in

Fungal parasites infecting N2-fixing cyanobacteria reshape carbon and N2 fixation and trophic transfer


Abstract

Fungal parasites are associated with bloom-forming algae, yet their impact on N2 fixation and the fate of newly fixed nitrogen during cyanobacterial blooms is poorly understood. We report infections on the ecologically important N2-fixing cyanobacterium Dolichospermum (formerly Anabaena) in the Baltic Sea. Using single-cell isotope probing, microscopy, and biogeochemical analyses, we examine how infections affect carbon and N2 fixation and elemental transfer within a natural community. Fungal sporangia infect up to 80% of filaments, mostly targeting storage cells (akinetes, 82% prevalence) and N2-fixing cells (heterocytes, 44%), but rarely vegetative cells (5%). Infections at akinete–heterocyte junctions extract 4- and 10-fold more carbon and nitrogen than those on vegetative cells, reducing host storage by 28% and 56%. Overall, 22% of newly fixed nitrogen is transferred to fungi, comparable to heterotrophic bacteria. Infections also occur in Nodularia and Aphanizomenon, suggesting fungi-like parasitism broadly affects bloom dynamics and the fate of new nitrogen.

Data availability

Sequence data have been deposited in ENA (European Nucleotide Archive) under project accession no. PRJEB96922. Accession numbers used to construct the phylogenetic tree in Supplementary Fig. S5 are listed in Supplementary Table S5, as accessed on the NCBI database. The raw mass spectrometer output can be found in Supplementary Dataset 1. Source data are provided with this paper.

References

  1. Falkowski, P. The power of plankton. Nature 483, 17–20 (2012).

    Google Scholar 

  2. Chassot, E. et al. Global marine primary production constrains fisheries catches. Ecol. Lett. 13, 495–505 (2010).

    Google Scholar 

  3. Stock, C. A. et al. Reconciling fisheries catch and ocean productivity. Proc. Natl. Acad. Sci. USA 114, E1441–E1449 (2017).

    Google Scholar 

  4. Berdalet, E. et al. Marine harmful algal blooms, human health and wellbeing: challenges and opportunities in the 21st century. J. Mar. Biol. Assoc. UK. 2015, 1–62 (2015).

  5. Wurtsbaugh, W. A., Paerl, H. W. & Dodds, W. K. Nutrients, eutrophication and harmful algal blooms along the freshwater to marine continuum. Wiley Interdiscip. Rev. Water 6, e1373 (2019).

    Google Scholar 

  6. Paerl, H. W. & Huisman, J. Blooms like it hot. Science 320, 57–58 (2008).

    Google Scholar 

  7. Dai, Y. et al. Coastal phytoplankton blooms expand and intensify in the 21st century. Nature 615, 280–284 (2023).

    Google Scholar 

  8. Kahru, M. & Elmgren, R. Multidecadal time series of satellite-detected accumulations of cyanobacteria in the Baltic Sea. Biogeosciences 11, 3619–3633 (2014).

    Google Scholar 

  9. Finni, T., Kononen, K., Olsonen, R. & Wallström, K. The history of cyanobacterial blooms in the Baltic Sea. Ambio 30, 172–178 (2001).

    Google Scholar 

  10. HELCOM & Earth, B. Climate Change in the Baltic Sea 2021 Fact Sheet: Baltic Sea Environmental Proceedings No.180 (Helsinki Commission – HELCOM, 2021).

  11. Larsson, U., Hajdu, S., Walve, J. & Elmgren, R. Baltic Sea nitrogen fixation estimated from the summer increase in upper mixed layer total nitrogen. Limnol. Oceanogr. 46, 811–820 (2001).

    Google Scholar 

  12. Rolff, C., Almesjö, L. & Elmgren, R. Nitrogen fixation and abundance of the diazotrophic cyanobacterium Aphanizomenon sp. in the Baltic Proper. Mar. Ecol. Prog. Ser. 332, 107–118 (2007).

    Google Scholar 

  13. Funkey, C. P. et al. Hypoxia sustains cyanobacteria blooms in the Baltic Sea. Environ. Sci. Technol. 48, 2598–2602 (2014).

    Google Scholar 

  14. Vahtera, E. et al. Internal ecosystem feedbacks enhance nitrogen-fixing cyanobacteria blooms and complicate management in the Baltic Sea. Ambio 36, 186–194 (2007).

    Google Scholar 

  15. Worden, A. Z. et al. Rethinking the marine carbon cycle: Factoring in the multifarious lifestyles of microbes. Science 347, 1257594 (2015).

    Google Scholar 

  16. Paerl, H. Nutrient and other environmental controls of harmful cyanobacterial blooms along the freshwater-marine continuum. Adv. Exp. Med. Biol. 619, 217–237 (2008).

    Google Scholar 

  17. Jankowiak, J., Hattenrath-Lehmann, T., Kramer, B. J., Ladds, M. & Gobler, C. J. Deciphering the effects of nitrogen, phosphorus, and temperature on cyanobacterial bloom intensification, diversity, and toxicity in western Lake Erie. Limnol. Oceanogr. 64, 1347–1370 (2019).

    Google Scholar 

  18. Gutiérrez, M. H., Jara, A. M. & Pantoja, S. Fungal parasites infect marine diatoms in the upwelling ecosystem of the Humboldt current system off central Chile. Environ. Microbiol. 18, 1646–1653 (2016).

    Google Scholar 

  19. Kilias, E. S. et al. Chytrid fungi distribution and co-occurrence with diatoms correlate with sea ice melt in the Arctic Ocean. Commun. Biol. 3, 183 (2020).

    Google Scholar 

  20. Hassett, B. T. & Gradinger, R. Chytrids dominate arctic marine fungal communities. Environ. Microbiol. 18, 2001–2009 (2016).

    Google Scholar 

  21. Sime-Ngando, T. Phytoplankton chytridiomycosis: fungal parasites of phytoplankton and their imprints on the food web dynamics. Front. Microbiol. 3, 1–13 (2012).

    Google Scholar 

  22. Van den Wyngaert, S. et al. Seasonality of parasitic and saprotrophic zoosporic fungi: linking sequence data to ecological traits. ISME J. 16, 2242–2254 (2022).

    Google Scholar 

  23. Kagami, M., Gurung, T. B., Yoshida, T. & Urabe, J. To sink or to be lysed? Contrasting fate of two large phytoplankton species in Lake Biwa. Limnol. Oceanogr. 51, 2775–2786 (2006).

    Google Scholar 

  24. Rasconi, S., Niquil, N. & Sime-Ngando, T. Phytoplankton chytridiomycosis: community structure and infectivity of fungal parasites in aquatic ecosystems. Environ. Microbiol. 14, 2151–2170 (2012).

    Google Scholar 

  25. Gerphagnon, M., Colombet, J., Latour, D. & Sime-Ngando, T. Spatial and temporal changes of parasitic chytrids of cyanobacteria. Sci. Rep. 7, 6056 (2017).

    Google Scholar 

  26. Klawonn, I. et al. Characterizing the “fungal shunt”: parasitic fungi on diatoms affect carbon flow and bacterial communities in aquatic microbial food webs. Proc. Natl. Acad. Sci. USA 118, e2102225118 (2021).

    Google Scholar 

  27. Kagami, M., Miki, T. & Takimoto, G. Mycoloop: chytrids in aquatic food webs. Front. Microbiol. 5, 166 (2014).

    Google Scholar 

  28. Garvetto, A. et al. Chytrid infecting the bloom-forming marine diatom Skeletonema sp.: morphology, phylogeny and distribution of a novel species within the Rhizophydiales. Fungal Biol. 123, 471–480 (2019).

    Google Scholar 

  29. Fernández-Valero, A. D. et al. Newly identified diversity of Dinomycetaceae (Rhizophydiales, Chytridiomycota), a family of fungal parasites of marine dinoflagellates. Eur. J. Protistol. 93, 126053 (2024).

    Google Scholar 

  30. McKindles, K. M., Jorge, A. N., McKay, R. M., Davis, T. W. & Bullerjahn, G. S. Isolation and characterization of Rhizophydiales (Chytridiomycota), obligate parasites of Planktothrix agardhii in a Laurentian Great Lakes embayment. Appl. Environ. Microbiol. 87, e02308–e02320 (2021).

    Google Scholar 

  31. Feng, L. et al. Harmful algal blooms in inland waters. Nat. Rev. Earth Environ. 5, 631–644 (2024).

    Google Scholar 

  32. Munkes, B., Löptien, U. & Dietze, H. Cyanobacteria blooms in the Baltic Sea: a review of models and facts. Biogeosciences 18, 2347–2378 (2021).

    Google Scholar 

  33. Kuliński, K. et al. Biogeochemical functioning of the Baltic Sea. Earth Syst. Dyn. 13, 633–685 (2022).

    Google Scholar 

  34. Karlson, B. et al. Harmful algal blooms and their effects in coastal seas of Northern Europe. Harmful Algae 102, 101989 (2021).

    Google Scholar 

  35. Reusch, T. B. H. et al. The Baltic Sea as a time machine for the future coastal ocean. Sci. Adv. 4, eaar8195 (2018).

    Google Scholar 

  36. Takano, K. et al. Fungal infection for cyanobacterium Anabaena smithii by two chytrids in eutrophic region of large reservoir Lake Shumarinai, Hokkaido, Japan. Limnology 9, 213–218 (2008).

    Google Scholar 

  37. Paterson, R. A. Infestation of Chytridiaceous fungi on phytoplankton in relation to certain environmental factors. Ecology 41, 416–424 (1960).

    Google Scholar 

  38. Gerphagnon, M., Latour, D., Colombet, J. & Sime-Ngando, T. Fungal parasitism: life cycle, dynamics and impact on cyanobacterial blooms. PLoS ONE 8, e60894 (2013).

    Google Scholar 

  39. Xu, X., Kasada, M., Grossart, H.-P., Ibelings, B. W. & Van den Wyngaert, S. A newly isolated chytrid fungus specialized in parasitizing heterocysts of the filamentous cyanobacterium Dolichospermum sp. Hydrobiologia 852, 5163–5181 (2025).

  40. Canter, H. M. & Lund, J. W. G. Fungal Parasites of the Phytoplankton. II (Studies on British Chytrids, XII). Ann. Bot. 15, 129–156 (1951).

  41. Van den Wyngaert, S. et al. Dynamics of zoosporic parasites in summer phytoplankton communities of the Baltic Sea. FEMS Microbiol. Ecol. 101, fiaf081 (2025).

  42. Ger, K. A. et al. The interaction between cyanobacteria and zooplankton in a more eutrophic world. Harmful Algae 54, 128–144 (2016).

    Google Scholar 

  43. Haraldsson, M. et al. Microbial parasites make cyanobacteria blooms less of a trophic dead end than commonly assumed. ISME J. 12, 1008–1020 (2018).

    Google Scholar 

  44. Frenken, T., Wolinska, J., Tao, Y., Rohrlack, T. & Agha, R. Infection of filamentous phytoplankton by fungal parasites enhances herbivory in pelagic food webs. Limnol. Oceanogr. 65, 2618–2626 (2020).

    Google Scholar 

  45. Agha, R., Saebelfeld, M., Manthey, C., Rohrlack, T. & Wolinska, J. Chytrid parasitism facilitates trophic transfer between bloom-forming cyanobacteria and zooplankton (Daphnia). Sci. Rep. 6, 35039 (2016).

    Google Scholar 

  46. Frenken, T. et al. The potential of zooplankton in constraining chytrid epidemics in phytoplankton hosts. Ecology 101, e02900 (2020).

    Google Scholar 

  47. Kagami, M., Von Elert, E., Ibelings, B. W., De Bruin, A. & Van Donk, E. The parasitic chytrid, Zygorhizidium, facilitates the growth of the cladoceran zooplankter, Daphnia, in cultures of the inedible alga, Asterionella. Proc. Biol. Sci. 274, 1561–1566 (2007).

    Google Scholar 

  48. Rasconi, S. et al. Parasitic chytrids upgrade and convey primary produced carbon during inedible algae proliferation. Protist 171, 125768 (2020).

    Google Scholar 

  49. Fay, P. Cell differentiation and pigment composition in Anabaena cylindrica. Arch. fur Mikrobiol. 67, 62–70 (1969).

    Google Scholar 

  50. Simon, R. D. Sporulation in the filamentous cyanobacterium Anabaena cylindrica. The course of spore formation. Arch. Microbiol. 111, 283–288 (1977).

    Google Scholar 

  51. Sutherland, J. M., Herdman, M. & Stewart, W. D. P. Akinetes of the cyanobacterium Nostoc PCC 7524: macromolecular composition, structure and control of differentiation. J. Gen. Microbiol. 115, 273–287 (1979).

    Google Scholar 

  52. Pereira, S. et al. Complexity of cyanobacterial exopolysaccharides: composition, structures, inducing factors and putative genes involved in their biosynthesis and assembly. FEMS Microbiol. Rev. 33, 917–941 (2009).

    Google Scholar 

  53. Sánchez Barranco, V. et al. Trophic position, elemental ratios and nitrogen transfer in a planktonic host–parasite–consumer food chain including a fungal parasite. Oecologia 194, 541–554 (2020).

    Google Scholar 

  54. Rasconi, S., Grami, B., Niquil, N., Jobard, M. & Sime-Ngando, T. Parasitic chytrids sustain zooplankton growth during inedible algal bloom. Front. Microbiol. 5, 229 (2014).

    Google Scholar 

  55. Grasshoff, K., Kremling, K. & Ehrhardt, M. Methods of Seawater Analysis 3rd edn, 159–228 (Wiley-VCH, 1999).

  56. Klawonn, I., Dunker, S., Kagami, M., Grossart, H.-P. & Van den Wyngaert, S. Intercomparison of two fluorescent dyes to visualize parasitic fungi (Chytridiomycota) on phytoplankton. Microb. Ecol. 85, 9–23 (2023).

    Google Scholar 

  57. Olenina, I. et al. Biovolumes and size classes of phytoplankton in the Baltic Sea. HELCOM Balt. Sea Environ. Proc. 106, 144 (2006).

    Google Scholar 

  58. Wacklin, P., Hoffmann, L. & Komárek, J. Nomenclatural validation of the genetically revised cyanobacterial genus Dolichospermum (RALFS ex BORNET et FLAHAULT) comb. nova. Fottea 9, 59–64 (2009).

    Google Scholar 

  59. Rueden, C. T. et al. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics 18, 529 (2017).

    Google Scholar 

  60. Nercessian, O., Noyes, E., Kalyuzhnaya, M. G., Lidstrom, M. E. & Chistoserdova, L. Bacterial populations active in metabolism of C1 compounds in the sediment of Lake Washington, a freshwater lake. Appl. Environ. Microbiol. 71, 6885–6899 (2005).

    Google Scholar 

  61. Vainio, E. J. & Hantula, J. Direct analysis of wood-inhabiting fungi using denaturing gradient gel electrophoresis of amplified ribosomal DNA. Mycol. Res. 104, 927–936 (2000).

    Google Scholar 

  62. Banos, S. et al. A comprehensive fungi-specific 18S rRNA gene sequence primer toolkit suited for diverse research issues and sequencing platforms. BMC Microbiol 18, 190 (2018).

    Google Scholar 

  63. Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    Google Scholar 

  64. RStudio Team. RStudio: Integrated Development Environment for R https://www.rstudio.com/ (RStudio Team, 2023).

  65. Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6, 226 (2018).

    Google Scholar 

  66. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genom. Biol. 15, 550 (2014).

    Google Scholar 

  67. Montoya, J. P., Voss, M., Kähler, P. & Capone, D. G. A simple, high-precision, high-sensitivity tracer assay for N2 fixation. Appl. Environ. Microbiol. 62, 986–993 (1996).

    Google Scholar 

  68. Pett-Ridge, J. & Weber, P. K. NanoSIP: NanoSIMS applications for microbial biology. Methods Mol. Biol. 2349, 91–136 (2022).

  69. Stryhanyuk, H. et al. Calculation of single cell assimilation rates from SIP-nanoSIMS-derived isotope ratios: a comprehensive approach. Front. Microbiol. 9, 2342 (2018).

    Google Scholar 

  70. Svedén, J. B. et al. High cell-specific rates of nitrogen and carbon fixation by the cyanobacterium Aphanizomenon sp. at low temperatures in the Baltic Sea. FEMS Microbiol. Ecol. 91, fiv131 (2015).

  71. Meyer, N. R., Fortney, J. L. & Dekas, A. E. NanoSIMS sample preparation decreases isotope enrichment: magnitude, variability and implications for single-cell rates of microbial activity. Environ. Microbiol. 23, 81–89 (2021).

    Google Scholar 

  72. Woebken, D. et al. Revisiting N₂ fixation in Guerrero Negro intertidal microbial mats with a functional single-cell approach. ISME J. 9, 485–496 (2015).

    Google Scholar 

  73. Wickham, H. et al. Welcome to the tidyverse. J. Open Source Softw. 4, 1686 (2019).

    Google Scholar 

  74. De Mendiburu, F. agricolae: Statistical Procedures for Agricultural Research. https://CRAN.R-project.org/package=agricolae (2023).

  75. Jackman S. pscl: Classes and Methods for R Developed in the Political Science Computational Laboratory (University of Sydney, 2024).

  76. Zeileis, A., Kleiber, C. & Jackman, S. Regression Models for Count Data in R. J. Stat. Softw. 27, 1–25 (2008).

  77. Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S-Plus 4th edn (Springer, 2002).

Download references

Acknowledgements

We sincerely thank Christian Burmeister for nutrient analyses, Jenny Jeschek for DOC/DN analyses, as well as Christin Fechtel and the entire IOW monitoring team for mycoplankton sampling during the Baltic Sea monitoring cruises and at Heiligendamm. We further acknowledge the valuable support of Susanne Busch during phytoplankton identification, Heejin Jeon during IMS-1280 analyses, Sascha Plewe, as well as Karoline Schulz, Armin Springer, and Marcus Frank from the Medical Biology and Electron Microscopic Centre (Rostock University Medical Center, Rostock) during SEM imaging, Annett Grüttmüller during nanoSIMS analyses, and Quentin Devresse and Stanislav Jabinski during proofreading. A.F., C.D.L., and I.K. were funded by the German Research Foundation (DFG, Emmy Noether grant KL 3332/1-1 to IK). Sequencing was funded by the DFG (KL 3332/3-1 to IK) and conducted at the DFG Research Infrastructure NGS Competence Center (DcGC, project 407482635) as part of the Next Generation Sequencing Competence Network (DFG project 423957469). NGS library preparation, data production and analyses were carried out at the DcGC Dresden-concept Genome Center, core facility of the CMCB and Technology Platform of the Dresden University of Technology (TU Dresden). The NordSIMS facility is operated under a Swedish Research Council infrastructure grant 2021-00276. This is NordSIMS publication #814. The NanoSIMS at the Leibnitz-Institute for Baltic Sea Research, Warnemünde (IOW) was funded by the German Federal Ministry of Education and Research (BMBF, grant 03F0626A). The IOW long-term observations were financially supported by the IOW, the Federal Maritime and Hydrographic Agency (BSH), and the state and federal government.

Funding

Open Access funding enabled and organized by Projekt DEAL.

Author information

Authors and Affiliations

Authors

Contributions

I.K. acquired funding and designed research; A.F., C.D.L., J.S., M.J.W., A.V., and I.K. performed sampling and sample analyses; A.F., L.Z., and I.K. analyzed data; and A.F. and I.K. wrote the paper with input and approval from all coauthors.

Corresponding author

Correspondence to
Isabell Klawonn.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks the anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary File

Supplementary Data 1

Reporting Summary

Transparent Peer Review file

Source data

Source data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Cite this article

Feuring, A., Lawrence, C.D., Salcedo, J. et al. Fungal parasites infecting N2-fixing cyanobacteria reshape carbon and N2 fixation and trophic transfer.
Nat Commun (2026). https://doi.org/10.1038/s41467-025-67818-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41467-025-67818-x


Source: Ecology - nature.com

When clean isn’t enough

A One Health trial design to accelerate Lassa fever vaccines

Back to Top