Abstract
Fungal parasites are associated with bloom-forming algae, yet their impact on N2 fixation and the fate of newly fixed nitrogen during cyanobacterial blooms is poorly understood. We report infections on the ecologically important N2-fixing cyanobacterium Dolichospermum (formerly Anabaena) in the Baltic Sea. Using single-cell isotope probing, microscopy, and biogeochemical analyses, we examine how infections affect carbon and N2 fixation and elemental transfer within a natural community. Fungal sporangia infect up to 80% of filaments, mostly targeting storage cells (akinetes, 82% prevalence) and N2-fixing cells (heterocytes, 44%), but rarely vegetative cells (5%). Infections at akinete–heterocyte junctions extract 4- and 10-fold more carbon and nitrogen than those on vegetative cells, reducing host storage by 28% and 56%. Overall, 22% of newly fixed nitrogen is transferred to fungi, comparable to heterotrophic bacteria. Infections also occur in Nodularia and Aphanizomenon, suggesting fungi-like parasitism broadly affects bloom dynamics and the fate of new nitrogen.
Data availability
Sequence data have been deposited in ENA (European Nucleotide Archive) under project accession no. PRJEB96922. Accession numbers used to construct the phylogenetic tree in Supplementary Fig. S5 are listed in Supplementary Table S5, as accessed on the NCBI database. The raw mass spectrometer output can be found in Supplementary Dataset 1. Source data are provided with this paper.
References
Falkowski, P. The power of plankton. Nature 483, 17–20 (2012).
Chassot, E. et al. Global marine primary production constrains fisheries catches. Ecol. Lett. 13, 495–505 (2010).
Stock, C. A. et al. Reconciling fisheries catch and ocean productivity. Proc. Natl. Acad. Sci. USA 114, E1441–E1449 (2017).
Berdalet, E. et al. Marine harmful algal blooms, human health and wellbeing: challenges and opportunities in the 21st century. J. Mar. Biol. Assoc. UK. 2015, 1–62 (2015).
Wurtsbaugh, W. A., Paerl, H. W. & Dodds, W. K. Nutrients, eutrophication and harmful algal blooms along the freshwater to marine continuum. Wiley Interdiscip. Rev. Water 6, e1373 (2019).
Paerl, H. W. & Huisman, J. Blooms like it hot. Science 320, 57–58 (2008).
Dai, Y. et al. Coastal phytoplankton blooms expand and intensify in the 21st century. Nature 615, 280–284 (2023).
Kahru, M. & Elmgren, R. Multidecadal time series of satellite-detected accumulations of cyanobacteria in the Baltic Sea. Biogeosciences 11, 3619–3633 (2014).
Finni, T., Kononen, K., Olsonen, R. & Wallström, K. The history of cyanobacterial blooms in the Baltic Sea. Ambio 30, 172–178 (2001).
HELCOM & Earth, B. Climate Change in the Baltic Sea 2021 Fact Sheet: Baltic Sea Environmental Proceedings No.180 (Helsinki Commission – HELCOM, 2021).
Larsson, U., Hajdu, S., Walve, J. & Elmgren, R. Baltic Sea nitrogen fixation estimated from the summer increase in upper mixed layer total nitrogen. Limnol. Oceanogr. 46, 811–820 (2001).
Rolff, C., Almesjö, L. & Elmgren, R. Nitrogen fixation and abundance of the diazotrophic cyanobacterium Aphanizomenon sp. in the Baltic Proper. Mar. Ecol. Prog. Ser. 332, 107–118 (2007).
Funkey, C. P. et al. Hypoxia sustains cyanobacteria blooms in the Baltic Sea. Environ. Sci. Technol. 48, 2598–2602 (2014).
Vahtera, E. et al. Internal ecosystem feedbacks enhance nitrogen-fixing cyanobacteria blooms and complicate management in the Baltic Sea. Ambio 36, 186–194 (2007).
Worden, A. Z. et al. Rethinking the marine carbon cycle: Factoring in the multifarious lifestyles of microbes. Science 347, 1257594 (2015).
Paerl, H. Nutrient and other environmental controls of harmful cyanobacterial blooms along the freshwater-marine continuum. Adv. Exp. Med. Biol. 619, 217–237 (2008).
Jankowiak, J., Hattenrath-Lehmann, T., Kramer, B. J., Ladds, M. & Gobler, C. J. Deciphering the effects of nitrogen, phosphorus, and temperature on cyanobacterial bloom intensification, diversity, and toxicity in western Lake Erie. Limnol. Oceanogr. 64, 1347–1370 (2019).
Gutiérrez, M. H., Jara, A. M. & Pantoja, S. Fungal parasites infect marine diatoms in the upwelling ecosystem of the Humboldt current system off central Chile. Environ. Microbiol. 18, 1646–1653 (2016).
Kilias, E. S. et al. Chytrid fungi distribution and co-occurrence with diatoms correlate with sea ice melt in the Arctic Ocean. Commun. Biol. 3, 183 (2020).
Hassett, B. T. & Gradinger, R. Chytrids dominate arctic marine fungal communities. Environ. Microbiol. 18, 2001–2009 (2016).
Sime-Ngando, T. Phytoplankton chytridiomycosis: fungal parasites of phytoplankton and their imprints on the food web dynamics. Front. Microbiol. 3, 1–13 (2012).
Van den Wyngaert, S. et al. Seasonality of parasitic and saprotrophic zoosporic fungi: linking sequence data to ecological traits. ISME J. 16, 2242–2254 (2022).
Kagami, M., Gurung, T. B., Yoshida, T. & Urabe, J. To sink or to be lysed? Contrasting fate of two large phytoplankton species in Lake Biwa. Limnol. Oceanogr. 51, 2775–2786 (2006).
Rasconi, S., Niquil, N. & Sime-Ngando, T. Phytoplankton chytridiomycosis: community structure and infectivity of fungal parasites in aquatic ecosystems. Environ. Microbiol. 14, 2151–2170 (2012).
Gerphagnon, M., Colombet, J., Latour, D. & Sime-Ngando, T. Spatial and temporal changes of parasitic chytrids of cyanobacteria. Sci. Rep. 7, 6056 (2017).
Klawonn, I. et al. Characterizing the “fungal shunt”: parasitic fungi on diatoms affect carbon flow and bacterial communities in aquatic microbial food webs. Proc. Natl. Acad. Sci. USA 118, e2102225118 (2021).
Kagami, M., Miki, T. & Takimoto, G. Mycoloop: chytrids in aquatic food webs. Front. Microbiol. 5, 166 (2014).
Garvetto, A. et al. Chytrid infecting the bloom-forming marine diatom Skeletonema sp.: morphology, phylogeny and distribution of a novel species within the Rhizophydiales. Fungal Biol. 123, 471–480 (2019).
Fernández-Valero, A. D. et al. Newly identified diversity of Dinomycetaceae (Rhizophydiales, Chytridiomycota), a family of fungal parasites of marine dinoflagellates. Eur. J. Protistol. 93, 126053 (2024).
McKindles, K. M., Jorge, A. N., McKay, R. M., Davis, T. W. & Bullerjahn, G. S. Isolation and characterization of Rhizophydiales (Chytridiomycota), obligate parasites of Planktothrix agardhii in a Laurentian Great Lakes embayment. Appl. Environ. Microbiol. 87, e02308–e02320 (2021).
Feng, L. et al. Harmful algal blooms in inland waters. Nat. Rev. Earth Environ. 5, 631–644 (2024).
Munkes, B., Löptien, U. & Dietze, H. Cyanobacteria blooms in the Baltic Sea: a review of models and facts. Biogeosciences 18, 2347–2378 (2021).
Kuliński, K. et al. Biogeochemical functioning of the Baltic Sea. Earth Syst. Dyn. 13, 633–685 (2022).
Karlson, B. et al. Harmful algal blooms and their effects in coastal seas of Northern Europe. Harmful Algae 102, 101989 (2021).
Reusch, T. B. H. et al. The Baltic Sea as a time machine for the future coastal ocean. Sci. Adv. 4, eaar8195 (2018).
Takano, K. et al. Fungal infection for cyanobacterium Anabaena smithii by two chytrids in eutrophic region of large reservoir Lake Shumarinai, Hokkaido, Japan. Limnology 9, 213–218 (2008).
Paterson, R. A. Infestation of Chytridiaceous fungi on phytoplankton in relation to certain environmental factors. Ecology 41, 416–424 (1960).
Gerphagnon, M., Latour, D., Colombet, J. & Sime-Ngando, T. Fungal parasitism: life cycle, dynamics and impact on cyanobacterial blooms. PLoS ONE 8, e60894 (2013).
Xu, X., Kasada, M., Grossart, H.-P., Ibelings, B. W. & Van den Wyngaert, S. A newly isolated chytrid fungus specialized in parasitizing heterocysts of the filamentous cyanobacterium Dolichospermum sp. Hydrobiologia 852, 5163–5181 (2025).
Canter, H. M. & Lund, J. W. G. Fungal Parasites of the Phytoplankton. II (Studies on British Chytrids, XII). Ann. Bot. 15, 129–156 (1951).
Van den Wyngaert, S. et al. Dynamics of zoosporic parasites in summer phytoplankton communities of the Baltic Sea. FEMS Microbiol. Ecol. 101, fiaf081 (2025).
Ger, K. A. et al. The interaction between cyanobacteria and zooplankton in a more eutrophic world. Harmful Algae 54, 128–144 (2016).
Haraldsson, M. et al. Microbial parasites make cyanobacteria blooms less of a trophic dead end than commonly assumed. ISME J. 12, 1008–1020 (2018).
Frenken, T., Wolinska, J., Tao, Y., Rohrlack, T. & Agha, R. Infection of filamentous phytoplankton by fungal parasites enhances herbivory in pelagic food webs. Limnol. Oceanogr. 65, 2618–2626 (2020).
Agha, R., Saebelfeld, M., Manthey, C., Rohrlack, T. & Wolinska, J. Chytrid parasitism facilitates trophic transfer between bloom-forming cyanobacteria and zooplankton (Daphnia). Sci. Rep. 6, 35039 (2016).
Frenken, T. et al. The potential of zooplankton in constraining chytrid epidemics in phytoplankton hosts. Ecology 101, e02900 (2020).
Kagami, M., Von Elert, E., Ibelings, B. W., De Bruin, A. & Van Donk, E. The parasitic chytrid, Zygorhizidium, facilitates the growth of the cladoceran zooplankter, Daphnia, in cultures of the inedible alga, Asterionella. Proc. Biol. Sci. 274, 1561–1566 (2007).
Rasconi, S. et al. Parasitic chytrids upgrade and convey primary produced carbon during inedible algae proliferation. Protist 171, 125768 (2020).
Fay, P. Cell differentiation and pigment composition in Anabaena cylindrica. Arch. fur Mikrobiol. 67, 62–70 (1969).
Simon, R. D. Sporulation in the filamentous cyanobacterium Anabaena cylindrica. The course of spore formation. Arch. Microbiol. 111, 283–288 (1977).
Sutherland, J. M., Herdman, M. & Stewart, W. D. P. Akinetes of the cyanobacterium Nostoc PCC 7524: macromolecular composition, structure and control of differentiation. J. Gen. Microbiol. 115, 273–287 (1979).
Pereira, S. et al. Complexity of cyanobacterial exopolysaccharides: composition, structures, inducing factors and putative genes involved in their biosynthesis and assembly. FEMS Microbiol. Rev. 33, 917–941 (2009).
Sánchez Barranco, V. et al. Trophic position, elemental ratios and nitrogen transfer in a planktonic host–parasite–consumer food chain including a fungal parasite. Oecologia 194, 541–554 (2020).
Rasconi, S., Grami, B., Niquil, N., Jobard, M. & Sime-Ngando, T. Parasitic chytrids sustain zooplankton growth during inedible algal bloom. Front. Microbiol. 5, 229 (2014).
Grasshoff, K., Kremling, K. & Ehrhardt, M. Methods of Seawater Analysis 3rd edn, 159–228 (Wiley-VCH, 1999).
Klawonn, I., Dunker, S., Kagami, M., Grossart, H.-P. & Van den Wyngaert, S. Intercomparison of two fluorescent dyes to visualize parasitic fungi (Chytridiomycota) on phytoplankton. Microb. Ecol. 85, 9–23 (2023).
Olenina, I. et al. Biovolumes and size classes of phytoplankton in the Baltic Sea. HELCOM Balt. Sea Environ. Proc. 106, 144 (2006).
Wacklin, P., Hoffmann, L. & Komárek, J. Nomenclatural validation of the genetically revised cyanobacterial genus Dolichospermum (RALFS ex BORNET et FLAHAULT) comb. nova. Fottea 9, 59–64 (2009).
Rueden, C. T. et al. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics 18, 529 (2017).
Nercessian, O., Noyes, E., Kalyuzhnaya, M. G., Lidstrom, M. E. & Chistoserdova, L. Bacterial populations active in metabolism of C1 compounds in the sediment of Lake Washington, a freshwater lake. Appl. Environ. Microbiol. 71, 6885–6899 (2005).
Vainio, E. J. & Hantula, J. Direct analysis of wood-inhabiting fungi using denaturing gradient gel electrophoresis of amplified ribosomal DNA. Mycol. Res. 104, 927–936 (2000).
Banos, S. et al. A comprehensive fungi-specific 18S rRNA gene sequence primer toolkit suited for diverse research issues and sequencing platforms. BMC Microbiol 18, 190 (2018).
Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).
RStudio Team. RStudio: Integrated Development Environment for R https://www.rstudio.com/ (RStudio Team, 2023).
Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6, 226 (2018).
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genom. Biol. 15, 550 (2014).
Montoya, J. P., Voss, M., Kähler, P. & Capone, D. G. A simple, high-precision, high-sensitivity tracer assay for N2 fixation. Appl. Environ. Microbiol. 62, 986–993 (1996).
Pett-Ridge, J. & Weber, P. K. NanoSIP: NanoSIMS applications for microbial biology. Methods Mol. Biol. 2349, 91–136 (2022).
Stryhanyuk, H. et al. Calculation of single cell assimilation rates from SIP-nanoSIMS-derived isotope ratios: a comprehensive approach. Front. Microbiol. 9, 2342 (2018).
Svedén, J. B. et al. High cell-specific rates of nitrogen and carbon fixation by the cyanobacterium Aphanizomenon sp. at low temperatures in the Baltic Sea. FEMS Microbiol. Ecol. 91, fiv131 (2015).
Meyer, N. R., Fortney, J. L. & Dekas, A. E. NanoSIMS sample preparation decreases isotope enrichment: magnitude, variability and implications for single-cell rates of microbial activity. Environ. Microbiol. 23, 81–89 (2021).
Woebken, D. et al. Revisiting N₂ fixation in Guerrero Negro intertidal microbial mats with a functional single-cell approach. ISME J. 9, 485–496 (2015).
Wickham, H. et al. Welcome to the tidyverse. J. Open Source Softw. 4, 1686 (2019).
De Mendiburu, F. agricolae: Statistical Procedures for Agricultural Research. https://CRAN.R-project.org/package=agricolae (2023).
Jackman S. pscl: Classes and Methods for R Developed in the Political Science Computational Laboratory (University of Sydney, 2024).
Zeileis, A., Kleiber, C. & Jackman, S. Regression Models for Count Data in R. J. Stat. Softw. 27, 1–25 (2008).
Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S-Plus 4th edn (Springer, 2002).
Acknowledgements
We sincerely thank Christian Burmeister for nutrient analyses, Jenny Jeschek for DOC/DN analyses, as well as Christin Fechtel and the entire IOW monitoring team for mycoplankton sampling during the Baltic Sea monitoring cruises and at Heiligendamm. We further acknowledge the valuable support of Susanne Busch during phytoplankton identification, Heejin Jeon during IMS-1280 analyses, Sascha Plewe, as well as Karoline Schulz, Armin Springer, and Marcus Frank from the Medical Biology and Electron Microscopic Centre (Rostock University Medical Center, Rostock) during SEM imaging, Annett Grüttmüller during nanoSIMS analyses, and Quentin Devresse and Stanislav Jabinski during proofreading. A.F., C.D.L., and I.K. were funded by the German Research Foundation (DFG, Emmy Noether grant KL 3332/1-1 to IK). Sequencing was funded by the DFG (KL 3332/3-1 to IK) and conducted at the DFG Research Infrastructure NGS Competence Center (DcGC, project 407482635) as part of the Next Generation Sequencing Competence Network (DFG project 423957469). NGS library preparation, data production and analyses were carried out at the DcGC Dresden-concept Genome Center, core facility of the CMCB and Technology Platform of the Dresden University of Technology (TU Dresden). The NordSIMS facility is operated under a Swedish Research Council infrastructure grant 2021-00276. This is NordSIMS publication #814. The NanoSIMS at the Leibnitz-Institute for Baltic Sea Research, Warnemünde (IOW) was funded by the German Federal Ministry of Education and Research (BMBF, grant 03F0626A). The IOW long-term observations were financially supported by the IOW, the Federal Maritime and Hydrographic Agency (BSH), and the state and federal government.
Funding
Open Access funding enabled and organized by Projekt DEAL.
Author information
Authors and Affiliations
Contributions
I.K. acquired funding and designed research; A.F., C.D.L., J.S., M.J.W., A.V., and I.K. performed sampling and sample analyses; A.F., L.Z., and I.K. analyzed data; and A.F. and I.K. wrote the paper with input and approval from all coauthors.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Communications thanks the anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Description of Additional Supplementary File
Supplementary Data 1
Reporting Summary
Transparent Peer Review file
Source data
Source data
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Reprints and permissions
About this article
Cite this article
Feuring, A., Lawrence, C.D., Salcedo, J. et al. Fungal parasites infecting N2-fixing cyanobacteria reshape carbon and N2 fixation and trophic transfer.
Nat Commun (2026). https://doi.org/10.1038/s41467-025-67818-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41467-025-67818-x
Source: Ecology - nature.com

