in

Uncovering spatial and ecological variability in gap size frequency distributions in the Canadian boreal forest

  • 1.

    White, J. C., Wulder, M. A., Hermosilla, T., Coops, N. C. & Hobart, G. W. A nationwide annual characterization of 25 years of forest disturbance and recovery for Canada using Landsat time series. Remote Sens. Environ. 194, 303–321 (2017).

  • 2.

    Brandt, J. P. The extent of the North American boreal zone. 161, 101–161 (2009).

    • Google Scholar
  • 3.

    Brandt, J. P., Flannigan, M. D., Maynard, D. G., Thompson, I. D. & Volney, W. J. A. An introduction to Canada’s boreal zone: ecosystem processes, health, sustainability, and environmental issues. Environ. Rev. 21, 207–226 (2013).

    • Article
    • Google Scholar
  • 4.

    Sulla-Menashe, D., Woodcock, C. E. & Friedl, M. A. Canadian boreal forest greening and browning trends: An analysis of biogeographic patterns and the relative roles of disturbance versus climate drivers. Environ. Res. Lett. 13 (2018).

  • 5.

    Andrew, M. E., Wulder, M. A. & Coops, N. C. Identification of de facto protected areas in boreal Canada. Biol. Conserv. 146, 97–107 (2012).

    • Article
    • Google Scholar
  • 6.

    Hermosilla, T. et al. Mass data processing of time series Landsat imagery: pixels to data products for forest monitoring. Int. J. Digit. Earth 8947, 1–20 (2016).

    • Google Scholar
  • 7.

    Hermosilla, T., Wulder, M. A., White, J. C., Coops, N. C. & Hobart, G. W. Disturbance-Informed Annual Land Cover Classification Maps of Canada’s Forested Ecosystems for a 29-Year Landsat Time Series. Can. J. Remote Sens. 44, 67–87 (2018).

  • 8.

    Coops, N. C., Hermosilla, T., Wulder, M. A., White, J. C. & Bolton, D. K. A thirty year, fine-scale, characterization of area burned in Canadian forests shows evidence of regionally increasing trends in the last decade. PLoS One 13, 1–19 (2018).

  • 9.

    Pickell, P. D., Coops, N. C., Gergel, S. E., Andison, D. W. & Marshall, L. Evolution of Canada’ s Boreal Forest Spatial Patterns as Seen from Space. 1–20, https://doi.org/10.1371/journal.pone.0157736 (2016).

  • 10.

    Pickell, P. D., Hermosilla, T., Frazier, R. J., Coops, N. C. & Wulder, M. A. Forest recovery trends derived from Landsat time series for North American boreal forests Forest recovery trends derived from Landsat time series for North American boreal forests. Int. J. Remote Sens. 1161, 138–149 (2016).

    • Article
    • Google Scholar
  • 11.

    Kneeshaw, D., Bergeron, Y. & Kuuluvainen, T. Forest ecosystem structure and disturbance dynamics across the circumboreal forest. (The Sage Handbook of Biogeography, 2011).

  • 12.

    Thom, D. & Seidl, R. Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests. Biol. Rev. 91, 760–781 (2016).

  • 13.

    Hermosilla, T., Wulder, M. A., White, J. C., Coops, N. C. & Hobart, G. W. Regional detection, characterization, and attribution of annual forest change from 1984 to 2012 using Landsat-derived time-series metrics. Remote Sens. Environ. 170, 121–132 (2015).

  • 14.

    Hermosilla, T., Wulder, M. A., White, J. C., Coops, N. C. & Hobart, G. W. An integrated Landsat time series protocol for change detection and generation of annual gap-free surface reflectance composites. Remote Sens. Environ. 158, 220–234 (2015).

  • 15.

    Wolter, P. T., Townsend, P. A., Sturtevant, B. R. & Kingdon, C. C. Remote sensing of the distribution and abundance of host species for spruce budworm in Northern Minnesota and Ontario. Remote Sens. Environ. 112, 3971–3982 (2008).

  • 16.

    Franklin, S. E., Fan, H. & Guo, X. Relationship between landsat TM and SPOT vegetation indices and cumulative spruce budworm defoliation. Int. J. Remote Sens. 29, 1215–1220 (2008).

  • 17.

    Balshi, M. S. et al. The role of historical fire disturbance in the carbon dynamics of the pan-boreal region: A process-based analysis. J. Geophys. Res. Biogeosciences 112, 1–18 (2007).

  • 18.

    Bond-Lamberty, B., Peckham, S. D., Ahl, D. E. & Gower, S. T. Fire as the dominant driver of central Canadian boreal forest carbon balance. Nature 450, 89–92 (2007).

  • 19.

    Mkhabela, M. S. et al. Comparison of carbon dynamics and water use efficiency following fire and harvesting in Canadian boreal forests. Agric. For. Meteorol. 149, 783–794 (2009).

  • 20.

    Dalerum, F., Boutin, S. & Dunford, J. S. Wildfire effects on home range size and fidelity of boreal caribou in Alberta, Canada. Can. J. Zool. 85, 26–32 (2007).

    • Article
    • Google Scholar
  • 21.

    Hobson, K. A. & Schieck, J. Changes in Bird Communities in Boreal Mixedwood Forest: Harvest and Wildfire Effects over 30 Years. Ecol. Appl. 9, 849–863 (2012).

    • Article
    • Google Scholar
  • 22.

    Pyne, S. The Ecology of Fire. Nat. Educ. Knowl. 3 (2010).

  • 23.

    Bowman, D. M. J. S. et al. Fire in the Earth System. Science (80-.). 481, 481–484 (2009).

  • 24.

    Bond, W. J. & Keeley, J. E. Fire as a global ‘herbivore’: The ecology and evolution of flammable ecosystems. Trends Ecol. Evol. 20, 387–394 (2005).

  • 25.

    de Groot, W. J. et al. A comparison of Canadian and Russian boreal forest fire regimes. For. Ecol. Manage. 294, 23–34 (2013).

    • Article
    • Google Scholar
  • 26.

    Mccarthy, J. W. & Weetman, G. Age and size structure of gap-dynamic, old-growth boreal stands in Newfoundland. Silva Fenn. 40 (2006).

  • 27.

    Whitmore, T. C. Canopy Gaps and the Two Major Groups of Forest Trees. Ecology 70, 536–538 (1989).

    • Article
    • Google Scholar
  • 28.

    McCarthy, J. Gap dynamics of forest trees: A review with particular attention to boreal forests. Environ. Rev. 59, 1–59 (2001).

    • Article
    • Google Scholar
  • 29.

    Pham, A. T., Grandpré, L., De, Gauthier, S. & Bergeron, Y. Gap dynamics and replacement patterns in gaps of the northeastern boreal forest of Quebec. Can. J. For. Res. 34, 353–364 (2004).

    • Article
    • Google Scholar
  • 30.

    Bonnet, S., Gaulton, R., Lehaire, F. & Lejeune, P. Canopy gap mapping from airborne laser scanning: An assessment of the positional and geometrical accuracy. Remote Sens. 7, 11267–11294 (2015).

  • 31.

    Périgon, S. Dynamique de trouées dans de vieux peuplements résineux de la Côte-Nord, Québec. (2006).

  • 32.

    Gauthier, S. et al. Ecosystem management in the boreal forest. (Presses de l’Université du Québec, 2009).

  • 33.

    Senécal, J. & Doyon, F. C. M.-. Management implications of varying gap detection height thresholds and other canopy dynamics processes in temperate deciduous forests. For. Ecol. Manage. 410, 84–94 (2018).

    • Article
    • Google Scholar
  • 34.

    White, J. C., Tompalski, P., Coops, N. C. & Wulder, M. A. Comparison of airborne laser scanning and digital stereo imagery for characterizing forest canopy gaps in coastal temperate rainforests. Remote Sens. Environ. 208, 1–14 (2018).

  • 35.

    Runkle, J. R. Patterns of Disturbance in Some Old-Growth Mesic Forests of Eastern North America. Ecology 63, 1533–1546 (1982).

    • Article
    • Google Scholar
  • 36.

    Vepakomma, U., St-Onge, B. & Kneeshaw, D. Spatially explicit characterization of boreal forest gap dynamics using multi-temporal lidar data. Remote Sens. Environ. 112, 2326–2340 (2008).

  • 37.

    Battles, J. J., Fahey, T. J. & Harney, E. M. B. Spatial patterning in the canopy gap regime of a subalpine Abies-Picea forest in the northeastern United States. J. Veg. Sci. 6, 807–814 (2006).

    • Article
    • Google Scholar
  • 38.

    Fisher, J. I., Hurtt, G. C., Thomas, R. Q. & Chambers, J. Q. Clustered disturbances lead to bias in large-scale estimates based on forest sample plots. Ecol. Lett. 11, 554–563 (2008).

  • 39.

    Vehmas, M., Packalén, P., Maltamo, M. & Eerikäinen, K. Using airborne laser scanning data for detecting canopy gaps and their understory type in mature boreal forest. Ann. For. Sci. 68, 825–833 (2011).

    • Article
    • Google Scholar
  • 40.

    Kane, V. R. et al. Patch dynamics and the development of structural and spatial heterogeneity in Pacific Northwest forests. Can. J. For. Res. 41, 2276–2291 (2011).

    • Article
    • Google Scholar
  • 41.

    Asner, G. P. et al. Forest Canopy Gap Distributions in the Southern Peruvian Amazon. PLoS One 8 (2013).

  • 42.

    Goulamoussène, Y., Bedeau, C., Descroix, L., Linguet, L. & Hérault, B. Environmental control of natural gap size distribution in tropical forests. Biogeosciences 14, 353–364 (2017).

  • 43.

    D’Aoust, V., Kneeshaw, D. & Bergeron, Y. Characterization of canopy openness before and after a spruce budworm outbreak in the southern boreal forest. Can. J. For. Res. 34, 339–352 (2004).

    • Article
    • Google Scholar
  • 44.

    Foody, G. M., Jackson, R. G. & Quine, C. P. Potential improvements in the characterization of forest canopy gaps caused b… Agriculture 49 (2003).

  • 45.

    Vepakomma, U., St-Onge, B. & Kneeshaw, D. Response of a boreal forest to canopy gap openings – assessing vertical and horizontal tree growth with multi-temporal lidar data. Ecol. Appl. 21, 99–121 (2011).

  • 46.

    Vepakomma, U., Kneeshaw, D. & Fortin, M. J. Spatial contiguity and continuity of canopy gaps in mixed wood boreal forests: Persistence, expansion, shrinkage and displacement. J. Ecol. 100, 1257–1268 (2012).

    • Article
    • Google Scholar
  • 47.

    Lloyd, J., Gloor, E. U. & Lewis, S. L. Are the dynamics of tropical forests dominated by large and rare disturbance events? Ecol. Lett. 12, 19–21 (2009).

    • Article
    • Google Scholar
  • 48.

    Kellner, J. R. & Asner, G. P. Convergent structural responses of tropical forests to diverse disturbance regimes. Ecol. Lett. 12, 887–897 (2009).

  • 49.

    Boyd, D. S., Hill, R. A., Hopkinson, C. & Baker, T. R. Landscape-scale forest disturbance regimes in southern Peruvian Amazonia. Ecol. Appl. 23, 1588–1602 (2013).

  • 50.

    Lobo, E. & Dalling, J. W. Effects of topography, soil type and forest age on the frequency and size distribution of canopy gap disturbances in a tropical forest. Biogeosciences 10, 6769–6781 (2013).

  • 51.

    Ecological Stratification Working Group. A National Ecological Framework for Canada. Environment doi:Cat. No. A42-65/1996E; ISBN 0-662-24107-X (1995).

  • 52.

    Wulder, M. A., Bater, C., Coops, N. C., Hilker, T. & White, J. The role of LiDAR in sustainable forest management. For. Chron. 84, 807–826 (2008).

    • Article
    • Google Scholar
  • 53.

    White, J. C. et al. A best practices guide for generating forest inventory attributes from airborne laser scanning data using an area-based approach. For. Chron. 89, 50 (2013).

    • Article
    • Google Scholar
  • 54.

    Isenburg, M. LAStools. Retrieved from http://lastools.org (2019).

  • 55.

    Phillips, L. B., Hansen, A. J. & Flather, C. H. Evaluating the species energy relationship with the newest measures of ecosystem energy: NDVI versus MODIS primary production. Remote Sens. Environ. 112, 4381–4392 (2008).

  • 56.

    Wulder, M. A. et al. Lidar plots — a new large-area data collection option: Context, concepts, and case study. Can. J. Remote Sens. 38, 600–618 (2012).

  • 57.

    Food and Agriculture Organization of the United Nations. The Forest Resources Assessment Programme: Terms and Defninitions (2012).

  • 58.

    Hanel, R., Corominas-Murtra, B., Liu, B. & Thurner, S. Fitting power-laws in empirical data with estimators that work for all exponents. PLoS One 12, e0170920 (2017).

  • 59.

    Bauke, H. Parameter estimation for power-law distributions by maximum likelihood methods. Eur. Phys. J. B 58, 167–173 (2007).

  • 60.

    Clauset, A., Shalizi, C. R. & Newman, M. E. J. Power-law distributions in empirical data. 51, 661–703 (2007).

    • Google Scholar
  • 61.

    San-Miguel, I., Andison, D. W. & Coops, N. C. Characterizing historical fire patterns as a guide for harvesting planning using landscape metrics derived from long term satellite imagery. For. Ecol. Manage. 399, 155–165 (2017).

    • Article
    • Google Scholar
  • 62.

    Espírito-Santo, F. D. B. et al. Size and frequency of natural forest disturbances and the Amazon forest carbon balance. Nat. Commun. 5, 1–6 (2014).

  • 63.

    Kellner, J. R., Clark, D. B. & Hubbell, S. P. Pervasive canopy dynamics produce short-term stability in a tropical rain forest landscape. Ecol. Lett. 12, 155–164 (2009).

  • 64.

    Oliver, C. D. & Larson, B. C. Forest stand dynamics: updated edition. Forest stand dynamics: updated edition (John Wiley and sons, 1996).

  • 65.

    Brokaw, N. V. L. Gap-Phase Regeneration in a Tropical Forest. Ecology 66, 682–687 (1985).

    • Article
    • Google Scholar
  • 66.

    Palace, M., Keller, M., Asner, G. P., Hagen, S. & Braswell, B. Amazon Forest Structure from IKONOS Satellite Data and the Automated Characterization of Forest Canopy Properties. Biotropica 40, 141–150 (2008).

    • Article
    • Google Scholar
  • 67.

    Price, D. T. et al. Anticipating the consequences of climate change for Canada’s boreal forest ecosystems. Environ. Rev. 21, 322–365 (2013).

    • Article
    • Google Scholar
  • 68.

    Sole, R. V. & Manrubia, S. C. Are Rainforests Self-organized in a Cirtical State? J. theor Biol. 173, 31–40 (1995).

    • Article
    • Google Scholar
  • 69.

    Bak, P. & Chen, K. Self-Organized Criticality. Sci. Am. 264, 46–53 (1991).

  • 70.

    Herwitz, S. R., Slye, R. E. & Turton, S. M. Long-Term Survivorship and Crown Area Dynamics of Tropical Rain Forest Canopy Trees. Ecology 81, 585–597 (2000).

    • Article
    • Google Scholar
  • 71.

    Bartemucci, P., Coates, K. D., Harper, K. A. & Wright, E. F. Gap disturbances in northern old-growth forests of British Columbia, Canada. J. Veg. Sci. 13, 685–696 (2002).

    • Article
    • Google Scholar
  • 72.

    Moeur, M. Characterizing spatial patterns of trees using stem-mapped data. For. Sci. 39, 756–775 (1993).

    • ADS
    • Google Scholar
  • 73.

    Brassard, B. W. & Chen, H. Y. H. Stand Structural Dynamics of North American Boreal Forests. CRC. Crit. Rev. Plant Sci. 25, 115–137 (2006).

    • Article
    • Google Scholar
  • 74.

    Szwagrzyk, J. & Czerwczak, M. Spatial Patterns of Trees in Natural Forests of East-Central-Europe. J. Veg. Sci. 4, 469–476 (1993).

    • Article
    • Google Scholar
  • 75.

    Chokkalingam, U. & White, A. Structure and spatial patterns of trees in old-growth northern hardwood and mixed forests of northern Maine. Plant Ecol. 156, 139–160 (2001).

    • Article
    • Google Scholar
  • 76.

    Muth, C. C. & Bazzaz, F. A. Tree canopy displacement and neighborhood interactions. Can. J. For. Res. 33, 1323–1330 (2003).

    • Article
    • Google Scholar
  • 77.

    Jucker, T., Bouriaud, O. & Coomes, D. A. Crown plasticity enables trees to optimize canopy packing in mixed-species forests. Funct. Ecol. 29, 1078–1086 (2015).

    • Article
    • Google Scholar

  • Source: Ecology - nature.com

    Soil bacterial diversity correlates with precipitation and soil pH in long-term maize cropping systems

    Titan’s missing river deltas and an Earthly climate connection