in

Integrating orientation mechanisms, adrenocortical activity, and endurance flight in vagrancy behaviour

  • Newton, I. The Migration Ecology of Birds (Academic Press, USA, 2010).

    Google Scholar 

  • Somveille, M., Rodrigues, A. S. L. & Manica, A. Why do birds migrate? A macroecological perspective. Glob. Ecol. Biogeogr. 24(6), 664–674 (2015).

    Article 

    Google Scholar 

  • Hahn, S., Bauer, S. & Liechti, F. The natural link between Europe and Africa – 2.1 billion birds on migration. Oikos 118(4), 624–626 (2009).

    Article 

    Google Scholar 

  • DeLuca, W. V. et al. Transoceanic migration by a 12 g songbird. Biol. Let. 11(4), 20141045 (2015).

    Article 

    Google Scholar 

  • Deppe, J. L. et al. Fat, weather, and date affect migratory songbirds’ departure decisions, routes, and time it takes to cross the Gulf of Mexico. Proc. Natl. Acad. Sci. USA 112(46), E6331–E6338 (2015).

    Article 
    CAS 

    Google Scholar 

  • Sutherland, W. J. The heritability of migration. Nature 334, 471–472 (1988).

    Article 
    ADS 

    Google Scholar 

  • Alerstam, T. & Lindström, Å. Optimal bird migration: the relative importance of time, energy, and safety. In Bird Migration 331–351 (Springer, 1990).

    Chapter 

    Google Scholar 

  • Thorup, K. Vagrancy of yellow-browed warbler Phylloscopus inornatus and Pallas’s Warbler Ph. proregulusin north-west Europe: misorientation on great circles. Ring. Migr. 19(1), 7–12 (1998).

    Article 

    Google Scholar 

  • del Hoyo, J., Elliott, A. & Christie, D. Handbook of the Birds of the World (Lynx Edicions, 2008).

    Google Scholar 

  • Rabøl, J. Reversed migration as the cause of westward vagrancy by four Phylloscopus warblers. British Birds 62, 89–92 (1969).

    Google Scholar 

  • Thorup, K. Reverse migration as a cause of vagrancy: capsule reverse migration in autumn does not occur to the same degree in all species of migrants, but is related to migratory direction. Bird Study 51(3), 228–238 (2004).

    Article 

    Google Scholar 

  • BirdLife International and Handbook of the Birds of the World, Bird species distribution maps of the world. Version 6.0. Available at http://datazone.birdlife.org/species/requestdis. (2016).

  • R Core Team, R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. (2017).

  • Thorup, K. et al. Orientation of vagrant birds on the Faroe Islands in the Atlantic Ocean. J. Ornithol. 153(4), 1261–1265 (2012).

    Article 

    Google Scholar 

  • Able, K. The concepts and terminology of bird navigation. J. Avian. Biol. 32(2), 174–183 (2001).

    Article 

    Google Scholar 

  • Griffin, D. R. & Hock, R. J. Experiments on bird navigation. Science 107(2779), 347–349 (1948).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kishkinev, D. Sensory mechanisms of long-distance navigation in birds: a recent advance in the context of previous studies. J. Ornithol. 156(S1), 145–161 (2015).

    Article 

    Google Scholar 

  • Thorup, K. et al. Juvenile songbirds compensate for displacement to oceanic islands during autumn migration. PLoS One 6(3), e17903 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Wingfield, J. & Sapolsky, R. Reproduction and resistance to stress: when and how. J. Neuroendocrinol. 15(8), 711–724 (2003).

    Article 
    CAS 

    Google Scholar 

  • Sapolsky, R. M., Romero, L. M. & Munck, A. U. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr. Rev. 21(1), 55–89 (2000).

    CAS 

    Google Scholar 

  • Jenni, L. & Jenni-Eiermann, S. Fuel supply and metabolic constraints in migrating birds. J. Avian Biol. 29(4), 521–528 (1998).

    Article 

    Google Scholar 

  • Casagrande, S. et al. Dietary antioxidants attenuate the endocrine stress response during long-duration flight of a migratory bird. Proc. Biol. Sci. 2020(287), 20200744 (1929).

    Google Scholar 

  • Gwinner, E. et al. Corticosterone levels of passerine birds during migratory flight. Naturwissenschaften 79(6), 276–278 (1992).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Jenni, L. et al. Regulation of protein breakdown and adrenocortical response to stress in birds during migratory flight. Am. J. Physiol. Regul. Integr. Comp. Physiol. 278(5), R1182–R1189 (2000).

    Article 
    CAS 

    Google Scholar 

  • Holberton, R. L., Boswell, T. & Hunter, M. J. Circulating prolactin and corticosterone concentrations during the development of migratory condition in the Dark-eyed Junco Junco hyemalis. Gen. Comp. Endocrinol. 155(3), 641–649 (2008).

    Article 
    CAS 

    Google Scholar 

  • Ramenofsky, M., J. Moffat, and G. Bentley, Corticosterone and migratory behaviour of captive white-crowned sparrows. In International proceedings of ICA-CPB, Pressures of Life: Molecules to Migration. Masai, Mara Game Reserve, p. 575–82 (2008).

  • Eikenaar, C., Klinner, T. & Stowe, M. Corticosterone predicts nocturnal restlessness in a long-distance migrant. Horm. Behav. 66(2), 324–329 (2014).

    Article 
    CAS 

    Google Scholar 

  • Ramenofsky, M. Fat storage and fat metabolism in relation to migration. In Bird Migration 214–231 (Springer, 1990).

    Chapter 

    Google Scholar 

  • Eikenaar, C., Fritzsch, A. & Bairlein, F. Corticosterone and migratory fueling in Northern wheatears facing different barrier crossings. Gen. Comp. Endocrinol. 186, 181–186 (2013).

    Article 
    CAS 

    Google Scholar 

  • Landys, M. M., Ramenofsky, M. & Wingfield, J. C. Actions of glucocorticoids at a seasonal baseline as compared to stress-related levels in the regulation of periodic life processes. Gen. Comp. Endocrinol. 148(2), 132–149 (2006).

    Article 
    CAS 

    Google Scholar 

  • Romero, L. M. & Reed, J. M. Collecting baseline corticosterone samples in the field: Is under 3 min good enough?. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 140(1), 73–79 (2005).

    Article 

    Google Scholar 

  • Wingfield, J. C., Kelley, J. P. & Angelier, F. What are extreme environmental conditions and how do organisms cope with them?. Curr. Zool. 57(3), 363–374 (2011).

    Article 

    Google Scholar 

  • Wingfield, J. C. & Hunt, K. E. Arctic spring: hormone–behavior interactions in a severe environment. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 132(1), 275–286 (2002).

    Article 

    Google Scholar 

  • Hammer, S. et al. Færøsk Trækfugleatlas: the Faroese bird migration atlas. Fróðskapur spf. (2014).

  • DeSante, D. Vagrants: when orientation or navigation goes wrong. Point Reyes Bird Observ. Newsl. 61, 12–16 (1983).

    Google Scholar 

  • Wingfield, J. C. et al. A mechanistic approach to understanding range shifts in a changing world: What makes a pioneer?. Gen. Comp. Endocrinol. 222, 44–53 (2015).

    Article 
    CAS 

    Google Scholar 

  • Cramp, S. Handbook of the Birds of Europe, the Middle east and North Africa: Birds of the western Palearctic (University Press, 1988).

    Google Scholar 

  • Svensson, L., Identification guide to European passerines. L. Svensson. (1992).

  • Helbig, A. J. & Seibold, I. Molecular phylogeny of Palearctic-African Acrocephalus and Hippolais warblers (Aves: Sylviidae). Mol. Phylogenet. Evol. 11(2), 246–260 (1999).

    Article 
    CAS 

    Google Scholar 

  • Baker, K. Identification of Siberian and other forms of lesser whitethroat. Brit. Birds 81, 382–390 (1988).

    Google Scholar 

  • Olsson, U. et al. New insights into the intricate taxonomy and phylogeny of the Sylvia curruca complex. Mol. Phylogenet. Evol. 67(1), 72–85 (2013).

    Article 

    Google Scholar 

  • Tsvey, A., Loshchagina, J. & Naidenko, S. Migratory species show distinct patterns in corticosterone levels during spring and autumn migrations. Anim. Migr. 6(1), 4–18 (2019).

    Article 

    Google Scholar 

  • Owen, J. C. Collecting, processing, and storing avian blood: a review. J. Field Ornithol. 82(4), 339–354 (2011).

    Article 

    Google Scholar 

  • Pettersson, J. & Hasselquist, D. Fat deposition and migration capacity of robins Erithacus rebecula and goldcrests Regulus regulus at Ottenby Sweden. Ring Migr. 6(2), 66–76 (1985).

    Article 

    Google Scholar 

  • Bairlein, F. et al. European-African Songbird Migration Network: Manual of Field Methods (Wilhelmshaven, 1995).

    Google Scholar 

  • Wingfield, J. C., Vleck, C. M. & Moore, M. C. Seasonal changes of the adrenocortical response to stress in birds of the Sonoran Desert. J. Exp. Zool. A Comp. Exp. Biol. 264(4), 419–428 (1992).

    Article 
    CAS 

    Google Scholar 

  • SAS Institute, SAS for windows, version 9.4. (2014).

  • Cook, R. D. Detection of influential observation in linear regression. Technometrics 19(1), 15–18 (1977).

    MathSciNet 
    MATH 

    Google Scholar 

  • Rawlings, J. O., Pantula, S. G. & Dickey, D. A. Applied Regression Analysis: A Research Tool (Springer Science & Business Media, 2001).

    MATH 

    Google Scholar 

  • Grubbs, F. E. Procedures for detecting outlying observations in samples. Technometrics 11(1), 1–21 (1969).

    Article 

    Google Scholar 

  • Wingfield, J. C. & Kitaysky, A. S. Endocrine responses to unpredictable environmental events: stress or anti-stress hormones?. Integr. Comp. Biol. 42(3), 600–609 (2002).

    Article 
    CAS 

    Google Scholar 

  • Angelier, F. & Wingfield, J. C. Importance of the glucocorticoid stress response in a changing world: theory, hypotheses and perspectives. Gen. Comp. Endocrinol. 190, 118–128 (2013).

    Article 
    CAS 

    Google Scholar 

  • Ralph, C. J. Disorientation and possible fate of young passerine coastal migrants. Bird-Banding 49(3), 237–247 (1978).

    Article 

    Google Scholar 

  • Atwell, J. W. et al. Boldness behavior and stress physiology in a novel urban environment suggest rapid correlated evolutionary adaptation. Behav. Ecol. 23(5), 960–969 (2012).

    Article 

    Google Scholar 

  • Krause, J. S. et al. Breeding on the leading edge of a northward range expansion: differences in morphology and the stress response in the arctic Gambel’s white-crowned sparrow. Oecologia 180(1), 33–44 (2016).

    Article 
    ADS 

    Google Scholar 

  • Falsone, K., Jenni-Eiermann, S. & Jenni, L. Corticosterone in migrating songbirds during endurance flight. Horm. Behav. 56(5), 548–556 (2009).

    Article 
    CAS 

    Google Scholar 

  • Long, J. A. & Holberton, R. L. Corticosterone secretion, energetic condition, and a test of the migration modulation hypothesis in the hermit thrush (Catharus Guttatus), a short-distance migrant. Auk 121(4), 1094 (2004).

    Article 

    Google Scholar 

  • Romero, L. M., Ramenofsky, M. & Wingfield, J. C. Season and migration alters the corticosterone response to capture and handling in an Arctic migrant, the white-crowned sparrow (Zonotrichia leucophrys gambelii). Comp. Biochem. Physiol. C Pharmacol. Toxicol. Endocrinol. 116(2), 171–177 (1997).

    Article 
    CAS 

    Google Scholar 

  • Schwabl, H. Individual variation of the acute adrenocortical response to stress in the white-throated sparrow. Zool.-Anal. Complex Syst. 99(2), 113–120 (1995).

    CAS 

    Google Scholar 

  • Wingfield, J. et al. Environmental stress, field endocrinology, and conservation biology. In Behavioral approaches to conservation in the wild 95–131 (Cambridge University Press, 1997).

    Google Scholar 

  • Wingfield, J. C., Suydam, R. & Hunt, K. The adrenocortical responses to stress in snow buntings (Plectrophenax nivalis) and Lapland longspurs (Calcarius lapponicus) at Barrow, Alaska. Comp. Biochem. Physiol. C: Pharmacol. Toxicol. Endocrinol. 108(3), 299–306 (1994).

    Google Scholar 

  • Krause, J. S. et al. Weathering the storm: Do arctic blizzards cause repeatable changes in stress physiology and body condition in breeding songbirds?. Gen. Comp. Endocrinol. 267, 183–192 (2018).

    Article 
    CAS 

    Google Scholar 

  • Krause, J. S. et al. The effect of extreme spring weather on body condition and stress physiology in Lapland longspurs and white-crowned sparrows breeding in the Arctic. Gen. Comp. Endocrinol. 237, 10–18 (2016).

    Article 
    CAS 

    Google Scholar 

  • Romero, L. M., Reed, J. M. & Wingfield, J. C. Effects of weather on corticosterone responses in wild free-living passerine birds. Gen. Comp. Endocrinol. 118(1), 113–122 (2000).

    Article 
    CAS 

    Google Scholar 

  • Wingfield, J. C., Moore, M. C. & Farner, D. S. Endocrine responses to inclement weather in naturally breeding populations of white-crowned sparrows (Zonotrichia leucophrys pugetensis). Auk 100(1), 56–62 (1983).

    Article 

    Google Scholar 

  • Schwabl, H., Bairlein, F. & Gwinner, E. Basal and stress-induced corticosterone levels of garden warblers, Sylvia borin, during migration. J. Comp. Physiol. B. 161(6), 576–580 (1991).

    Article 
    CAS 

    Google Scholar 

  • Wingfield, J. C. et al. Ecological bases of hormone—behavior interactions: the “emergency life history stage”. Am. Zool. 38(1), 191–206 (1998).

    Article 
    CAS 

    Google Scholar 

  • Silverin, B., Arvidsson, B. & Wingfield, J. The adrenocortical responses to stress in breeding willow warblers Phylloscopus trochilus in Sweden: effects of latitude and gender. Funct. Ecol. 11(3), 376–384 (1997).

    Article 

    Google Scholar 

  • Krause, J. S. et al. Effects of short-term fasting on stress physiology, body condition, and locomotor activity in wintering male white-crowned sparrows. Physiol. Behav. 177, 282–290 (2017).

    Article 
    CAS 

    Google Scholar 

  • Fokidis, H. B. et al. Effects of captivity and body condition on plasma corticosterone, locomotor behavior, and plasma metabolites in curve-billed thrashers. Physiol. Biochem. Zool. 84(6), 595–606 (2011).

    Article 
    CAS 

    Google Scholar 

  • Buttemer, W. A., Astheimer, L. B. & Wingfield, J. C. The effect of corticosterone on standard metabolic rates of small passerine birds. J. Comp. Physiol. B. 161(4), 427–431 (1991).

    Article 
    CAS 

    Google Scholar 

  • Snell, K. R. S. Physiology of avian migratory processes, in Center for Macroecology, Evolution and Climate. University of Copenhagen. (2018).

  • Krause, J. S. et al. The stress response is attenuated during inclement weather in parental, but not in pre-parental, Lapland longspurs (Calcarius lapponicus) breeding in the Low Arctic. Horm. Behav. 83, 68–74 (2016).

    Article 
    CAS 

    Google Scholar 

  • Wingfield, J. C. et al. How birds cope physiologically and behaviourally with extreme climatic events. Philos. Trans. R. Soc. London Ser. B Biol. Sci. 372(1723), 20160140 (2017).

    Article 

    Google Scholar 

  • Walker, J. J. et al. Rapid intra-adrenal feedback regulation of glucocorticoid synthesis. J. R. Soc. London Interface 12(102), 20140875 (2015).

    Article 
    MathSciNet 
    CAS 

    Google Scholar 

  • Holberton, R. L., Parrish, J. D. & Wingfield, J. C. Modulation of the adrenocortical stress response in Neotropical migrants during autumn migration. Auk 113(3), 558–564 (1996).

    Article 

    Google Scholar 

  • Cornelius, J. M. et al. Contributions of endocrinology to the migration life history of birds. Gen. Comp. Endocrinol. 190, 47–60 (2013).

    Article 
    CAS 

    Google Scholar 

  • Landys-Ciannelli, M. M. et al. Baseline and stress-induced plasma corticosterone during long-distance migration in the bar-tailed godwit Limosa lapponica. Physiol. Biochem. Zool. 75(1), 101–110 (2002).

    Article 
    CAS 

    Google Scholar 

  • Jenni-Eiermann, S. et al. Are birds stressed during long-term flights? A wind-tunnel study on circulating corticosterone in the red knot. Gen. Comp. Endocrinol. 164(2–3), 101–106 (2009).

    Article 
    CAS 

    Google Scholar 


  • Source: Ecology - nature.com

    Global predictions for the risk of establishment of Pierce’s disease of grapevines

    Seasonal range fidelity of a megaherbivore in response to environmental change