in

The success of woody plant removal depends on encroachment stage and plant traits

[adace-ad id="91168"]
  • Deng, Y., Li, X., Shi, F. & Hu, X. Woody plant encroachment enhanced global vegetation greening and ecosystem water-use efficiency. Glob. Ecol. Biogeogr. 30, 2337–2353 (2021).

    Article 

    Google Scholar 

  • Brandt, J., Haynes, M., Kuemmerle, T., Waller, D. & Radeloff, V. Regime shift on the roof of the world: alpine meadows converting to shrublands in the southern Himalayas. Biol. Conserv. 158, 116–127 (2013).

    Article 

    Google Scholar 

  • García Criado, M., Myers-Smith, I. H., Bjorkman, A. D., Lehmann, C. E. R. & Stevens, N. Woody plant encroachment intensifies under climate change across tundra and savanna biomes. Glob. Ecol. Biogeogr. 29, 925–943 (2020).

    Article 

    Google Scholar 

  • van Auken, O. Causes and consequences of woody plant encroachment into western North American grasslands. J. Environ. Manage. 90, 2931–2942 (2009).

    Article 
    CAS 

    Google Scholar 

  • Bond, W. J., Midgley, G. F. & Woodward, F. I. The importance of low atmospheric CO2 and fire in promoting the spread of grasslands and savannas. Glob. Chang. Biol. 9, 973–982 (2010).

    Article 

    Google Scholar 

  • D’Odorico, P., Okin, G. S. & Bestelmeyer, B. T. A synthetic review of feedbacks and drivers of shrub encroachment in arid grasslands. Ecohydrology 5, 520–530 (2012).

    Article 

    Google Scholar 

  • Kulmatiski, A. & Beard, K. H. Woody plant encroachment facilitated by increased precipitation intensity. Nat. Clim. Change 3, 833–837 (2013).

    Article 
    CAS 

    Google Scholar 

  • Eldridge, D. J. & Soliveres, S. Are shrubs really a sign of declining ecosystem function? Disentangling the myths and truths of woody encroachment in Australia. Aust. J. Bot. 62, 594–608 (2015).

    Article 

    Google Scholar 

  • Domine, F., Barrere, M. & Morin, S. The growth of shrubs on high Arctic tundra at Bylot Island: impact on snow physical properties and permafrost thermal regime. Biogeosciences 13, 6471–6486 (2016).

    Article 

    Google Scholar 

  • Maestre, F. T., Callaway, R. M., Valladares, F. & Lortie, C. J. Refining the stress-gradient hypothesis for competition and facilitation in plant communities. J. Ecol. 97, 199–205 (2009).

    Article 

    Google Scholar 

  • Eldridge, D. J. et al. Impacts of shrub encroachment on ecosystem structure and functioning: towards a global synthesis. Ecol. Lett. 14, 709–722 (2011).

    Article 

    Google Scholar 

  • Archer, S. R. & Predick, K. I. An ecosystem services perspective on brush management: research priorities for competing land-use objectives. J. Ecol. 102, 1394–1407 (2014).

    Article 

    Google Scholar 

  • Eldridge, D. J. & Ding, J. Remove or retain: ecosystem effects of woody encroachment and removal are linked to plant structural and functional traits. N. Phytol. 229, 2637–2646 (2020).

    Article 

    Google Scholar 

  • Albrecht, M. A., Becknell, R. E. & Long, Q. Habitat change in insular grasslands: woody encroachment alters the population dynamics of a rare ecotonal plant. Biol. Conserv. 196, 93–102 (2016).

    Article 

    Google Scholar 

  • Stanton, R. A. et al. Shrub encroachment and vertebrate diversity: a global meta-analysis. Glob. Ecol. Biogeogr. 27, 368–379 (2017).

    Article 

    Google Scholar 

  • Archer, S. R. et al. in Rangeland Systems: Processes, Management and Challenges (ed. Briske, D.) 25–84 (Springer, 2017).

  • Anadón, J. D., Sala, O. E., Turner, B. L. & Bennett, E. M. Effect of woody-plant encroachment on livestock production in North and South America. Proc. Natl Acad. Sci. USA 111, 12948–12953 (2014).

    Article 

    Google Scholar 

  • Maestre, F. T. et al. Structure and functioning of dryland ecosystems in a changing world. Annu. Rev. Eco. Evol. Syst. 47, 215–237 (2016).

    Article 

    Google Scholar 

  • Teague, W. et al. Sustainable management strategies for mesquite rangeland: the Waggoner Kite project. Rangelands 19, 4–9 (1997).

    Google Scholar 

  • Hamilton, W. T., McGinty, A., Ueckert, D. N., Hanselka, C. W. & Lee, M. R. Brush Management: Past, Present, Future (A&M Univ. Press, 2004).

  • Bestelmeyer, B. T. et al. The grassland–shrubland regime shift in the southwestern United States: misconceptions and their implications for management. BioScience 68, 678–690 (2018).

    Article 

    Google Scholar 

  • Ding, J. & Eldridge, D. J. Contrasting global effects of woody plant removal on ecosystem structure, function and composition. Perspect. Plant Ecol. Evol. Syst. 39, 125460 (2019).

    Article 

    Google Scholar 

  • Huxman, T. E. et al. Ecohydrological implication of woody plant encroachment. Ecology 86, 308–319 (2005).

    Article 

    Google Scholar 

  • Schmutz, E. M., Cable, D. R. & Warwick, J. J. Effect of shrub removal on the vegetation of a semidesert grass-shrub range. Rangel. Ecol. Manag. 12, 34–37 (1959).

    Article 

    Google Scholar 

  • Noble, J. C. & Walker, P. Integrated shrub management in semi-arid woodlands of eastern Australia: a systems-based decision support model. Agric. Syst. 88, 332–359 (2006).

    Article 

    Google Scholar 

  • Eldridge, D. J. et al. The pervasive and multifaceted influence of biocrusts on water in the world’s drylands. Glob. Chang. Biol. 26, 6003–6014 (2020).

    Article 

    Google Scholar 

  • Bestelmeyer, B. T., Goolsby, D. P. & Archer, S. R. Spatial perspectives in state-and-transition models: a missing link to land management. J. Appl. Ecol. 48, 746–757 (2011).

    Article 

    Google Scholar 

  • Riginos, C. & Young, T. P. Positive and negative effects of grass, cattle, and wild herbivores on Acacia saplings in an East African savanna. Oecologia 153, 985–995 (2007).

    Article 

    Google Scholar 

  • Soliveres, S. et al. Plant diversity and ecosystem multifunctionality peak at intermediate levels of woody cover in global drylands. Glob. Ecol. Biogeogr. 23, 1408–1416 (2014).

    Article 

    Google Scholar 

  • Soliveres, S. & Eldridge, D. J. Do changes in grazing pressure and the degree of shrub encroachment alter the effects of individual shrubs on understorey plant communities and soil function? Funct. Ecol. 28, 530–537 (2013).

    Article 

    Google Scholar 

  • Maestre, F. T., Bowker, M. A., Puche, M., Hinojosa, M. B. & Escudero, A. Shrub encroachment can reverse desertification in semi-arid Mediterranean grasslands. Ecol. Lett. 12, 930–941 (2010).

    Article 

    Google Scholar 

  • Abreu, R. C. R., Durigan, G., Melo, A. C. G., Pilon, N. A. L. & Hoffmann, W. A. Facilitation by isolated trees triggers woody encroachment and a biome shift at the savanna-forest transition. J. Appl. Ecol. 58, 2650–2660 (2021).

    Article 

    Google Scholar 

  • North, M., Oakley, B., Fiegener, R. & Barbour, G. M. Influence of light and soil moisture on Sierran mixed-conifer understory communities. Plant Ecol. 177, 13–24 (2005).

    Article 

    Google Scholar 

  • Muvengwi, J., Mbiba, M., Jimu, L., Mureva, A. & Dodzo, B. An assessment of the effectiveness of cut and ring barking as a method for control of invasive Acacia mearnsii in Nyanga National Park, Zimbabwe. For. Ecol. Manag. 427, 1–6 (2018).

    Article 

    Google Scholar 

  • Abella, S. R. & Chiquoine, L. P. The good with the bad: when ecological restoration facilitates native and non-native species. Restor. Ecol. 27, 343–351 (2019).

    Article 

    Google Scholar 

  • Bestelmeyer, B., Ward, J., Herrick, E. J. & Tugel, A. J. Fragmentation effects on soil aggregate stability in a patchy arid grassland. Rangel. Ecol. Manag. 59, 406–415 (2006).

    Article 

    Google Scholar 

  • Okin, G. S., Gillette, D. A. & Herrick, J. E. Multi-scale controls on and consequences of aeolian processes in landscape change in arid and semi-arid environments. J. Arid. Environ. 65, 253–275 (2006).

    Article 

    Google Scholar 

  • Hu, X., Li, X. Y., Zhao, Y., Gao, Z. & Zhao, S. J. Changes in soil microbial community during shrub encroachment process in the Inner Mongolia grassland of northern China. Catena 202, 105230 (2021).

    Article 
    CAS 

    Google Scholar 

  • D’Odorico, P. et al. Positive feedback between microclimate and shrub encroachment in the northern Chihuahuan desert. Ecosphere 1, 1–11 (2010).

    Article 

    Google Scholar 

  • Eldridge, D. J., Soliveres, S., Bowker, M. A. & Val, J. Grazing dampens the positive effects of shrub encroachment on ecosystem functions in a semi‐arid woodland. J. Appl. Ecol. 50, 1028–1038 (2013).

    Article 

    Google Scholar 

  • Daryanto, S., Eldridge, D. J. & Throop, H. L. Managing semi-arid woodlands for carbon storage: grazing and shrub effects on above- and belowground carbon. Agric. Ecosyst. Environ. 169, 1–11 (2013).

    Article 

    Google Scholar 

  • Paynter, Q. & Flanagan, G. J. Integrating herbicide and mechanical control treatments with fire and biological control to manage an invasive wetland shrub, Mimosa pigra. J. Appl. Ecol. 41, 615–629 (2004).

    Article 

    Google Scholar 

  • Throop, H. L., Reichmann, L. G., Sala, O. E. & Archer, S. R. Response of dominant grass and shrub species to water manipulation: an ecophysiological basis for shrub invasion in a Chihuahuan Desert grassland. Oecologia 169, 373–383 (2012).

    Article 

    Google Scholar 

  • Brantley, S. T. & Young, D. R. Shifts in litterfall and dominant nitrogen sources after expansion of shrub thickets. Oecologia 155, 337–345 (2008).

    Article 

    Google Scholar 

  • Ding, J. & Eldridge, D. J. The fertile island effect varies with aridity and plant patch type across an extensive continental gradient. Plant Soil 459, 173–183 (2020).

    Article 

    Google Scholar 

  • Mihoč, M. et al. Soil under nurse plants is always better than outside: a survey on soil amelioration by a complete guild of nurse plants across a long environmental gradient. Plant Soil 408, 31–41 (2016).

    Article 

    Google Scholar 

  • Ochoa-Hueso, R. et al. Soil fungal abundance and plant functional traits drive fertile island formation in global drylands. J. Ecol. 106, 242–253 (2018).

    Article 
    CAS 

    Google Scholar 

  • Soliveres, S., Eldridge, D. J., Hemmings, F. & Maestre, F. T. Nurse plant effects on plant species richness in drylands: the role of grazing, rainfall and species specificity. Perspect. Plant Ecol. Evol. Syst. 14, 402–410 (2012).

    Article 

    Google Scholar 

  • Schlesinger, W. et al. Biological feedbacks in global desertification. Science 147, 1043–1048 (1990).

    Article 

    Google Scholar 

  • Ding, J. & Eldridge, D. J. Climate and plants regulate the spatial variation in soil multifunctionality across a climatic gradient. Catena 201, 105233 (2021).

    Article 
    CAS 

    Google Scholar 

  • Ding, J., Travers, S. K., Delgado-Baquerizo, M. & Eldridge, D. J. Multiple trade-offs regulate the effects of woody plant removal on biodiversity and ecosystem functions in global rangelands. Glob. Chang. Biol. 26, 709–720 (2020).

    Article 

    Google Scholar 

  • De Soyza, A. G., Whitford, W. G., Martinez-Meza, E. & Van Zee, J. W. Variation in creosotebush (Larrea tridentata) canopy morphology in relation to habitat, soil fertility and associated annual plant communities. Am. Nat. 137, 13–26 (1997).

    Article 

    Google Scholar 

  • Breemen, N. V. Nutrient cycling strategies. Plant Soil 168, 321–326 (1995).

  • Li, J., Gilhooly, W. P. III., Okin, G. S. & Blackwell, J. III. Abiotic processes are insufficient for fertile island development: a 10-year artificial shrub experiment in a desert grassland. Geophys. Res. Lett. 44, 2245–2253 (2017).

    Article 

    Google Scholar 

  • Ward, D. et al. Large shrubs increase soil nutrients in a semi-arid savanna. Geoderma 310, 153–162 (2018).

    Article 
    CAS 

    Google Scholar 

  • Miwa, C. Persistence of Western Juniper Resource Islands following Canopy Removal. MSc thesis, Oregon State Univ. (2007).

  • Zhou, L. et al. Shrub-encroachment induced alterations in input chemistry and soil microbial community affect topsoil organic carbon in an Inner Mongolian grassland. Biogeochemistry 136, 311–324 (2017).

    Article 
    CAS 

    Google Scholar 

  • Kwok, A. B. C. & Eldridge, D. J. The influence of shrub species and fine-scale plant density on arthropods in a semiarid shrubland. Rangel. J. 38, 381–389 (2016).

    Article 

    Google Scholar 

  • Young, J. A., Evans, R. A. & Rimbey, C. Weed control and revegetation following western juniper (Juniperus occidentalis) control. Weed Sci. 33, 513–517 (1985).

    Article 

    Google Scholar 

  • Wiedemann, H. T. & Kelly, P. J. Turpentine (Eremophila sturtii) control by mechanical uprooting. Rangel. J. 23, 173–181 (2001).

    Article 

    Google Scholar 

  • Bowker, M. A., Belnap, J., Chaudhary, V. B. & Johnson, N. C. Revisiting classic water erosion models in drylands: the strong impact of biological soil crusts. Soil Biol. Biochem. 40, 2309–2316 (2008).

    Article 
    CAS 

    Google Scholar 

  • Ding, J. & Eldridge, D. J. Biotic and abiotic effects on biocrust cover vary with microsite along an extensive aridity gradient. Plant Soil 450, 429–441 (2020).

    Article 
    CAS 

    Google Scholar 

  • Blaum, N., Seymour, C., Rossmanith, E., Schwager, M. & Jeltsch, F. Changes in arthropod diversity along a land use driven gradient of shrub cover in savanna rangelands: identification of suitable indicators. Biodivers. Conserv. 18, 1187–1199 (2009).

    Article 

    Google Scholar 

  • Eldridge, D. J., Poore, A., Ruiz-Colmenero, M., Letnic, M. & Soliveres, S. Ecosystem structure, function and composition in rangelands are negatively affected by livestock grazing. Ecol. Appl. 26, 1273–1283 (2016).

    Article 

    Google Scholar 

  • Maestre, F. T. & Cortina, J. Insights into ecosystem composition and function in a sequence of degraded semiarid steppes. Restor. Ecol. 12, 494–502 (2004).

    Article 

    Google Scholar 

  • Nakagawa, S. in Ecological Statistics: Contemporary Theory and Application (eds Fox, G. A. et al.) Ch. 4 (Oxford Univ. Press, 2015).

  • Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article 

    Google Scholar 

  • Zomer, R. J., Trabucco, A., Bossio, D. A. & Verchot, L. V. Climate change mitigation: a spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agric. Ecosyst. Environ. 126, 67–80 (2008).

    Article 

    Google Scholar 

  • Tavşanoğlu, Ç. & Pausas, J. G. A functional trait database for mediterranean basin plants. Sci. Data 5, 180135 (2018).

    Article 

    Google Scholar 

  • The PLANTS Database (USDA, 2019); https://plants.usda.gov/

  • Kattge, J. et al. TRY—a global database of plant traits. Glob. Chang. Biol. 17, 2905–2935 (2011).

    Article 

    Google Scholar 

  • Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta-analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).

    Article 

    Google Scholar 

  • Mallen-Cooper, M. et al. Global synthesis reveals strong multifaceted effects of eucalypts on soils. Glob. Ecol. Biogeogr. 31, 1667–1678 (2022).

    Article 

    Google Scholar 

  • Chen, X., Chen, H. Y. & Chang, S. X. Meta-analysis shows that plant mixtures increase soil phosphorus availability and plant productivity in diverse ecosystems. Nat. Ecol. Evol. 6, 1112–1121 (2022).

    Article 

    Google Scholar 

  • Noble, D. W. A., Lagisz, M., O’dea, R. E. & Nakagawa, S. Nonindependence and sensitivity analyses in ecological and evolutionary meta-analyses. Mol. Ecol. 26, 2410–2425 (2017).

    Article 

    Google Scholar 

  • Nakagawa, S. & Santos, E. Methodological issues and advances in biological meta-analysis. Ecol. Evol. 26, 1253–1274 (2012).

    Article 

    Google Scholar 

  • Grace, J. B. Structural Equation Modeling and Natural Systems (Cambridge Univ. Press, 2006).

  • Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).

    Article 

    Google Scholar 

  • Archer, E. rfPermute v2.1.1 (R Foundation for Statistical Computing, 2010).

  • Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2009).

  • Stefan, V. & Levin, S. plotbiomes: plot Whittaker biomes with ggplot2 (R package version 0009001, 2021).

  • Kahle, D. & Wickham, H. ggmap: spatial visualization with ggplot2. R. J. 5, 144–161 (2013).

    Article 

    Google Scholar 

  • R Core Team. MOSR connections (R Foundation for Statistical Computing, 2013).


  • Source: Ecology - nature.com

    Global predictions for the risk of establishment of Pierce’s disease of grapevines

    Seasonal range fidelity of a megaherbivore in response to environmental change