in

Iterative data-driven forecasting of the transmission and management of SARS-CoV-2/COVID-19 using social interventions at the county-level

  • 1.

    Ebrahim, S. H., Ahmed, Q. A., Gozzer, E., Schlagenhauf, P. & Memish, Z. A. Covid-19 and community mitigation strategies in a pandemic. BMJ 368, m1066. https://doi.org/10.1136/bmj.m1066 (2020).

    Article 
    PubMed 

    Google Scholar 

  • 2.

    Ebrahim, S. H. et al. All hands on deck: A synchronized whole-of-world approach for COVID-19 mitigation. Int. J. Infect. Dis. 98, 208–215. https://doi.org/10.1016/j.ijid.2020.06.049 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 3.

    Kantner, M. & Koprucki, T. Beyond just “flattening the curve”: Optimal control of epidemics with purely non-pharmaceutical interventions. J. Math. Ind. https://doi.org/10.1186/s13362-020-00091-3 (2020).

    MathSciNet 
    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • 4.

    Kupferschmidt, K. The lockdowns worked-but what comes next?. Science 368, 218–219. https://doi.org/10.1126/science.368.6488.218 (2020).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 5.

    Byambasuren, O. et al. Estimating the seroprevalence of SARS-CoV-2 infections: Systematic review. medRxiv. https://doi.org/10.1101/2020.07.13.20153163 (2020).

    Article 

    Google Scholar 

  • 6.

    Fontanet, A. & Cauchemez, S. COVID-19 herd immunity: Where are we?. Nat. Rev. Immunol. 20, 583–584. https://doi.org/10.1038/s41577-020-00451-5 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 7.

    Chowdhury, R. et al. Dynamic interventions to control COVID-19 pandemic: A multivariate prediction modelling study comparing 16 worldwide countries. Eur. J. Epidemiol. 35, 389–399. https://doi.org/10.1007/s10654-020-00649-w (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 8.

    Giordano, G. et al. Modelling the COVID-19 epidemic and implementation of population-wide interventions in Italy. Nat. Med. 26, 855–860. https://doi.org/10.1038/s41591-020-0883-7 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 9.

    Kissler, S. M., Tedijanto, C., Goldstein, E., Grad, Y. H. & Lipsitch, M. Projecting the transmission dynamics of SARS-CoV-2 through the postpandemic period. Science 368, 860. https://doi.org/10.1126/science.abb5793 (2020).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 10.

    Prem, K. et al. The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: A modelling study. Lancet Public Health 5, e261–e270. https://doi.org/10.1016/S2468-2667(20)30073-6 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Leung, K., Wu, J. T., Liu, D. & Leung, G. M. First-wave COVID-19 transmissibility and severity in China outside Hubei after control measures, and second-wave scenario planning: A modelling impact assessment. Lancet 395, 1382–1393. https://doi.org/10.1016/S0140-6736(20)30746-7 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 12.

    Peng, L., Yang, W., Zhang, D., Zhuge, C. & Hong, L. Epidemic analysis of COVID-19 in China by dynamical modeling. medRxiv. https://doi.org/10.1101/2020.02.16.20023465 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 13.

    Read, J. M., Bridgen, J. R. E., Cummings, D. A. T., Ho, A. & Jewell, C. P. Novel coronavirus 2019-nCoV: Early estimation of epidemiological parameters and epidemic predictions. medRxiv. https://doi.org/10.1101/2020.01.23.20018549 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 14.

    Roda, W. C., Varughese, M. B., Han, D. & Li, M. Y. Why is it difficult to accurately predict the COVID-19 epidemic?. Infect. Dis. Model 5, 271–281. https://doi.org/10.1016/j.idm.2020.03.001 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    Wu, J. T., Leung, K. & Leung, G. M. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: A modelling study. Lancet 395, 689–697. https://doi.org/10.1016/S0140-6736(20)30260-9 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 16.

    Perc, M., Gorišek Miksić, N., Slavinec, M. & Stožer, A. Forecasting COVID-19. Front. Phys. https://doi.org/10.3389/fphy.2020.00127 (2020).

    Article 

    Google Scholar 

  • 17.

    Er, S., Yang, S. & Zhao, T. COUnty aggRegation mixup AuGmEntation (COURAGE) COVID-19 prediction. Sci. Rep. 11, 14262. https://doi.org/10.1038/s41598-021-93545-6 (2021).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 18.

    Hunter, E., Mac Namee, B. & Kelleher, J. An open-data-driven agent-based model to simulate infectious disease outbreaks. PLoS One. https://doi.org/10.1371/journal.pone.0208775 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Venkatramanan, S. et al. Using data-driven agent-based models for forecasting emerging infectious diseases. Epidemics 22, 43–49. https://doi.org/10.1016/j.epidem.2017.02.010 (2018).

    Article 
    PubMed 

    Google Scholar 

  • 20.

    Brett, T. S. & Rohani, P. Transmission dynamics reveal the impracticality of COVID-19 herd immunity strategies. Proc. Natl. Acad. Sci. U. S. A. https://doi.org/10.1073/pnas.2008087117 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Britton, T., Ball, F. & Trapman, P. A mathematical model reveals the influence of population heterogeneity on herd immunity to SARS-CoV-2. Science 369, 846–849. https://doi.org/10.1126/science.abc6810 (2020).

    ADS 
    MathSciNet 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 22.

    Beven, K. Environmental Modelling: An Uncertain Future? (CRC Press, 2010).

    Google Scholar 

  • 23.

    Dietze, M. C. Prediction in ecology: A first-principles framework. Ecol. Appl. 27, 2048–2060. https://doi.org/10.1002/eap.1589 (2017).

    Article 
    PubMed 

    Google Scholar 

  • 24.

    Dietze, M. C. et al. Iterative near-term ecological forecasting: Needs, opportunities, and challenges. Proc. Natl. Acad. Sci. 115, 1424. https://doi.org/10.1073/pnas.1710231115 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 25.

    Keenan, T. F., Carbone, M. S., Reichstein, M. & Richardson, A. D. The model-data fusion pitfall: Assuming certainty in an uncertain world. Oecologia 167, 587–597. https://doi.org/10.1007/s00442-011-2106-x (2011).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • 26.

    Niu, S. et al. The role of data assimilation in predictive ecology. Ecosphere 5, art65. https://doi.org/10.1890/ES13-00273.1 (2014).

    Article 

    Google Scholar 

  • 27.

    White, E. P. et al. Developing an automated iterative near-term forecasting system for an ecological study. Methods Ecol. Evol. 10, 332–344. https://doi.org/10.1111/2041-210X.13104 (2019).

    Article 

    Google Scholar 

  • 28.

    Luo, Y. et al. Ecological forecasting and data assimilation in a data-rich era. Ecol. Appl. 21, 1429–1442. https://doi.org/10.1890/09-1275.1 (2011).

    Article 
    PubMed 

    Google Scholar 

  • 29.

    White, B. G. et al. Short-term forecast validation of six models. Weather Forecast. 14, 84–108. https://doi.org/10.1175/1520-0434(1999)014%3C0084:STFVOS%3E2.0.CO;2 (1999).

    ADS 
    Article 

    Google Scholar 

  • 30.

    Calvetti, D., Hoover, A. P., Rose, J. & Somersalo, E. Metapopulation network models for understanding, predicting, and managing the coronavirus disease COVID-19. Front. Phys. https://doi.org/10.3389/fphy.2020.00261 (2020).

    Article 

    Google Scholar 

  • 31.

    O’Sullivan, D., Gahegan, M., Exeter, D. J. & Adams, B. Spatially explicit models for exploring COVID-19 lockdown strategies. T Gis 24, 967–1000. https://doi.org/10.1111/tgis.12660 (2020).

    Article 

    Google Scholar 

  • 32.

    James, N., Menzies, M. & Bondell, H. Understanding spatial propagation using metric geometry with application to the spread of COVID-19 in the United States. EPL (Europhys. Lett.) 135, 48004. https://doi.org/10.1209/0295-5075/ac2752 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 33.

    Li, D. et al. Identifying US County-level characteristics associated with high COVID-19 burden. BMC Public Health 21, 1007. https://doi.org/10.1186/s12889-021-11060-9 (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 34.

    Bisset, K. R. et al. INDEMICS: An interactive high-performance computing framework for data-intensive epidemic modeling. ACM Trans. Model Comput. Simul. https://doi.org/10.1145/2501602 (2014).

    MathSciNet 
    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • 35.

    Chao, D. L., Halloran, M. E., Obenchain, V. J. & Longini, I. M. Jr. FluTE, a publicly available stochastic influenza epidemic simulation model. PLoS Comput. Biol. 6, e1000656. https://doi.org/10.1371/journal.pcbi.1000656 (2010).

    ADS 
    MathSciNet 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 36.

    Marathe, M. V. & Ramakrishnan, N. Recent advances in computational epidemiology. IEEE Intell. Syst. 28, 96–101. https://doi.org/10.1109/MIS.2013.114 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 37.

    Dowd, M. A sequential Monte Carlo approach for marine ecological prediction. Environmetrics 17, 435–455. https://doi.org/10.1002/env.780 (2006).

    MathSciNet 
    Article 

    Google Scholar 

  • 38.

    Gu, F. On-demand data assimilation of large-scale spatial temporal systems using sequential Monte Carlo methods. Simul. Model. Pract. Theory 85, 1–14. https://doi.org/10.1016/j.simpat.2018.03.007 (2018).

    Article 

    Google Scholar 

  • 39.

    Michael, E. et al. Continental-scale, data-driven predictive assessment of eliminating the vector-borne disease, lymphatic filariasis, in sub-Saharan Africa by 2020. BMC Med. 15, 176. https://doi.org/10.1186/s12916-017-0933-2 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 40.

    Poole, D. & Raftery, A. E. Inference for deterministic simulation models: The Bayesian melding approach. J. Am. Stat. Assoc. 95, 1244–1255. https://doi.org/10.1080/01621459.2000.10474324 (2000).

    MathSciNet 
    Article 
    MATH 

    Google Scholar 

  • 41.

    Singh, B. K. & Michael, E. Bayesian calibration of simulation models for supporting management of the elimination of the macroparasitic disease, Lymphatic Filariasis. Parasites Vectors 8, 522. https://doi.org/10.1186/s13071-015-1132-7 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 42.

    Sisson, S. A., Fan, Y. & Tanaka, M. M. Sequential Monte Carlo without likelihoods. Proc. Natl. Acad. Sci. 104, 1760. https://doi.org/10.1073/pnas.0607208104 (2007).

    ADS 
    MathSciNet 
    CAS 
    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • 43.

    Spear, R. C., Hubbard, A., Liang, S. & Seto, E. Disease transmission models for public health decision making: Toward an approach for designing intervention strategies for Schistosomiasis japonica. Environ. Health Perspect. 110, 907–915. https://doi.org/10.1289/ehp.02110907 (2002).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Taylor, S. D. & White, E. P. Automated data-intensive forecasting of plant phenology throughout the United States. Ecol. Appl. 30, e02025. https://doi.org/10.1002/eap.2025 (2020).

    Article 
    PubMed 

    Google Scholar 

  • 45.

    Beaulieu-Jones, B. K. & Greene, C. S. Reproducibility of computational workflows is automated using continuous analysis. Nat. Biotechnol. 35, 342–346. https://doi.org/10.1038/nbt.3780 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 46.

    Delgoshaei, P., Austin, M. A. & Pertzborn, A. J. A semantic framework for modeling and simulation of cyber-physical systems. Int. J. Adv. Sys. Measure. 7, 223–237 (2014).

    Google Scholar 

  • 47.

    Dong, E., Du, H. & Gardner, L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect. Dis. 20, 533–534. https://doi.org/10.1016/S1473-3099(20)30120-1 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 48.

    Henkel, R., Wolkenhauer, O. & Waltemath, D. Combining computational models, semantic annotations and simulation experiments in a graph database. Database https://doi.org/10.1093/database/bau130 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 49.

    Merkel, D. Docker: Lightweight linux containers for consistent development and deployment. Linux J. 2014, 2 (2014).

    Google Scholar 

  • 50.

    Nakamura, K., Higuchi, T. & Hirose, N. Sequential data assimilation: Information fusion of a numerical simulation and large scale observation data. J. UCS 12, 608–626. https://doi.org/10.3217/jucs-012-06-0608 (2006).

    Article 

    Google Scholar 

  • 51.

    Stodden, V. & Miguez, S. Best practices for computational science: Software infrastructure and environments for reproducible and extensible research. J. Open Res. Softw. https://doi.org/10.5334/jors.ay (2014).

    Article 

    Google Scholar 

  • 52.

    Unacast. Social distancing scoreboard. https://www.unacast.com/covid19/social-distancing-scoreboard (2020).

  • 53.

    Willem, L. et al. SOCRATES: An online tool leveraging a social contact data sharing initiative to assess mitigation strategies for COVID-19. BMC Res. Notes 13, 293. https://doi.org/10.1186/s13104-020-05136-9 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 54.

    Iboi, E. A., Ngonghala, C. N. & Gumel, A. B. Will an imperfect vaccine curtail the COVID-19 pandemic in the U.S.?. Infect. Dis. Model 5, 510–524. https://doi.org/10.1016/j.idm.2020.07.006 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 55.

    Badr, H. S. et al. Association between mobility patterns and COVID-19 transmission in the USA: A mathematical modelling study. Lancet Infect. Dis. https://doi.org/10.1016/S1473-3099(20)30553-3 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 56.

    Contreras, S., Villavicencio, H. A., Medina-Ortiz, D., Biron-Lattes, J. P. & Olivera-Nappa, A. A multi-group SEIRA model for the spread of COVID-19 among heterogeneous populations. Chaos Solitons Fractals 136, 109925. https://doi.org/10.1016/j.chaos.2020.109925 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 57.

    Mossong, J. et al. Social contacts and mixing patterns relevant to the spread of infectious diseases. PLoS Med. 5, e74. https://doi.org/10.1371/journal.pmed.0050074 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 58.

    Chen, R. Markov Chain Monte Carlo Vol. Volume 7 Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore 147–182 (Co-Published with Singapore University Press, 2005).

  • 59.

    Doucet, A., Godsill, S. & Andrieu, C. On sequential Monte Carlo sampling methods for Bayesian filtering. Stat. Comput. 10, 197–208. https://doi.org/10.1023/A:1008935410038 (2000).

    Article 

    Google Scholar 

  • 60.

    Fearnhead, P. & Kunsch, H. R. Particle filters and data assimilation. Annu. Rev. Stat. Appl. 5, 421–449. https://doi.org/10.1146/annurev-statistics-031017-100232 (2018).

    MathSciNet 
    Article 

    Google Scholar 

  • 61.

    Gu, F., Butt, M., Ai, C., Shen, X. & Xiao, J. Proceedings of the Conference on Summer Computer Simulation 1–10 (Society for Computer Simulation International, 2015).

  • 62.

    Florida Agency for Health Care Administration. https://ahca.myflorida.com/ (2020).

  • 63.

    Polonsky, J. A. et al. Outbreak analytics: A developing data science for informing the response to emerging pathogens. Philos. Trans. R. Soc. B. https://doi.org/10.1098/rstb.2018.0276 (2019).

    Article 

    Google Scholar 

  • 64.

    Gambhir, M. et al. Geographic and ecologic heterogeneity in elimination thresholds for the major vector-borne helminthic disease, lymphatic filariasis. BMC Biol. 8, 22. https://doi.org/10.1186/1741-7007-8-22 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 65.

    Spear, R. C. & Hubbard, A. Modelling Parasite Transmission and Control 99–111 (Springer, 2010).

  • 66.

    James, N. & Menzies, M. COVID-19 in the United States: Trajectories and second surge behavior. Chaos Interdiscip. J. Nonlinear Sci. 30, 091102. https://doi.org/10.1063/5.0024204 (2020).

    MathSciNet 
    CAS 
    Article 

    Google Scholar 

  • 67.

    Chang, S. et al. Mobility network models of COVID-19 explain inequities and inform reopening. Nature 589, 82–87. https://doi.org/10.1038/s41586-020-2923-3 (2021).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 68.

    James, N. & Menzies, M. Efficiency of communities and financial markets during the 2020 pandemic. Chaos Interdiscip. J. Nonlinear Sci. 31, 083116. https://doi.org/10.1063/5.0054493 (2021).

    MathSciNet 
    Article 

    Google Scholar 

  • 69.

    Yilmazkuday, H. Stay-at-home works to fight against COVID-19: International evidence from Google mobility data. J. Hum. Behav. Soc. Environ. 31, 210–220. https://doi.org/10.1080/10911359.2020.1845903 (2021).

    Article 

    Google Scholar 

  • 70.

    Brienen, N. C., Timen, A., Wallinga, J., Van Steenbergen, J. E. & Teunis, P. F. The effect of mask use on the spread of influenza during a pandemic. Risk Anal. 30, 1210–1218. https://doi.org/10.1111/j.1539-6924.2010.01428.x (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fishing activity before closure, during closure, and after reopening of the Northeast Canyons and Seamounts Marine National Monument

    Pathology and virology of natural highly pathogenic avian influenza H5N8 infection in wild Common buzzards (Buteo buteo)