
    CAS 

    Google Scholar 

  12. Grace, J. B. et al. Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature 529, 390–393 (2016).

    Article 
    CAS 

    Google Scholar 

  13. Duffy, J. E., Godwin, C. M. & Cardinale, B. J. Biodiversity effects in the wild are common and as strong as key drivers of productivity. Nature 549, 261–264 (2017).

    Article 
    CAS 

    Google Scholar 

  14. Tilman, D., Wedin, D. & Knops, J. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379, 718–720 (1996).

    Article 
    CAS 

    Google Scholar 

  15. Tilman, D. et al. Diversity and productivity in a long-term grassland experiment. Science 294, 843–845 (2001).

    Article 
    CAS 

    Google Scholar 

  16. Scherer-Lorenzen, M. et al. in Forest Diversity and Function: Temperate and Boreal Systems (eds Scherer-Lorenzen, M., Körner, C. & Schulze, E.-D.) 347–376 (Springer, 2005).

  17. Paquette, A. et al. A million and more trees for science. Nat. Ecol. Evol. 2, 763–766 (2018).

    Article 

    Google Scholar 

  18. Koricheva, J. et al. Using long-term tree diversity experiments to explore the mechanisms of temporal shifts in forest ecosystem functioning. Oikos 2025, e10872 (2025).

    Article 
    CAS 

    Google Scholar 

  19. Liang, J. J. et al. Positive biodiversity-productivity relationship predominant in global forests. Science 354, aaf8957 (2016).

    Article 

    Google Scholar 

  20. Feng, Y. et al. Multispecies forest plantations outyield monocultures across a broad range of conditions. Science 376, 865–868 (2022).

    Article 
    CAS 

    Google Scholar 

  21. Paquette, A. & Messier, C. The effect of biodiversity on tree productivity: from temperate to boreal forests. Glob. Ecol. Biogeogr. 20, 170–180 (2011).

    Article 

    Google Scholar 

  22. Zhang, Y., Chen, H. Y. H. & Reich, P. B. Forest productivity increases with evenness, species richness and trait variation: a global meta-analysis. J. Ecol. 100, 742–749 (2012).

    Article 

    Google Scholar 

  23. Brown, A. H. F. in The Ecology of Mixed-Species Stands of Trees (eds Cannell, M. G. R. et al.) 125–150 (Blackwell, 1992).

  24. Dee, L. E. et al. Clarifying the effect of biodiversity on productivity in natural ecosystems with longitudinal data and methods for causal inference. Nat. Commun. 14, 2607 (2023).

    Article 
    CAS 

    Google Scholar 

  25. Jewell, M. D. et al. Partitioning the effect of composition and diversity of tree communities on leaf litter decomposition and soil respiration. Oikos 126, 959–971 (2017).

    Article 
    CAS 

    Google Scholar 

  26. Jewell, M. D., Shipley, B., Paquette, A., Messier, C. & Reich, P. B. A traits-based test of the home-field advantage in mixed-species tree litter decomposition. Ann. Botany 116, 781–788 (2015).

    Article 

    Google Scholar 

  27. Berthelot, S. et al. Tree diversity reduces the risk of bark beetle infestation for preferred conifer species, but increases the risk for less preferred hosts. J. Ecol. 109, 2649–2661 (2021).

    Article 

    Google Scholar 

  28. Schnabel, F. et al. Species richness stabilizes productivity via asynchrony and drought-tolerance diversity in a large-scale tree biodiversity experiment. Sci. Adv. 7, eabk1643 (2021).

    Article 

    Google Scholar 

  29. Blondeel, H. et al. Tree diversity reduces variability in sapling survival under drought. J. Ecol. 112, 1164–1180 (2024).

    Article 

    Google Scholar 

  30. Williams, L. J. et al. Remote spectral detection of biodiversity effects on forest biomass. Nat. Ecol. Evol. 5, 46–54 (2021).

    Article 

    Google Scholar 

  31. Ray, T. et al. Tree diversity increases productivity through enhancing structural complexity across mycorrhizal types. Sci. Adv. 9, eadi2362 (2023).

    Article 

    Google Scholar 

  32. Williams, L. J., Paquette, A., Cavender-Bares, J., Messier, C. & Reich, P. B. Spatial complementarity in tree crowns explains overyielding in species mixtures. Nat. Ecol. Evol. 1, 0063 (2017).

    Article 

    Google Scholar 

  33. Guzmán, Q. J. A., Park, M. H., Williams, L. J. & Cavender-Bares, J. Seasonal structural stability promoted by forest diversity and composition explains overyielding. Ecology 106, e70055 (2025).

    Article 

    Google Scholar 

  34. Deng, X. et al. Forest biodiversity increases productivity via complementarity from greater canopy structural complexity. Proc. Natl Acad. Sci. USA 122, e2506750122 (2025).

    Article 
    CAS 

    Google Scholar 

  35. Williams, L. J. et al. Enhanced light interception and light use efficiency explain overyielding in young tree communities. Ecol. Lett. 24, 996–1006 (2021).

    Article 

    Google Scholar 

  36. Sapijanskas, J., Paquette, A., Potvin, C., Kunert, N. & Loreau, M. Tropical tree diversity enhances light capture through crown plasticity and spatial and temporal niche differences. Ecology 95, 2479–2492 (2014).

    Article 

    Google Scholar 

  37. Grossman, J. J., Cavender-Bares, J. & Hobbie, S. E. Functional diversity of leaf litter mixtures slows decomposition of labile but not recalcitrant carbon over two years. Ecol. Monogr. 90, e01407 (2020).

    Article 

    Google Scholar 

  38. Bryant, R. L. et al. Independent effects of tree diversity on aboveground and soil carbon pools after six years of experimental afforestation. Ecol. Appl. 34, e3042 (2024).

    Article 

    Google Scholar 

  39. Archambault, C. et al. Evergreenness influences fine root growth more than tree diversity in a common garden experiment. Oecologia 189, 1027–1039 (2019).

    Article 

    Google Scholar 

  40. Sun, Z. et al. Positive effects of tree species richness on fine-root production in a subtropical forest in SE-China. J. Plant Ecol. 10, 146–157 (2017).

    Article 

    Google Scholar 

  41. Li, Y. et al. Multitrophic arthropod diversity mediates tree diversity effects on primary productivity. Nat. Ecol. Evol. 7, 832–840 (2023).

    Article 

    Google Scholar 

  42. Li, Y. et al. Plant diversity enhances ecosystem multifunctionality via multitrophic diversity. Nat. Ecol. Evol. 8, 2037–2047 (2024).

    Article 

    Google Scholar 

  43. Singavarapu, B. et al. Influence of tree mycorrhizal type, tree species identity, and diversity on forest root-associated mycobiomes. New Phytol. 242, 1691–1703 (2024).

    Article 
    CAS 

    Google Scholar 

  44. Laforest-Lapointe, I., Paquette, A., Messier, C. & Kembel, S. W. Leaf bacterial diversity mediates plant diversity and ecosystem function relationships. Nature 546, 145–147 (2017).

    Article 
    CAS 

    Google Scholar 

  45. Depauw, L. et al. Enhancing tree performance through species mixing: review of a quarter-century of treedivnet experiments reveals research gaps and practical insights. Curr. Forestry Rep. 10, 1–20 (2024).

    Article 

    Google Scholar 

  46. Urgoiti, J. et al. No complementarity no gain — net diversity effects on tree productivity occur once complementarity emerges during early stand development. Ecol. Lett. 25, 851–862 (2022).

    Article 

    Google Scholar 

  47. Grossman, J. J., Cavender-Bares, J., Hobbie, S. E., Reich, P. B. & Montgomery, R. A. Species richness and traits predict overyielding in stem growth in an early-successional tree diversity experiment. Ecology 98, 2601–2614 (2017).

    Article 

    Google Scholar 

  48. Tobner, C. M. et al. Functional identity is the main driver of diversity effects in young tree communities. Ecol. Lett. 19, 638–647 (2016).

    Article 

    Google Scholar 

  49. Chen, Y. et al. Directed species loss reduces community productivity in a subtropical forest biodiversity experiment. Nat. Ecol. Evol. 4, 550–559 (2020).

    Article 

    Google Scholar 

  50. Fichtner, A. et al. Neighbourhood interactions drive overyielding in mixed-species tree communities. Nat. Commun. 9, 1144 (2018).

    Article 

    Google Scholar 

  51. Huang, Y. et al. Impacts of species richness on productivity in a large-scale subtropical forest experiment. Science 362, 80–83 (2018).

    Article 
    CAS 

    Google Scholar 

  52. Schnabel, F. et al. Drivers of productivity and its temporal stability in a tropical tree diversity experiment. Glob. Change Biol. 25, 4257–4272 (2019).

    Article 

    Google Scholar 

  53. Veryard, R. et al. Positive effects of tree diversity on tropical forest restoration in a field-scale experiment. Sci. Adv. 9, eadf0938 (2023).

    Article 

    Google Scholar 

  54. Xu, Q. et al. Consistently positive effect of species diversity on ecosystem, but not population, temporal stability. Ecol. Lett. 24, 2256–2266 (2021).

    Article 

    Google Scholar 

  55. Loreau, M. & Hector, A. Partitioning selection and complementarity in biodiversity experiments. Nature 412, 72–76 (2001).

    Article 
    CAS 

    Google Scholar 

  56. Haggar, J. P. & Ewel, J. J. Primary productivity and resource partitioning in model tropical ecosystems. Ecology 78, 1211–1221 (1997).

    Article 

    Google Scholar 

  57. Chen, C. et al. Understory shrub diversity: equally vital as overstory tree diversity to promote forest productivity. Natl Sci. Rev. 12, nwaf093 (2025).

    Article 

    Google Scholar 

  58. Bongers, F. J. et al. Functional diversity effects on productivity increase with age in a forest biodiversity experiment. Nat. Ecol. Evol. 5, 1594–1603 (2021).

    Article 

    Google Scholar 

  59. Ferlian, O. et al. Mycorrhiza in tree diversity–ecosystem function relationships: conceptual framework and experimental implementation. Ecosphere 9, e02226 (2018).

    Article 

    Google Scholar 

  60. Tobner, C. M., Paquette, A., Reich, P. B., Gravel, D. & Messier, C. Advancing biodiversity–ecosystem functioning science using high-density tree-based experiments over functional diversity gradients. Oecologia 174, 609–621 (2014).

    Article 

    Google Scholar 

  61. Cavender-Bares, J. et al. Forest and Biodiversity 2: a tree diversity experiment to understand the consequences of multiple dimensions of diversity and composition for long-term ecosystem function and resilience. Methods Ecol. Evol. 15, 2400–2414 (2024).

    Article 

    Google Scholar 

  62. Verheyen, K. et al. Assessment of the functional role of tree diversity: the multi-site FORBIO experiment. Plant Ecol. Evol. 146, 26–35 (2013).

    Article 

    Google Scholar 

  63. Bruelheide, H. et al. Designing forest biodiversity experiments: general considerations illustrated by a new large experiment in subtropical China. Methods Ecol. Evol. 5, 74–89 (2014).

    Article 

    Google Scholar 

  64. Tang, T. et al. Identifying seed families with high mixture performance in a subtropical forest biodiversity experiment. New Phytol. 246, 2537–2550 (2025).

    Article 

    Google Scholar 

  65. Chen, C., Bongers, F. J., Schmid, B., Ma, K. & Liu, X. Ecosystem consequences of functional diversity in forests and implications for restoration. New Phytol. 247, 1081–1097 (2025).

    Article 

    Google Scholar 

  66. Hobbie, S. E. et al. Tree species effects on decomposition and forest floor dynamics in a common garden. Ecology 87, 2288–2297 (2006).

    Article 

    Google Scholar 

  67. Cavender-Bares, J., Kozak, K. H., Fine, P. V. A. & Kembel, S. W. The merging of community ecology and phylogenetic biology. Ecol. Lett. 12, 693–715 (2009).

    Article 

    Google Scholar 

  68. Grossman, J. J., Cavender-Bares, J., Reich, P. B., Montgomery, R. A. & Hobbie, S. E. Neighborhood diversity simultaneously increased and decreased susceptibility to contrasting herbivores in an early stage forest diversity experiment. J. Ecol. 107, 1492–1505 (2019).

    Article 

    Google Scholar 

  69. Darwin, C. On the Origin of Species by Means of Natural Selection (John Murray, 1859).

  70. Janzen, D. H. Herbivores and the number of tree species in tropical forests. Am. Naturalist 104, 501–528 (1970).

    Article 

    Google Scholar 

  71. Larkin, D. J. et al. Evolutionary history shapes grassland productivity through opposing effects on complementarity and selection. Ecology 104, e4129 (2023).

    Article 

    Google Scholar 

  72. Venail, P. et al. Species richness, but not phylogenetic diversity, influences community biomass production and temporal stability in a re-examination of 16 grassland biodiversity studies. Funct. Ecol. 29, 615–626 (2015).

    Article 

    Google Scholar 

  73. Helmus, M. R., Bland, T. J., Williams, C. K. & Ives, A. R. Phylogenetic measures of biodiversity. Am. Naturalist 169, E68–E83 (2007).

    Article 

    Google Scholar 

  74. E-Vojtkó, A., Bello, F., Lososová, Z. & Götzenberger, L. Phylogenetic diversity is a weak proxy for functional diversity but they are complementary in explaining community assembly patterns in temperate vegetation. J. Ecol. 111, 2218–2230 (2023).

    Article 

    Google Scholar 

  75. Flynn, D. F. B., Mirotchnick, N., Jain, M., Palmer, M. I. & Naeem, S. Functional and phylogenetic diversity as predictors of biodiversity–ecosystem-function relationships. Ecology 92, 1573–1581 (2011).

    Article 

    Google Scholar 

  76. Devictor, V. et al. Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: the need for integrative conservation strategies in a changing world. Ecol. Lett. 13, 1030–1040 (2010).

    Article 

    Google Scholar 

  77. Mazel, F. et al. Prioritizing phylogenetic diversity captures functional diversity unreliably. Nat. Commun. 9, 2888 (2018).

    Article 

    Google Scholar 

  78. Ackerly, D. D. & Reich, P. B. Convergence and correlations among leaf size and function in seed plants: a comparative test using independent contrasts. Am. J. Botany 86, 1272–1281 (1999).

    Article 
    CAS 

    Google Scholar 

  79. Crisp, M. D. & Cook, L. G. Phylogenetic niche conservatism: what are the underlying evolutionary and ecological causes? New Phytol. 196, 681–694 (2012).

    Article 

    Google Scholar 

  80. Paquette, A., Joly, S. & Messier, C. Explaining forest productivity using tree functional traits and phylogenetic information: two sides of the same coin over evolutionary scale? Ecol. Evol. 5, 1774–1783 (2015).

    Article 

    Google Scholar 

  81. Le Bagousse-Pinguet, Y. et al. Phylogenetic, functional, and taxonomic richness have both positive and negative effects on ecosystem multifunctionality. Proc. Natl Acad. Sci. USA 116, 8419–8424 (2019).

    Article 

    Google Scholar 

  82. Díaz, S. et al. Functional traits, the phylogeny of function, and ecosystem service vulnerability. Ecol. Evol. 3, 2958–2975 (2013).

    Article 

    Google Scholar 

  83. Zhang, L. et al. Strong nestedness and turnover effects on stand productivity in a long-term forest biodiversity experiment. New Phytol. 245, 130–140 (2025).

    Article 
    CAS 

    Google Scholar 

  84. Boshier, D. et al. Is local best? Examining the evidence for local adaptation in trees and its scale. Environ. Evid. 4, 20 (2015).

    Article 

    Google Scholar 

  85. Luo, S. et al. Community-wide trait means and variations affect biomass in a biodiversity experiment with tree seedlings. Oikos 129, 799–810 (2020).

    Article 

    Google Scholar 

  86. Schweiger, A. K. et al. Plant spectral diversity integrates functional and phylogenetic components of biodiversity and predicts ecosystem function. Nat. Ecol. Evol. 2, 976–982 (2018).

    Article 

    Google Scholar 

  87. Felipe-Lucia, M. R. et al. Multiple forest attributes underpin the supply of multiple ecosystem services. Nat. Commun. 9, 4839 (2018).

    Article 

    Google Scholar 

  88. Kothari, S., Montgomery, R. A. & Cavender-Bares, J. Physiological responses to light explain competition and facilitation in a tree diversity experiment. J. Ecol. 109, 2000–2018 (2021).

    Article 

    Google Scholar 

  89. Zapater, M. et al. Evidence of hydraulic lift in a young beech and oak mixed forest using 18O soil water labelling. Trees 25, 885–894 (2011).

    Article 

    Google Scholar 

  90. Schnabel, F. et al. Tree diversity increases forest temperature buffering via enhancing canopy density and structural diversity. Ecol. Lett. 28, e70096 (2025).

    Article 

    Google Scholar 

  91. Salmon, Y. et al. Surrounding species diversity improves subtropical seedlings’ carbon dynamics. Ecol. Evol. 8, 7055–7067 (2018).

    Article 

    Google Scholar 

  92. Zhang, S., Landuyt, D., Verheyen, K. & De Frenne, P. Tree species mixing can amplify microclimate offsets in young forest plantations. J. Appl. Ecol. 59, 1428–1439 (2022).

    Article 

    Google Scholar 

  93. Damtew, A., Birhane, E., Messier, C., Paquette, A. & Muys, B. Shading and species diversity act as safety nets for seedling survival and vitality of native trees in dryland forests: implications for restoration. Forest Ecol. Manag. 552, 121559 (2024).

    Article 

    Google Scholar 

  94. Williams, L. J., Cavender-Bares, J., Paquette, A., Messier, C. & Reich, P. B. Light mediates the relationship between community diversity and trait plasticity in functionally and phylogenetically diverse tree mixtures. J. Ecol. 108, 1617–1634 (2020).

    Article 

    Google Scholar 

  95. Luo, S., Schmid, B., De Deyn, G. B. & Yu, S. Soil microbes promote complementarity effects among co-existing trees through soil nitrogen partitioning. Funct. Ecol. 32, 1879–1889 (2018).

    Article 

    Google Scholar 

  96. Soudzilovskaia, N. A. et al. Global mycorrhizal plant distribution linked to terrestrial carbon stocks. Nat. Commun. 10, 5077 (2019).

    Article 

    Google Scholar 

  97. Averill, C., Bhatnagar, J. M., Dietze, M. C., Pearse, W. D. & Kivlin, S. N. Global imprint of mycorrhizal fungi on whole-plant nutrient economics. Proc. Natl Acad. Sci. USA 116, 23163–23168 (2019).

    Article 
    CAS 

    Google Scholar 

  98. Deng, M. et al. Tree mycorrhizal association types control biodiversity-productivity relationship in a subtropical forest. Sci. Adv. 9, eadd4468 (2023).

    Article 

    Google Scholar 

  99. Luo, S. et al. Mycorrhizal associations modify tree diversity−productivity relationships across experimental tree plantations. New Phytol. 243, 1205–1219 (2024).

    Article 

    Google Scholar 

  100. Dietrich, P. et al. Tree diversity effects on productivity depend on mycorrhizae and life strategies in a temperate forest experiment. Ecology 104, e3896 (2023).

    Article 

    Google Scholar 

  101. Sachsenmaier, L. et al. Forest growth resistance and resilience to the 2018–2020 drought depend on tree diversity and mycorrhizal type. J. Ecol. 112, 1787–1803 (2024).

    Article 

    Google Scholar 

  102. Loreau, M. Does functional redundancy exist? Oikos 104, 606–611 (2004).

    Article 

    Google Scholar 

  103. Schmid, B. et al. in Biodiversity, Ecosystem Functioning, and Human Wellbeing: An Ecological and Economic Perspective (eds Shahid N. et al.) 14–29 (Oxford University Press, 2009).

  104. Hector, A. & Bagchi, R. Biodiversity and ecosystem multifunctionality. Nature 448, 188–190 (2007).

    Article 
    CAS 

    Google Scholar 

  105. Reich, P. B. et al. Impacts of biodiversity loss escalate through time as redundancy fades. Science 336, 589–592 (2012).

    Article 
    CAS 

    Google Scholar 

  106. Wagg, C. et al. Biodiversity-stability relationships strengthen over time in a long-term grassland experiment. Nat. Commun. 13, 7752 (2022).

    Article 
    CAS 

    Google Scholar 

  107. Zheng, L. et al. Effects of plant diversity on productivity strengthen over time due to trait-dependent shifts in species overyielding. Nat. Commun. 15, 2078 (2024).

    Article 
    CAS 

    Google Scholar 

  108. Kunz, M. et al. Neighbour species richness and local structural variability modulate aboveground allocation patterns and crown morphology of individual trees. Ecol. Lett. 22, 2130–2140 (2019).

    Article 

    Google Scholar 

  109. Shovon, T. A., Kang, S., Scherer-Lorenzen, M. & Nock, C. A. Changes in the direction of the diversity-productivity relationship over 15 years of stand development in a planted temperate forest. J. Ecol. 110, 1125–1137 (2022).

    Article 

    Google Scholar 

  110. Jucker, T. et al. Good things take time — diversity effects on tree growth shift from negative to positive during stand development in boreal forests. J. Ecol. 108, 2198–2211 (2020).

    Article 

    Google Scholar 

  111. Meyer, S. T. et al. Effects of biodiversity strengthen over time as ecosystem functioning declines at low and increases at high biodiversity. Ecosphere 7, e01619 (2016).

    Article 

    Google Scholar 

  112. Guerrero-Ramírez, N. R. et al. Diversity-dependent temporal divergence of ecosystem functioning in experimental ecosystems. Nat. Ecol. Evol. 1, 1639–1642 (2017).

    Article 

    Google Scholar 

  113. Brassard, B. W., Chen, H. Y. H., Bergeron, Y. & Paré, D. Differences in fine root productivity between mixed- and single-species stands. Funct. Ecol. 25, 238–246 (2011).

    Article 

    Google Scholar 

  114. Urgoiti, J., Messier, C., Keeton, W. S., Belluau, M. & Paquette, A. Functional diversity and identity influence the self-thinning process in young forest communities. J. Ecol. 111, 2010–2022 (2023).

    Article 

    Google Scholar 

  115. Chen, X., Chen, H. Y. H., Searle, E. B., Chen, C. & Reich, P. B. Negative to positive shifts in diversity effects on soil nitrogen over time. Nat. Sustain. 4, 225–232 (2021).

    Article 

    Google Scholar 

  116. Thakur, M. P. et al. Plant–soil feedbacks and temporal dynamics of plant diversity–productivity relationships. Trends Ecol. Evol. 36, 651–661 (2021).

    Article 

    Google Scholar 

  117. Eisenhauer, N., Reich, P. B. & Scheu, S. Increasing plant diversity effects on productivity with time due to delayed soil biota effects on plants. Basic Appl. Ecol. 13, 571–578 (2012).

    Article 

    Google Scholar 

  118. Zuppinger-Dingley, D. et al. Selection for niche differentiation in plant communities increases biodiversity effects. Nature 515, 108–111 (2014).

    Article 
    CAS 

    Google Scholar 

  119. Ang, C. C. et al. Genetic diversity of two tropical tree species of the Dipterocarpaceae following logging and restoration in Borneo: high genetic diversity in plots with high species diversity. Plant Ecol. Divers. 9, 459–469 (2016).

    Article 

    Google Scholar 

  120. Ma, Z. & Chen, H. Y. H. Effects of species diversity on fine root productivity in diverse ecosystems: a global meta-analysis. Glob. Ecol. Biogeogr. 25, 1387–1396 (2016).

    Article 

    Google Scholar 

  121. Hisano, M., Chen, H. Y. H., Searle, E. B. & Reich, P. B. Species-rich boreal forests grew more and suffered less mortality than species-poor forests under the environmental change of the past half-century. Ecol. Lett. 22, 999–1008 (2019).

    Article 

    Google Scholar 

  122. Taylor, A. R., Gao, B. L. & Chen, H. Y. H. The effect of species diversity on tree growth varies during forest succession in the boreal forest of central Canada. Forest Ecol. Manag. 455, 117641 (2020).

    Article 

    Google Scholar 

  123. Schmid, B. et al. Removing subordinate species in a biodiversity experiment to mimic observational field studies. Grassl. Res. 1, 53–62 (2022).

    Article 
    CAS 

    Google Scholar 

  124. Hong, P. et al. Biodiversity promotes ecosystem functioning despite environmental change. Ecol. Lett. 25, 555–569 (2022).

    Article 

    Google Scholar 

  125. He, J.-S., Bazzaz, F. A. & Schmid, B. Interactive effects of diversity, nutrients and elevated CO2 on experimental plant communities. Oikos 97, 337–348 (2002).

    Article 
    CAS 

    Google Scholar 

  126. Fridley, J. D. Diversity effects on production in different light and fertility environments: an experiment with communities of annual plants. J. Ecol. 91, 396–406 (2003).

    Article 

    Google Scholar 

  127. Jousset, A., Schmid, B., Scheu, S. & Eisenhauer, N. Genotypic richness and dissimilarity opposingly affect ecosystem functioning. Ecol. Lett. 14, 537–545 (2011).

    Article 
    CAS 

    Google Scholar 

  128. Bertness, M. D. & Callaway, R. Positive interactions in communities. Trends Ecol. Evol. 9, 191–193 (1994).

    Article 
    CAS 

    Google Scholar 

  129. Gamfeldt, L. et al. Scaling-up the biodiversity-ecosystem functioning relationship: the effect of environmental heterogeneity on transgressive overyielding. Oikos 2023, e09652 (2023).

    Article 

    Google Scholar 

  130. Ratcliffe, S. et al. Biodiversity and ecosystem functioning relations in European forests depend on environmental context. Ecol. Lett. 20, 1414–1426 (2017).

    Article 

    Google Scholar 

  131. Yan, G. et al. Climate and mycorrhizae mediate the relationship of tree species diversity and carbon stocks in subtropical forests. J. Ecol. 110, 2462–2474 (2022).

    Article 

    Google Scholar 

  132. Paquette, A., Vayreda, J., Coll, L., Messier, C. & Retana, J. Climate change could negate positive tree diversity effects on forest productivity: a study across five climate types in Spain and Canada. Ecosystems 21, 960–970 (2018).

    Article 

    Google Scholar 

  133. Dhiedt, E., Verheyen, K., De Smedt, P., Ponette, Q. & Baeten, L. Early tree diversity and composition effects on topsoil chemistry in young forest plantations depend on site context. Ecosystems 24, 1638–1653 (2021).

    Article 
    CAS 

    Google Scholar 

  134. Belluau, M., Vitali, V., Parker, W. C., Paquette, A. & Messier, C. Overyielding in young tree communities does not support the stress-gradient hypothesis and is favoured by functional diversity and higher water availability. J. Ecol. 109, 1790–1803 (2021).

    Article 
    CAS 

    Google Scholar 

  135. Zheng, L. et al. Neighbourhood diversity increases tree growth in experimental forests more in wetter climates but not in wetter years. Nat. Ecol. Evol. 9, 1812–1824 (2025).

    Article 

    Google Scholar 

  136. Eisenhauer, N. et al. in Advances in Ecological Research Vol. 61, Ch. 1 (eds Eisenhauer, N., Bohan, D. A. & Dumbrell, A. J.) 1–54 (Academic Press, 2019).

  137. Schuldt, A. et al. Multiple plant diversity components drive consumer communities across ecosystems. Nat. Commun. 10, 1460 (2019).

    Article 

    Google Scholar 

  138. Zemp, D. C. et al. Tree islands enhance biodiversity and functioning in oil palm landscapes. Nature 618, 316–321 (2023).

    Article 
    CAS 

    Google Scholar 

  139. Rutten, G. et al. More diverse tree communities promote foliar fungal pathogen diversity, but decrease infestation rates per tree species, in a subtropical biodiversity experiment. J. Ecol. 109, 2068–2080 (2021).

    Article 

    Google Scholar 

  140. Butz, E. M., Schmitt, L. M., Parker, J. D. & Burghardt, K. T. Positive tree diversity effects on arboreal spider abundance are tied to canopy cover in a forest experiment. Ecology 104, e4116 (2023).

    Article 

    Google Scholar 

  141. Chen, J. T. et al. Functional and phylogenetic relationships link predators to plant diversity via trophic and non-trophic pathways. Proc. Biol Sci. 290, 20221658 (2023).

    Google Scholar 

  142. Guo, P. F. et al. Tree diversity promotes predatory wasps and parasitoids but not pollinator bees in a subtropical experimental forest. Basic Appl. Ecol. 53, 134–142 (2021).

    Article 

    Google Scholar 

  143. Staab, M. & Schuldt, A. The influence of tree diversity on natural enemies — a review of the “Enemies” Hypothesis in Forests. Curr. Forestry Rep. 6, 243–259 (2020).

    Article 

    Google Scholar 

  144. Wang, M. Q. et al. Phylogenetic relatedness, functional traits, and spatial scale determine herbivore co-occurrence in a subtropical forest. Ecol. Monogr. 92, e01492 (2022).

    Article 

    Google Scholar 

  145. Grossman, J. J. et al. Synthesis and future research directions linking tree diversity to growth, survival, and damage in a global network of tree diversity experiments. Environ. Exp. Botany 152, 68–89 (2018).

    Article 

    Google Scholar 

  146. Abdala-Roberts, L. et al. Effects of tree species diversity and conspecific seedling density on insect herbivory and pathogen infection on big-leaf mahogany seedlings. Oikos https://doi.org/10.1111/oik.10093 (2023).

    Article 

    Google Scholar 

  147. Jactel, H., Moreira, X. & Castagneyrol, B. Tree diversity and forest resistance to insect pests: patterns, mechanisms, and prospects. Annu. Rev. Entomol. 66, 277–296 (2021).

    Article 
    CAS 

    Google Scholar 

  148. Stemmelen, A., Jactel, H., Brockerhoff, E. & Castagneyrol, B. Meta-analysis of tree diversity effects on the abundance, diversity and activity of herbivores’ enemies. Basic Appl. Ecol. 58, 130–138 (2022).

    Article 

    Google Scholar 

  149. Vázquez-González, C. et al. Tree diversity enhances predation by birds but not by arthropods across climate gradients. Ecol. Lett. 27, e14427 (2024).

    Article 

    Google Scholar 

  150. Garau, G. et al. Effect of monospecific and mixed Mediterranean tree plantations on soil microbial community and biochemical functioning. Appl. Soil Ecol. 140, 78–88 (2019).

    Article 

    Google Scholar 

  151. Strukelj, M. et al. Tree species richness and water availability interact to affect soil microbial processes. Soil Biol. Biochem. 155, 108180 (2021).

    Article 
    CAS 

    Google Scholar 

  152. Beugnon, R. et al. Tree diversity effects on litter decomposition are mediated by litterfall and microbial processes. Oikos https://doi.org/10.1111/oik.09751 (2023).

    Article 

    Google Scholar 

  153. Cesarz, S. et al. Tree diversity effects on soil microbial biomass and respiration are context dependent across forest diversity experiments. Glob. Ecol. Biogeogr. 31, 872–885 (2022).

    Article 

    Google Scholar 

  154. Rivest, M., Whalen, J. K. & Rivest, D. Tree diversity is not always a strong driver of soil microbial diversity: a 7-yr-old diversity experiment with trees. Ecosphere 10, e02685 (2019).

    Article 

    Google Scholar 

  155. Tao, S. Q., Veen, G. F., Zhang, N. L., Yu, T. H. & Qu, L. Y. Tree and shrub richness modifies subtropical tree productivity by regulating the diversity and community composition of soil bacteria and archaea. Microbiome 11, 261 (2023).

    Article 
    CAS 

    Google Scholar 

  156. Yang, X. et al. Different assembly mechanisms of leaf epiphytic and endophytic bacterial communities underlie their higher diversity in more diverse forests. J. Ecol. 111, 970–981 (2023).

    Article 

    Google Scholar 

  157. Setiawan, N. N. et al. Does neighbourhood tree diversity affect the crown arthropod community in saplings? Biodivers. Conserv. 25, 169–185 (2016).

    Article 

    Google Scholar 

  158. Zhang, S. et al. Non-random tree species loss shifts soil fungal communities. J. Ecol. 113, 1239–1255 (2025).

    Article 
    CAS 

    Google Scholar 

  159. Berthelot, S. et al. Exotic tree species have consistently lower herbivore load in a cross-Atlantic tree biodiversity experiment. Ecology 104, e4070 (2023).

    Article 

    Google Scholar 

  160. Castagneyrol, B., Jactel, H. & Moreira, X. Anti-herbivore defences and insect herbivory: interactive effects of drought and tree neighbours. J. Ecol. 106, 2043–2057 (2018).

    Article 
    CAS 

    Google Scholar 

  161. Field, E. et al. Associational resistance to both insect and pathogen damage in mixed forests is modulated by tree neighbour identity and drought. J. Ecol. 108, 1511–1522 (2020).

    Article 
    CAS 

    Google Scholar 

  162. Li, Y. et al. The tree growth–herbivory relationship depends on functional traits across forest biodiversity experiments. Nat. Ecol. Evol. 9, 2014–2024 (2025).

    Article 

    Google Scholar 

  163. Poeydebat, C. et al. Climate affects neighbour-induced changes in leaf chemical defences and tree diversity-herbivory relationships. Funct. Ecol. 35, 67–81 (2021).

    Article 
    CAS 

    Google Scholar 

  164. Schmitz, O. J. Effects of predator hunting mode on grassland ecosystem function. Science 319, 952–954 (2008).

    Article 
    CAS 

    Google Scholar 

  165. Haddad, N. M. et al. Plant species loss decreases arthropod diversity and shifts trophic structure. Ecol. Lett. 12, 1029–1039 (2009).

    Article 

    Google Scholar 

  166. Scherber, C. et al. Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature 468, 553–556 (2010).

    Article 
    CAS 

    Google Scholar 

  167. Weisser, W. W. et al. Biodiversity effects on ecosystem functioning in a 15-year grassland experiment: patterns, mechanisms, and open questions. Basic Appl. Ecol. 23, 1–73 (2017).

    Article 

    Google Scholar 

  168. Scherber, C. Convergent patterns in multitrophic biodiversity effects on yield across ecosystems. Sci. China Life Sci. 66, 2697–2699 (2023).

    Article 

    Google Scholar 

  169. Brezzi, M., Schmid, B., Niklaus, P. A. & Schuldt, A. Tree diversity increases levels of herbivore damage in a subtropical forest canopy: evidence for dietary mixing by arthropods? J. Plant Ecol. 10, 13–27 (2017).

    Article 

    Google Scholar 

  170. van der Plas, F. Biodiversity and ecosystem functioning in naturally assembled communities. Biol. Rev. 94, 1220–1245 (2019).

    Article 

    Google Scholar 

  171. Kremer, K., Jonsson, B.-G., Dutta, T., Tavares, M. F. & Bauhus, J. Single- vs mixed-species plantations: a systematic review on the effects on biodiversity. Biol. Conserv. 307, 111182 (2025).

    Article 

    Google Scholar 

  172. Gottschall, F. et al. Spatiotemporal dynamics of abiotic and biotic properties explain biodiversity–ecosystem-functioning relationships. Ecol. Monogr. 92, e01490 (2022).

    Article 

    Google Scholar 

  173. May-Uc, Y., Nell, C. S., Parra-Tabla, V., Augusto, J. & Abdala-Roberts, L. Tree diversity effects through a temporal lens: implications for the abundance, diversity and stability of foraging birds. J. Anim. Ecol. 89, 1775–1787 (2020).

    Article 

    Google Scholar 

  174. Wang, M.-Q. et al. Tree diversity, tree growth, and microclimate independently structure Lepidoptera herbivore community stability. Ecol. Monogr. 95, e70026 (2025).

    Article 

    Google Scholar 

  175. Huang, Y. et al. Effects of enemy exclusion on biodiversity–productivity relationships in a subtropical forest experiment. J. Ecol. 110, 2167–2178 (2022).

    Article 

    Google Scholar 

  176. Fornoff, F., Klein, A.-M., Blüthgen, N. & Staab, M. Tree diversity increases robustness of multi-trophic interactions. Proc. Biol. Sci. 286, 20182399 (2019).

    Google Scholar 

  177. Potapov, A. M. et al. Rainforest transformation reallocates energy from green to brown food webs. Nature 627, 116–122 (2024).

    Article 
    CAS 

    Google Scholar 

  178. Wang, S., Brose, U. & Gravel, D. Intraguild predation enhances biodiversity and functioning in complex food webs. Ecology 100, e02616 (2019).

    Article 

    Google Scholar 

  179. Hennessy, A. B., Anderson, R. M., Mitchell, N., Mooney, K. A. & Singer, M. S. Parasitoid avoidance of intraguild predation drives enemy complementarity in a multi-trophic ecological network. Ecology 106, e4483 (2025).

    Article 

    Google Scholar 

  180. Eisenhauer, N. et al. Ecosystem consequences of invertebrate decline. Curr. Biol. 33, 4538–4547 (2023).

    Article 
    CAS 

    Google Scholar 

  181. Albert, G., Gauzens, B., Loreau, M., Wang, S. & Brose, U. The hidden role of multi-trophic interactions in driving diversity–productivity relationships. Ecol. Lett. 25, 405–415 (2022).

    Article 

    Google Scholar 

  182. Albert, G. et al. Animal and plant space-use drive plant diversity–productivity relationships. Ecol. Lett. 26, 1792–1802 (2023).

    Article 

    Google Scholar 

  183. Lepš, J. What do the biodiversity experiments tell us about consequences of plant species loss in the real world? Basic Appl. Ecol. 5, 529–534 (2004).

    Article 

    Google Scholar 

  184. Jochum, M. et al. The results of biodiversity–ecosystem functioning experiments are realistic. Nat. Ecol. Evol. 4, 1485–1494 (2020).

    Article 

    Google Scholar 

  185. Baruffol, M. et al. Biodiversity promotes tree growth during succession in subtropical forest. PLoS ONE 8, e81246 (2013).

    Article 

    Google Scholar 

  186. Liu, X. et al. Species richness, functional traits and climate interactively affect tree survival in a large forest biodiversity experiment. J. Ecol. 110, 2522–2531 (2022).

    Article 

    Google Scholar 

  187. Marquard, E. et al. Positive biodiversity-productivity relationship due to increased plant density. J. Ecol. 97, 696–704 (2009).

    Article 

    Google Scholar 

  188. Kambach, S. et al. How do trees respond to species mixing in experimental compared to observational studies? Ecol. Evol. 9, 11254–11265 (2019).

    Article 

    Google Scholar 

  189. Hagan, J. G., Vanschoenwinkel, B. & Gamfeldt, L. We should not necessarily expect positive relationships between biodiversity and ecosystem functioning in observational field data. Ecol. Lett. 24, 2537–2548 (2021).

    Article 

    Google Scholar 

  190. Pärtel, M. et al. Global impoverishment of natural vegetation revealed by dark diversity. Nature 641, 917–924 (2025).

    Article 

    Google Scholar 

  191. García-Valdés, R., Bugmann, H. & Morin, X. Climate change-driven extinctions of tree species affect forest functioning more than random extinctions. Diversity Distrib. 24, 906–918 (2018).

    Article 

    Google Scholar 

  192. Oehri, J., Schmid, B., Schaepman-Strub, G. & Niklaus, P. A. Terrestrial land-cover type richness is positively linked to landscape-level functioning. Nat. Commun. 11, 154 (2020).

    Article 
    CAS 

    Google Scholar 

  193. Messier, C. et al. For the sake of resilience and multifunctionality, let’s diversify planted forests! Conserv. Lett. 15, e12829 (2022).

    Article 

    Google Scholar 

  194. Smith, P. et al. How do we best synergize climate mitigation actions to co-benefit biodiversity? Glob. Change Biol. 28, 2555–2577 (2022).

    Article 
    CAS 

    Google Scholar 

  195. Bongers, F. J. et al. Genetic richness affects trait variation but not community productivity in a tree diversity experiment. New Phytol. 227, 744–756 (2020).

    Article 

    Google Scholar 

  196. Allan, E., Penone, C., Schmid, B., Godoy, O. & Pichon, N. A. When can we expect negative effects of plant diversity on community biomass? J. Ecol. 113, 1955–1969 (2025).

    Article 

    Google Scholar 

  197. Di Maurizio, V., Searle, E. & Paquette, A. It takes a village to grow a tree: most tree species benefit from dissimilar neighbors. Ecol. Evol. 13, e10804 (2023).

    Article 

    Google Scholar 

  198. Beugnon, R. et al. Improving forest ecosystem functions by optimizing tree species spatial arrangement. Nat. Commun. 16, 6286 (2025).

    Article 
    CAS 

    Google Scholar 

  199. Warner, E. et al. Young mixed planted forests store more carbon than monocultures — a meta-analysis. Front. Forests Glob. Change 6, 1226514 (2023).

    Article 

    Google Scholar 

  200. Paquette, A. & Messier, C. The role of plantations in managing the world’s forests in the Anthropocene. Front. Ecol. Environ. 8, 27–34 (2010).

    Article 

    Google Scholar 

  201. Urgoiti Otazua, J. & Paquette, A. in Dynamics, Silviculture and Management of Mixed Forests (eds Bravo-Oviedo, A., Pretzsch, H. & del Río, M.) 319–341 (Springer International Publishing, 2018).

  202. Wang, S. P. et al. Towards mechanistic integration of the causes and consequences of biodiversity. Trends Ecol. Evol. 39, 689–700 (2024).

    Article 

    Google Scholar 

  203. Chen, X. L. et al. Tree diversity increases decadal forest soil carbon and nitrogen accrual. Nature 618, 94–101 (2023).

    Article 
    CAS 

    Google Scholar 

  204. Handa, I. T. et al. Consequences of biodiversity loss for litter decomposition across biomes. Nature 509, 218–221 (2014).

    Article 
    CAS 

    Google Scholar 

  205. Scherer-Lorenzen, M., Luis Bonilla, J. & Potvin, C. Tree species richness affects litter production and decomposition rates in a tropical biodiversity experiment. Oikos 116, 2108–2124 (2007).

    Article 

    Google Scholar 

  206. Li, Y. et al. Early positive effects of tree species richness on soil organic carbon accumulation in a large-scale forest biodiversity experiment. J. Plant Ecol. 12, 882–893 (2019).

    Article 

    Google Scholar 

  207. Schnabel, F. et al. Tree diversity increases carbon stocks and fluxes above — but not belowground in a tropical forest experiment. Glob. Change Biol. 31, e70089 (2025).

    Article 
    CAS 

    Google Scholar 

  208. Martin-Guay, M.-O., Paquette, A., Reich, P. B. & Messier, C. Implications of contrasted above- and below-ground biomass responses in a diversity experiment with trees. J. Ecol. 108, 405–414 (2020).

    Article 

    Google Scholar 

  209. Isbell, F. et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526, 574–577 (2015).

    Article 
    CAS 

    Google Scholar 

  210. Eisenhauer, N. et al. Plant diversity effects on soil food webs are stronger than those of elevated CO2 and N deposition in a long-term grassland experiment. Proc. Natl Acad. Sci. USA 110, 6889–6894 (2013).

    Article 
    CAS 

    Google Scholar 

  211. Yang, B. et al. Soil fungi promote biodiversity–productivity relationships in experimental communities of young trees. Ecosystems 25, 858–871 (2022).

    Article 
    CAS 

    Google Scholar 

  212. Riedel, J., Dorn, S., Plath, M., Potvin, C. & Mody, K. Time matters: temporally changing effects of planting schemes and insecticide treatment on native timber tree performance on former pasture. Forest Ecol. Manag. 297, 49–56 (2013).

    Article 

    Google Scholar 

  213. Schmid, B. in Defining Agroecology (eds Dormann, C. F. et al.) 143–156 (tredition.com, 2023).

  214. Lienau, J. R., Duguid, M. C. & Schmitz, O. J. Ground beetle trophic interactions alter available nitrogen in forest soil. Oikos https://doi.org/10.1111/oik.10638 (2025).

    Article 

    Google Scholar 

  215. Sivault, E. et al. Insectivorous birds and bats outperform ants in the top-down regulation of arthropods across strata of a Japanese temperate forest. J. Anim. Ecol. 93, 1622–1638 (2024).

    Article 

    Google Scholar 

  216. Cook-Patton, S. C., LaForgia, M. & Parker, J. D. Positive interactions between herbivores and plant diversity shape forest regeneration. Proc. Biol. Sci. 281, 20140261 (2014).

    Google Scholar 

  217. Singer, M. S. et al. Herbivore diet breadth mediates the cascading effects of carnivores in food webs. Proc. Natl Acad. Sci. USA 111, 9521–9526 (2014).

    Article 
    CAS 

    Google Scholar 

  218. Yeeles, P., Lach, L., Hobbs, R. J. & Didham, R. K. Functional redundancy compensates for decline of dominant ant species. Nat. Ecol. Evol. 9, 779–788 (2025).

    Article 

    Google Scholar 

  219. Liang, M. et al. Unifying spatial scaling laws of biodiversity and ecosystem stability. Science 387, eadl2373 (2025).

    Article 
    CAS 

    Google Scholar 

  220. Siegel, K. & Dee, L. E. Foundations and future directions for causal inference in ecological research. Ecol. Lett. 28, e70053 (2025).

    Article 

    Google Scholar 

  221. Imbens, G. W. & Rubin, D. B. Causal Inference for Statistics, Social, and Biomedical Sciences: An Introduction (Cambridge University Press, 2015).

  222. Damtew, A., Birhane, E., Messier, C., Paquette, A. & Muys, B. Shading and selection effect-mediated species mixing enhance the growth of native trees in dry tropical forests. Oecologia 207, 75 (2025).

    Article 

    Google Scholar 

  223. Van de Peer, T. et al. Tree seedling vitality improves with functional diversity in a Mediterranean common garden experiment. Forest Ecol. Manag. 409, 614–633 (2018).

    Article 

    Google Scholar 

  224. Schuldt, A., Fornoff, F., Bruelheide, H., Klein, A.-M. & Staab, M. Tree species richness attenuates the positive relationship between mutualistic ant–hemipteran interactions and leaf chewer herbivory. Proc. Biol. Sci. 284, 20171489 (2017).

    Google Scholar 

  225. Snedecor, G. W. & Cochran, W. G. Statistical Methods, 8th edn (Iowa State University Press, 1989).

  226. Schmid, B., Polasek, W., Weiner, J., Krause, A. & Stoll, P. Modeling of discontinuous relationships in biology with censored regression. Am. Naturalist 143, 494–507 (1994).

    Article 

    Google Scholar 

  227. Schmid, B. The species richness-productivity controversy. Trends Ecol. Evol. 17, 113–114 (2002).

    Article 

    Google Scholar 

  228. Naeem, S., Thompson, L. J., Lawler, S. P., Lawton, J. H. & Woodfin, R. M. Declining biodiversity can alter the performance of ecosystems. Nature 368, 734–737 (1994).

    Article 

    Google Scholar 

  229. Loreau, M. et al. Biodiversity as insurance: from concept to measurement and application. Biol. Rev. 96, 2333–2354 (2021).

    Article 

    Google Scholar 

  230. Grace, J. B. et al. Causal effects versus causal mechanisms: two traditions with different requirements and contributions towards causal understanding. Ecol. Lett. 28, e70029 (2025).

    Article 

    Google Scholar 

  231. Pearl, J. Causality 2 edn (Cambridge University Press, 2009).

  232. Andraczek, K. et al. Weak reciprocal relationships between productivity and plant biodiversity in managed grasslands. J. Ecol. 112, 2359–2373 (2024).

    Article 

    Google Scholar 

  233. Runge, J. Modern causal inference approaches to investigate biodiversity-ecosystem functioning relationships. Nat. Commun. 14, 1917 (2023).

    Article 
    CAS 

    Google Scholar 

  234. Barry, K. E. et al. The future of complementarity: disentangling causes from consequences. Trends Ecol. Evol. 34, 167–180 (2019).

    Article 

    Google Scholar 

  235. Grime, J. P. Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J. Ecol. 86, 902–910 (1998).

    Article 

    Google Scholar 

Download references

Acknowledgements

We thank S. Li, Y. Li, C. Chen and S. Zhang for their help in collecting the experiment information in Supplementary Table 1 and improving the figures. X.L. was supported by the National Key Research Development Program of China (2022YFF0802300), the National Natural Science Foundation of China (32525042 and 32222055), and the Youth Innovation Promotion Association CAS (2023019). J.C.-B. was supported by the ASCEND Biology Integration Institute, NSF DBI (2021898) and Cedar Creek Long-Term Ecological Research, NSF DEB (1831944). A.S. was supported by the German Research Foundation DFG (452861007/FOR 5281). B.S. was supported by the NOMIS Foundation, the Presidential International Fellowship Initiative (PIFI) from the Chinese Academy of Sciences and the University Research Priority Program on Global Change and Biodiversity of the University of Zurich.

Author information

Authors and Affiliations

Authors

Contributions

X.L. and K.M. conceived the idea. X.L. A.S., J.C.-B., A.P., B.S. and K.M. together wrote the review.

Corresponding author

Correspondence to
Keping Ma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Biodiversity thanks Santiago Soliveres, Marta Monfort and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

United Nations Convention on Biological Diversity Global Biodiversity Targets: https://www.cbd.int/gbf/targets

Supplementary information

Supplementary information

Glossary

Facilitation

A species in a mixture benefits from the presence of other species that change the abiotic or biotic environment.

Functional diversity

Variation in function among individuals or species within a circumscribed space, often calculated for multiple traits, using a variety of metrics, which can be abundance-weighted.

Multi-functionality

Measures combining multiple ecosystem functions into a single value, based on averages or on the number of functions reaching a minimal level.

Multi-trophic diversity

The species diversity across multiple groups of organisms belonging to different trophic levels, often expressed as the average across the standardized (that is, relative) species richness values of each group of organisms.

Phylogenetic diversity

Evolutionary divergence among individuals or species within a circumscribed space, calculated from a phylogeny using a variety of metrics, which can be abundance-weighted.

Resilience

The ability of ecosystem properties to return to a pre-disturbance condition after a disturbance.

Resistance

The ability of individuals, species or communities to persist and maintain ecosystem functions despite exposure to a stress or disturbance.

Stability

The capacity of an ecosystem to maintain its structure and function over time, despite disturbances and environmental fluctuations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Cite this article

Liu, X., Schuldt, A., Cavender-Bares, J. et al. Ecological insights from three decades of forest biodiversity experiments.
Nat. Rev. Biodivers. (2026). https://doi.org/10.1038/s44358-025-00112-2

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s44358-025-00112-2


Source: Ecology - nature.com

Sub-Saharan Africa has lost almost one-quarter of its pre-industrial biodiversity

When clean isn’t enough